文档库 最新最全的文档下载
当前位置:文档库 › 激光干涉仪工作原理详解

激光干涉仪工作原理详解

激光干涉仪工作原理详解

激光干涉仪工作原理详解

干涉仪是以激光波长为已知长度、利用迈克耳逊干涉系统测量位移的通用长度测量工具。激光干涉仪有单频的和双频的两种。单频的是在20世纪60年代中期出现的,最初用于检定基准线纹尺,后又用于在计量室中精密测长。双频激光干涉仪是1970年出现的,它适宜在车间中使用。激光干涉仪在极接近标准状态(温度为20℃、大气压力为101325帕、相对湿度59%、CO2 含量0.03%)下的测量精确度很高,可达1&TImes;10。

?

?

?

?

?

?

?

?

?

单频激光干涉仪

?

?

图1为单频激光干涉仪的工作原理。从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在

激光干涉仪报告讲解

机械工程综合实 践 实验报告 课程名称机械工程综合实践 专业精密工程 指导教师彭小强 小组成员刘强14033006 谌贵阳 吴志明 实验日期2012.4.2—2011.6.25 国防科学技术大学机电工程与自动化学院

目录 1激光干涉仪 1.1激光干涉仪介绍 1.2激光干涉仪原理 2 激光干涉仪测量机床的直线度 2.1实验器材以及平台的搭建 2.2激光干涉仪的调试 2.3直线度的测量 3 激光干涉仪测量机床的重复定位精度3.1实验器材以及平台的搭建 3.2激光干涉仪的调试 3.3重复定位精度的测量 4 实验分析与总结

目录 一、实验目的与任务 (2) 二、实验内容与要求 (2) 三、实验条件与设备 (2) 四.实验原理 (3) 1.定位精度测量 (3) 2.直线度测量 (4) 五、实验步骤 (5) 1.设定激光测量系统 (5) 2.调整激光光束,使之与机器运动轴准直。 (5) 3.数据记录与数据处理 (6) 六、实验过程和结果 (8) 1.X轴定位精度 (8) 2.X轴直线度 (9) 3.误差分析 (11) 七、实验总结与体会 (14) 1.实验总结 (14) 2.实验心得体会 (14) 3.对课程的一些建议 (14)

综合实践3 伺服系统运动精度建模与评价 一、实验目的与任务 通过对三轴机床的X轴进行定位误差实验,使学生掌握一般机构空间运动精度的测量与分析评价方法。主要内容包括了解双频激光干涉仪测量位移的基本原理,掌握利用双频激光干涉仪测量机床进给轴的定位误差的方法,深刻理解轴运动的精度的概念。在对机床进给轴运动定位误差测量的基础上,分析机床的运动误差。 二、实验内容与要求 (1)直线轴运动误差测量。利用双频激光干涉仪建立直线轴定位精度、直线度、姿态误差的测量系统,并对机床典型三维进给机构各轴的运动误差进行测量,分析测量结果的不确定度; (2)垂直度测量。任选进给机构两轴,利用双频激光干涉仪建立两轴垂直度的测量系统,并对垂直度进行测量,并对测量结果进行评价; (3)典型三维进给机构的精度建模。在分析多轴进给机构拓扑结构的基础上,用多体系统理论和变分法建立多轴进给机构运动空间各点的运动误差传递模型; (4)典型三维进给机构的精度分析与评价。在测量得到的进给机构轴运动误差的基础上,利用所建立的精度模型,对机构的典型运动轨迹如直线、圆弧、平面等的运动误差进行分析,并对分析结果的不确定度进行评价。 三、实验条件与设备 双频激光干涉仪,含直线度、定位精度测量组件。具体如图1所示。 (图1 定位精度测量组件直线度测量组件)

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

FARO激光跟踪仪

FARO Laser Tracker 提高生产率的设计 https://www.wendangku.net/doc/f79013456.html,/LaserTracker/cn

FARO激光跟踪仪简介 FARO激光跟踪仪是一款高精度的便携式坐标测量设备,能够让您通过快速、简单和精确地测量来实现制造产品、优化流程和提供解决方案的目的。 应对测量挑战 全世界的客户都信赖FARO激光跟踪仪,并利用它来应 对日常的测量挑战以及过去无法解决的复杂难题。 重新定义效率 FARO激光跟踪仪在设备校准、设备安装、部件检测、 工装建造与设置、制造与装配集成和逆向工程等应用 领域都缔造了突破性的效率。 增加产量 通过提高工作速度、缩短停工时间、消除昂贵的废料 以及获得精确、一致和值得报告的测量数据,许多公 司节省了数百万美元的费用。 提供优质产品 利用FARO激光跟踪仪,您可以制造出更具竞争力 的产品,加快实施产品改进计划并为当今的技术市 场提供高性能的产品。

实际应用 FARO激光跟踪仪在各种行业的许多应用中均可实现精确的测量,它提供了更佳的测量方法并使全新的制造方法成为可能。

校准 ? 比传统方法更准确、更省时 ? 重复性测量,合理的趋于失真 ? 通过实时测量来确定公差和验证设计 逆向工程 ? 获取高精度的数字化扫描数据 ? 不再需要硬件母版 工装建造 ? 全程精确测试(确保部件达到最高的装配标准) ? 验证工装的尺寸完整性和可重复性(确定或预先防范工装缺陷)零件检测 ? 将复杂的几何结构、曲面和特征位置与标称数据进行比较? 不需要移动工件到固定的检测工具中 ? 减少生产废料和不合格产品带来的损失 设备安装 ? 安放/调平床身 ? 防止机床在磨合期运行时造成的损坏 ? 降低设备上的零件磨损和撕裂 制造与装配集成 ? 实时获取关键的定位反馈 ? 设置移动部件的标称坐标 ? 在移动过程中动态地持续测量,以提供定位点的数据

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

Etalon激光跟踪仪产品介绍

Etalon激光跟踪仪产品介绍 背景: 数控机床由于其本身的运动比较复杂,因此其运动过程中产生的各种误差相对来说也比较复杂。Etalon激光跟踪仪的开发成功解决了这一问题. 测量原理: Etalon激光跟踪仪与传统激光干涉仪测量原理最大不同在于,它采用多步法体积定位测量方法对所有误差进行测量和捕捉,多步法体积定位测量的最大优点在于其测量方向和运动的方向可以不在同一个方向,这样,测量的结果对多个方向的误差都敏感,从而多个方向的误差都被包含进去,只要通过将误差从整体分离到各个方向,我们就能得到比传统的测量方法更多的数据量,从而可以对误差分离并对其进行补偿。其测量过程如下图所示。 进行多步测量时,必须首先定义对角线起始点(0,0,0)以及终点(X,Y,Z)。由此可知机床的工作空间范围为X×Y×Z。假设每轴的测量点数为n,则所有测量点数为3n,各轴的增量分别为Dx、Dy、Dz,其中:Dx=X/n,Dy=Y/n,Dz=Z/n。 如下图所示机床共有四条体对角线。这里以一条为例,即a→g。采用多步测量法对该条对角线测量的路径如下:安装在主轴上的移动光靶从a点(0,0,

0)开始,移动Dx后,暂停,暂停过程中,软件会自动采集数据,而后在Y方向以相同的进给率以及暂停时间移动Dy,最后在Z轴方向以相同的进给率和暂停时间移动Dz,重复上述步骤一直到移动到体对角线的另一点g。对于其它三条对角线而言,要分别改变起始点和各轴的增量来进行测量。 从上面的过程可以看到,主轴每次移动到体对角线方向上的一个新的位置,使用多步测量法能够测量出三个位移误差。而且沿每个轴方向测量到的数据仅仅是由于主轴沿该轴方向运动独立产生的,这样就可以将所测量到的误差数据分离为三个轴方向运动独立产生的,从而达到误差分离的目的。 测量前提及补偿前后效果对比: 以下是采用Etalon激光跟踪仪捕捉到的误差进行校正前后的效果对比图:

激光干涉仪使用技巧讲解

厨 f静堂鸯溅斌技术)2007亭第弘誊第{O麓 激光干涉仪使用技巧 Precise G口洫to Vsine a Laser Interferometer 魏纯 (广州市计最检测技术研究院,广东广州510030) 瓣萎:本文讨论了激光予涉仪在使用巾的准直等技礴,用户在实际使用中增加葺芒件以及维护巾邋蓟的同舔。燕键词:激光平涉仪;准直 l引言高性能激光干涉仪具有快速、高准确测量的优点,是校准数字机床、坐标测量机及其它定位装置精度及线性指标最常用的标准仪器,弦者所在单位使用的是英国RENISHAW公闭生产的MLl0激光干涉仪,具有性能稳定,使罱方便等特点。 通过较长时闯使用,作者认为测量人员除了要考虑环境、温度、原理等影响测量的常规因素外,掌握一些激光干涉仪的使用技巧会使测量互作事半功倍。 2原理介绍

MLl0激光干涉仪是根据光学千涉基本原理设计磊成酌。从MLl0激光器射出的激光束有单一频率,其标称波长隽0.633pLIn,且其长期波长稳定健(真空状态)要高于0.1ppm。当此光束抵达偏振分光镜时,会被分为两道光束一一道反射光糯一道透射光。这两道光射向其反光镜,然后透过分光镜反射圈去,在激光头内的探测器形成一道干涉光束。若光程差没有任俺变讫,探测器会在樵长性秘楣潢性于涉的两极找到稳定的信号。若光程差确实有变化,探测器会在 每一次光程改变时,在相长性和相消性干涉的弼极找 到变动的信号。这些变化(援格)会被计算并用来测量两个光程闻的差异变化。测量的光程就是栅格数乘以光束大约一半的波长。 值褥注意的是,激光束的波长取决于所通过敖空气折射率。由于空气折射率会随着温度、压力和相对湿度而变化,用来计算测蹩值的波长值可能需要加以李}偿,以配合这魍环境参数豹改变。实际上就测量准确度而言,此类补偿在进行线性位移(定位精度)测量,特别是量程较大时,非常重要。3激光干涉仪使用技巧 3.1 Z轴激光光路快速准直方法 用激光干涉仪进行线性测量时,无论是数字机 床、还是坐标测燮枫,z轴测量酵激光光路的礁童榻对X、Y轴准直来说,要困难的多。尤其是在z轴距离较长的情况下,要保证激光光束经反射镜反射后回到激 先探测器的强度满足测量对对光强的要求,准妻激光光路往往需要很长时间。 根据作者长期使用的经验,按照“离处动尾部,低处动整体”的调整方法,将会大大缩短漆直时闻。(“尾部”是指MLl0激光器电源接口边上的倾斜度调蹩旋钮和三兔架云台上的旋转微调控制旋锂,“整体”是指三

FARO激光跟踪仪案例一

用户经验谈 Self Levelling Metal Machines Pte Ltd 车工专家采用FARO 激光跟踪仪(FARO Laser Tracker),只需耗费一半时间,即可达到更高精度 更高智能的工程与技术往往是促进任何工业发展的关键动力。其中,精密工程科学至今依然是制造业的复杂制造工艺的核心因素。Self Levelling Metal Machines Pte Ltd (SLMM)正是一家精密工程公司,该公司是业务遍布全球的Self Levelling Machines (SLM)公司属下成员之一。SLMM 创办于2000年,是Self Levelling Machines (Australia)与Metal Machines Engineering Services (Singapore)两家公司的联盟企业,公司总部设在新加坡。SLMM 为多家公司提供巨型的原位精密车工服务,包括镗孔、铣削及钻孔等。SLMM 项目工程师Lok Qiuquan 分享其经验时表示,“我们多数客户是来自海事与岸外工业。我们所从事的岸外石油加工产品包括浮式生產儲油及卸油系統(FPSO)、转塔系泊系统、岸外起重機及悬链锚腿系泊(CALM)浮筒等等。这些部件的体积非常巨大,无法放置在一般的车工中心,我们必须将设备带到客户所在地点,在现场为他们进行车削。”SLMM 所承接的所有项目,都必须在车削工作开始前及完成后进行检验。模拟安装、机器对准及几何尺寸检验等都是SLMM 的日常工作之一。“这些工作需要详细测量,每次测量的条件都可能有所不同。”Lok 表示,“测量对象可能是30毫米的小孔,也可能是直径30米的巨型结构,经常需要使用多种不同的传统仪器和手持工具。”这些测量方法尽管效果相对良好,但是SLMM 依然在寻求效率更高的替代方法。“由于我们的项目日益复杂,我们意识到需要改善工作流程,以防止出现瓶颈。我们的美国伙伴向我们推荐FARO 激光跟踪仪,因为他们使用后觉得效果极好,尤其是针对需要用到圆形自调平机器(CSLMs)的项目而言。我们开始使用FARO 仪器之后,我们的工作流程在许多方法都大为改善,远远超越我们的预期。“Lok 特别指出。 ■ 过去在工作流程方面的挑战 SLMM 的工程师原本是根据工作的性质,选用项目现场所需要的各种测量仪器与设备。SLMM 所拥有的测量仪器与设备种类繁多,包括校准测量尺和激光检验设备、光学仪、内径管形千分尺、外径千分尺及内孔测量规等。 Lok 表示,“采用这些传统的仪器与手持工具,有时需要另外重新制造一些测量设备,才能对某些特别项目进行测量,意味着需要花更多时间与努力。如果这些设备带到现场之后发现不合用,我们的努力就完全白费了。此外,我们也需要技术纯熟及谨慎的技术人员来进行测量,因为这些测量数据都是人工收集 FARO 激光跟踪仪进行设置安装检查

激光干涉仪检测方法

FANUC、OKUMA机床的激光干涉仪检测方法 一、光的相干性 二、激光干涉法测距原理 三、FANUC螺补参数的设定 四、关于FANUC系统正负方向补偿号的计算方法 五、FANUC的检测用程式 六、OKUMA螺补参数的设定 七、OKUMA检测程式 八、检测值输入的方法

一、光的相干性 相長性干涉 當兩個波長相同的光束波形同步射出時,其波峰位置會如下圖 2 一般重合,固稱為“相長性干涉”。在相長性干涉的情況下,輸出波的振幅等於兩個輸入波的振幅之和。 ?相消性干涉 當兩個相干光束波形以180°的相位差異步射出時,一個輸入光束的波峰位置會如下圖3 一般與另一個輸入光束的波谷重合,固稱為“相消性干涉”。在相消性干涉的情況下,兩個輸入波會互相抵消而產生暗淡的光

二、激光干涉法测距原理 图片: 根据光的干涉原理,两列具有固定相位差,而且有相同频率、相同的振动方向或振动方向之间夹角很小的光相互交叠,将会产生干涉现象,如图所示。由激光器发射的激光经分光镜A分成反射光束S1和透射光束S2。两光束分别由固定反射镜M1和可动反射镜M2反射回来,两者在分光镜处汇合成相干光束。若两列光S1和S2的路程差为Nλ(λ为波长,N为零或正整数),实际合成光的振幅是两个分振幅之和,光强最大。当S1和S2的路程差为λ/2(或半波长的奇数倍)时,合成光的振幅和为零,此时光强最小。 激光干涉仪就是利用这一原理使激光束产生明暗相间的干涉条纹,由光电转换元件接收并转换为电信号,经处理后由计数器计数,从而实现对位移量的检测。由于激光的波长极短,特别是激光的单色性好,其波长值很准确。所以利用干涉法测距的分辨率至少为λ/2,

激光跟踪仪

1.1 概述 激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量。SMART310是Leica公司在1990年生产的第一台激光跟踪仪,1993年Leica公司又推出了SMART310的第二代产品,其后,Leica公司还推出了LT/LTD系列的激光跟踪仪,以满足不同的工业生产需要。LTD系列的激光跟踪仪采用了Leica公司专利的绝对测距仪,测量速度快,精度高,配套的软件则在Leica统一的工业测量系统平台Axyz下进行开发,包括经纬仪测量模块、全站仪测量模块、激光跟踪仪测量模 块和数字摄影测量模块等[8]。 激光跟踪系统在我国的应用始于1996年,上飞、沈飞集团在我国第一次引进了SMART310激光跟踪系统;2005年上海盾构公司引进了Leica公司的一套LTD600跟踪测量系统,应用于三维管模的检测。 1.2 激光跟踪测量系统的基本原理[52] 近年来,激光跟踪测量系统的应用领域在不断扩大,很多公司都相继推出了各自品牌的激光跟踪仪,但所有的激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成的。在本文中,实验采用的是LTD600激光跟踪测量系统(图2.1),因此具体讨论的基本原理是基于LTD600型的激光跟踪测量系统。 图2.1 LTD600激光跟踪测量系统 1.2.1 系统的组成 激光跟踪仪的实质是一台能激光干涉测距和自动跟踪测角测距的全站仪,区别之处在于它没有望远镜,跟踪头的激光束、旋转镜和旋转轴构成了激光跟踪仪的

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

激光干涉仪讲解

第一章、前言 一、本次我们主要研究:如何检测机床的螺距误差。因此我们主要的任务在于: 1. 应该使用什么仪器进行测量 2. 怎么使用测量仪器 3. 怎么进行数据分析 4. 怎么将测量所得的数据输入对应的数控系统 二、根据第一点的要求,我们选择的仪器为:Renishaw 激光器测量系统,此仪器检测的范围包括: 1. 线性测量 2. 角度测量 3. 平面度测量 4. 直线度测量 5. 垂直度测量 6. 平行度测量 线性测量:是激光器最常见的一种测量。激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。 三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。因此,我们此次使用的检测方法——线性测量。 总结以上我们的核心在于:如何操作Renishaw 激光器测量系统结合线性测量的方法进行检测,之后将检测得到的数据进行分析,最后将分析得到的数据存放到数控系统中。这样做的目的在于——提高机床的精度。 - 1 - 第二章、 2.1 什么是螺距误差? 基础知识 开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。但丝杠总有一定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。

由上面的原因可以得知: 螺距误差是指由螺距累积误差引起的常值系统性定位误差。 2.2 为什么要检测螺距误差? 根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。 2.3 怎么检测螺距误差? (1)安装高精度位移检测装置。 (2)编制简单的程序,在整个行程中顺序定位于一些位置点上。所选点的数目及距离则受数控系统的限制。 (3)记录运动到这些点的实际精确位置。 (4)将各点处的误差标出,形成不同指令位置处的误差表。(5)多次测量,取平均值。 (6)将该表输入数控系统,数控系统将按此表进行补偿。 2.4 什么是增量型误差、绝对型误差? ①增量型误差 增量型误差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差 绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5 螺距误差补偿的原理是什么? 螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较,计算出在数控加工全行程上的误差分布曲线,再将

激光跟踪仪培训报告

激光跟踪仪培训报告文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

激光跟踪仪 培训总结报告 培训参加人:*** 所属部门:******* 培训时间: 培训报告总结 一、激光跟踪仪的基本工作原理、组成、安全注意事项 1、激光跟踪仪的基本工作原理 激光跟踪测量系统的工作基本原理是在目标点上安置一个反射器,跟踪头发出的激光射到反射器上,又返回到跟踪头,当目标移动时,跟踪头调整光束方向来对准目标。同时,返回光束为检测系统所接收,用来测算目标的空间位置。简单的说,激光跟踪测量系统的所要解决的问题是静态或动态地跟踪一个在空间中运动的点,同时确定目标点的空间坐标 2、激光跟踪仪的组成及安全注意事项 1、激光跟踪仪的组成 1、跟踪头和控制箱 2、5M连接电缆(用于连接跟踪头与控制箱) 3、气象站(一根1.5米连接线,一个空气温度传感器,一个材料温度传感器,一个大气压传感器) 4、网线 5、球头 6、电缆包8、靶球清洁套装9、防尘盖 3激光跟踪仪的安全注意事项 二、学习激光跟踪仪检验软件和测量软件 1. 开机之前的方案 1.设计测量方案 2.跟踪仪校验:前后视、1点QVC、4点QVC等 3.使用SpatialAnalyzer采集测量 4.根据测量点集拟合形状 5.根据测量和拟合结果使用图形来评价 2. 激光跟踪仪安装好后校核软件的使用、测量软件的使用 1校验软件Trackercal的使用 1.开机必须设置计算机IP,否则程序不认同,IP地址设置为

2.点击Trackercal软件图标打开软件,选择仪器,点击连接跟踪仪。 3.运用前后视检查功能(Ctrl+F),检测跟踪仪的前后视偏差,将靶球放置在3M 以外的地方固定住,单击前后置检查,若偏差在大于0.0001小于0.0004则需要采用1点QVC,将靶球放置在5M外,单击补偿,若水平和垂直角度偏差大于0.002则需要进行4点QVC误差补偿,补偿方法如下 4.QVC实现误差补偿,4点QVC进行全方位补偿,将靶球放回鸟巢后点击fullQVC,根据软件向导进行操作完成补偿,选择四个点ABCD,A点将靶球固定在距离跟踪仪0.5M左右,在0度左右的俯仰角上点击PICK UP THIS POINT;B点将靶球固定在距离跟踪仪3M左右的范围,在0度左右的俯仰角范围内,点击PICK UP THIS POINT;C点将靶球固定在距离跟踪仪1M左右,在55°正负5°的俯仰角范围内,I 点击PICK UP THIS POINT ;D点将靶球固定在距离跟踪仪1M左右,在负55°正负5°的俯仰角范围内,I点击PICK UP THIS POINT,保存补偿结果 5.补偿操作完成之后再次用前后视检查功能检测结果。 2、测量软件SpatialAnalyzer的使用,我们主要学习单点测量、稳定点测量和空间扫描 1.打开SA软件并与跟踪仪联机,确定绿灯常亮。 2.选中1.5英寸靶球,选择测量,测量有单点测量(1把 SMR 放进跟踪器上标有“0”的磁座里。 2点击测量按钮(Measure)。测量对话框会显示之前输入的参数并报告测量的经过。这个对话框一般会在任何类型的测量中显示。3然后依次把SMR 放进编号“1”“2”等的磁座里,至少依次放进 4 个磁座,这个步骤对以后的测量中很重要。 4这样就用单点测量模式完成了单独点集的测量。请注意软件 SA 中的点),稳定点测量,空间扫描测量,选择其中一种测量模式,配合靶球底座,平稳放置在测量物平面之上,选择合适位置进行测量。如单点测量的话就要一点一点分别点击测量,选择几个点就要点击几次测量;稳定点测量就是等靶球稳定之后跟踪仪会自动测量,只需要点击一次测量就可以了;空间扫描就是点击测量之后它会根据你行走路线及设置,自动采集多个点形成一个轮廓。 3.使用“构造”功能,构成一个平面,在上面选择“点位于平面之上”,并更改偏移量,靶球座是多大的就填写多大的,一般我们使用“25.4”。 4.使用“查询—多个点—到对象”功能,生成一个矢量组,能够根据图来反映被测平面的凹凸情况。 5.使用“关系—几何图形拟合—只进行拟合”功能,生成被测平面的平面度。 6.在界面上找到“拍照”功能的按钮,点击拍摄功能,可以有利于生成报告,更好的表达出测量结果。 7.将需要的测量结果拖拽到“动态报告”中,生成PDF格式报告。 三、参与培训的感受 经过这为期三天多的学习Radian激光跟踪仪培训,二次培训更加深对激光跟 踪仪的印象,对激光跟踪仪安装及安全规程有了更深的了解,使我学到了现场设 备保全的理论知识,还实地的测量了机器人。

雷尼绍XL80激光干涉仪操作手册

镭射干涉仪操作手册

手册内容 一.RENISHAW 公司简介 1 二.镭射干涉仪原理 2 (1)波的速度 3 (2)干涉量测原理 3 (3)镭射干涉仪 4 (4)镭射干涉仪一般量测项目 4 三.注意事项 5 四.镭射干涉仪防止误差及保养 5 (1)镭射干涉仪防止误差 5 (2)镭射干涉仪保养方法 6 五.安全及注意事项 6 六.镭射光原理及特性7 七.镭射硬件介绍8 八.镭射架设流程图15 九.定位量测原理及操作16 (1)线性定位量测原理16 (2)量测方式17 十.镭射易发生之人为架设误差20 (1)死径误差20 (2)余弦误差21 (3)阿倍平移误差21 十一.镭射操作之步骤22 (1)软件安装之步骤22 (2)执行量测软件22 (3)定位量测硬件架设之操作23 (4)镜组架设前之注意事项24 (5)镜组架设之步骤24 十二.定位量测之程序范例29 十三.定位量测之软件操作步骤30 热漂移量测38 快速功能键44 十四.动态软件量测之操作45 (1)动态量测硬件之架设45 (2)执行量测之软件46 (3)位移与时间48 (4)速度与时间49 (5)加速度与时间50 十五.角度量设之操作52 (1)注意事项52 (2)镜组架设的种类53 (3)镜组架测之步骤54 (4)角度量测之软件操作步骤57 十六.RX10旋转轴之量测62 (1)说明62

(2)硬件配件之介绍62 (3)硬件操作之步骤64 (4)软件操作之步骤67 十七.直度量测之操作75 (1)直度之分类75 (2)直度量测之硬件架设75 (3)镜组架设之步骤75 (4)直度软件之操作步骤80 十八.Z轴直度镜组织架设方法85 十九.垂直度量测之操作89 (1)垂直度镜组架设之步骤89 (2)软件操作之步骤95 二十.平面度量测之原理与操作101 (1)硬设备101 (2)操作之原理102 (3)镜组架设之步骤102 (4)软件操作之步骤110

激光跟踪仪讲解

概述 1.1 激光跟踪测量系统(Laser Tracker System)是工业测量系统中一种高精度的大尺寸测量仪器。它集合了激光干涉测距技术、光电探测技术、精密机械技术、计算机及控制技术、现代数值计算理论等各种先进技术,对空间运动目标进行跟踪并实时测量目标的空间三维坐标。它具有高精度、高效率、实时跟踪测量、安装快捷、操作简便等特点,适合于大尺寸工件配装测量。SMART310 是Leica 公司在1990年生产的第一台激光跟踪仪,1993年Leica公司又推出了SMART310 的第二代产品,其后,Leica 公司还推出了LT/LTD 系列的激光跟踪仪,以满足不同的工业生产需要。LTD 系列的激光跟踪仪采用了Leica 公司专利的绝对测距仪,测量速度快,精度高,配套的软件则在Leica统一的工业测量系统平台Axyz 下进行开发,包括经纬仪测量模块、全站仪测量模块、激光跟踪仪测量模[8] 。块 和数字摄影测量模块等 激光跟踪系统在我国的应用始于1996 年,上飞、沈飞集团在我国第一次引进了SMART310 激光跟踪系统;2005年上海盾构公司引进了Leica 公司的一套LTD600跟踪测量系统,应用于三维管模的检测。 [52] 激光跟踪测量系统的基本原理 1.2 近年来,激光跟踪测量系统的应用领域在不断扩大,很多公司都相继推出了各自品牌的激光跟踪仪,但所有的激光跟踪测量系统基本都是由激光跟踪头(跟踪仪)、控制器、用户计算机、反射器(靶镜)及测量附件等组成的。在本文中,实验采用的是LTD600激光跟踪测量系统(图2.1 ),因此具体讨论的基本原理是基于LTD600 型的激光跟踪测量系统。 图 2.1 LTD600 激光跟踪测量系统系统的组成1.2.1 激光跟踪仪的实质是一台能激光干涉测距和自动跟踪测角测距的全站仪,区别之处在于它没有望远镜,跟踪头的激光束、旋转镜和旋转轴构成了激光跟踪仪的三个轴,三轴相交的中心是测量坐标系的原点。它的结构原理如图2.2 所示系统的硬件主要组成部分包括:传感器头、控制器、电动机和传感器电缆、带LAN 电缆的应用计算机以及反射器。 (1)传感器头:读取角度和距离测量值。激光跟踪器头围绕着两根正交轴旋转。每根轴具有一个编码器用于角度测量和一只直接供电的DC 电动机来进行遥控移动。传感器头的油缸包含了一个测量距离差的单频激光干涉测距仪(IFM ),还有一个绝对距离测量装置(ADM )。激光束通过安装在倾斜轴和旋转轴交叉处的一面镜子直指反射器。激光束也用作为仪器的平行瞄正轴。挨着激光干涉仪的光电探测器(PSD)接收部分反射光束,使跟踪器跟随反射器。 图 2.2 激光跟踪仪结构原理图 (2)控制器: 包含电源、编码器和干涉仪用计数器、电动机放大器、跟踪处理器和网卡(图2.3 )。跟踪处理器将跟踪器内的信号转化成角度和距离观测值,通过局域网卡将数据传送到应用计算机上,同理从计算机中发出的指令也可以通过跟踪处理器进行转换再传送给跟踪器,完成测量操作。

迈克尔逊干涉仪的原理与应用

迈克尔逊干涉仪的原理与应用 在大学物理实验中,使用的是传统迈克尔逊干涉仪,其常见的实验内容是:观察等倾干涉条纹,观察等厚干涉条纹,测量激光或钠光的波长,测量钠光的双线波长差,测量玻璃的厚度或折射率等。 由于迈克尔逊干涉仪的调节具有一定的难度,人工计数又比较枯燥,所以为了激发学生的实验兴趣,增加学生的科学知识,开阔其思路,建议在课时允许的条件下,向学生多介绍一些迈克尔逊干涉仪的应用知识。这也是绝大多数学生的要求。下面就向大家介绍一些利用迈克尔逊干涉仪及其原理进行的测量。 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量[11-14];采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度. 纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的

He-Ne激光波长作为测量基准,采用干涉条纹计数,用静态光电显微镜作为环规端面瞄准装置,对环规进行非接触、绝对测量,配以高精度的数字细分电路,使仪器分辨力达到5nm;静态光电显微镜作为传统的瞄准定位技术在该装置中得以充分利用,使其瞄准不确定度达到30nm;精密定位技术在该装置中也得到了很好的应用,利用压电陶瓷微小变动原理,配以高精度的控制系统,使其驱动步距达到5nm。 测振结构的设计原理用半导体激光器干涉仪对微振动进行测量时,用一弹性体与被测量(力或加速度)相互作用,使之产生微位移。将这一变化引到动镜上来,就可以在屏上得到变化的干涉条纹,对等倾干涉来讲,也就是不断产生的条纹或不断消失的条纹。由光敏元件将条纹变化转变为光电流的变化,经过电路处理可得到微振动的振幅和频率。 压电材料的逆压电效应研究:压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。 2. 角度测量[15-16]:刘雯等人依照正弦原理改型设计了迈克尔逊干涉仪,可以完成小角度测量。仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原

单频-双频激光干涉仪

激光干涉仪 - 单频与双频激光干涉仪比较 单频的激光器它的一个根本弱点就是受环境影响严重,在测试环境恶劣,测量距离较长时,这一缺点十分突出。其原因在于它是一种直流测量系统,必然具有直流光平和电平零漂的弊端。激光干涉仪可动反光镜移动时,光电接收器会输出信号,如果信号超过了计数器的触发电平则就会被记录下来,而如果激光束强度发生变化,就有可能使光电信号低于计数器的触发电平而使计数器停止计数,使激光器强度或干涉信号强度变化的主要原因是空气湍流,机床油雾,切削屑对光束的影响,结果光束发生偏移或波面扭曲。这种无规则的变化较难通过触发电平的自动调整来补偿,因而限制了单频干涉仪的应用范围,只有设法用交流测量系统代替直流测量系统才能从根本上克服单频激光干涉仪的这一弱点。 而双频激光干涉仪正好克服了这一弱点,它是在单频激光干涉仪的基础上发展的一种外差式干涉仪。和单频激光干涉仪一样,双频激光干涉仪也是一种以波长作为标准对被测长度进行度量的仪器,所不同者,一方面是当可动棱镜不动时,前者的干涉信号是介于最亮和最暗之间的某个直流光平,而后者的干涉信号是一个频率约为1.5MHz的交流信号;另一方面,当可动棱镜移动时,前者的干涉信号是在最亮和最暗之间缓慢变化的信号,而后者的干涉信号是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。因而对于双频激光干涉仪来说,可用放大倍数较大的交流放大器对干涉信号进行放大,这样,即使光强衰减90%,依然可以得到合适的电信号。由于这一特点,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。总之,双频激光干涉仪的优越性主要有以下几点: 1. 精度高双频激光干涉仪以波长作为标准对被测长度进行度量的仪器。即使不做细分也可达到μm 量级,细分后更可达到n m量级。(安捷伦5530激光干涉仪线性精度能达到0.4PPM) 2. 应用范围广双频激光干涉仪除了可用于长度的精密测量外,测量角度、直线度、平面度、振动距离及速度等等,还可以分光进行多路测量。 3. 环境适应力强即使光强衰减90%,仍然可以得到有效的干涉信号。由于这一特点,双频激光干涉仪既可在恒温、恒湿、防震的计量室内检定量块、量杆、刻尺、微分校准器和坐标测量机,也可以在普通的车间内为大型的机床的刻度进行标定。

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

相关文档