文档库 最新最全的文档下载
当前位置:文档库 › 悬索桥简介

悬索桥简介

悬索桥简介
悬索桥简介

维基百科,自由的百科全书

跳转到:导航, 搜索

位于美国旧金山的金门大桥,是非常典型的悬索桥设计

悬索桥是桥梁的一种,亦称吊桥,悬索桥的主要承力部分是桥两端的两根塔架,在这两根塔架间的悬索拉住桥的桥面。为了保障悬索桥的稳定性,两根塔架外的另一面也有悬索,这些悬索保障塔架本身受的力是垂直向下的。这些悬索连接到桥两端埋在地里的锚锭中。有些悬索桥的塔架外还有两个小一些的桥面,它们可以由小一些的悬索拉住,或由主索拉住。

悬索桥的构造方式是公元前3世纪发明于中国[1],现在许多桥梁使用这种结构方式。

目录

[隐藏]

? 1 优点

? 2 缺点

? 3 结构分析

? 4 悬索

? 5 建筑过程

? 6 悬索桥起源

?7 参考文献

[

?相对于其它桥梁结构悬索桥可以使用比较少的物质来跨越比较长的距离

?悬索桥可以造得比较高,容许船在下面通过

?在造桥时没有必要在桥中心建立暂时的桥墩,因此悬索桥可以在比较深的或比较急的水流上建造

?悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重

?悬索桥的坚固性不强,在大风情况下交通必须暂时被中断

?悬索桥不宜作为重型铁路桥梁

?悬索桥的塔架对地面施加非常大的力,因此假如地面本身比较软的话,塔架的地基必须非常大和相当昂贵

悬索桥中最大的力是悬索中的张力和塔架中的压力。由于塔架基本上不受侧向的力,它的结构可以做得相当纤细,此外悬索对塔架还有一定的稳定作用。

假如在计算时忽视悬索的重量的话,那么悬索形成一个悬链线。这样计算悬索桥的过程就变得非常简单了。

[编辑]悬索

老的悬索桥的悬索一般是铁链或联在一起的铁棍。现代的悬索一般是多股的钢筋。

[编辑]建筑过程

木制步行吊桥。

?假如塔架要建在水上的话,在塔架要站立的地方首先要使用沉箱来排挤软的地层,来建立一个固定的地基。假如下面的岩石层非常深无法用沉箱达到的话那么要使用深钻的方式达到岩石层或建立非常大的人造的混凝土地基。这个地基一直要延伸出水面

?假如塔架要建在陆地上,它的地基必须非常深

?在地基上用混凝土、巨石和钢结构建立桥墩。有些桥的桥墩是桥面的一部分,在这种情况下桥墩的高度至少要达到桥面的高度

?在塔架的顶部有一个被称为索鞍的光滑的结构。索鞍一般分鞍座(也称下平板)和鞍体两部分,鞍座固定在塔架的顶部,鞍座与鞍体之间可以相对移动。主缆放在鞍体上,主缆和鞍体可以在鞍座上面滑动来补给桥在建筑过程中索鞍两侧的重量的变化。桥完成后这个索鞍可能要被固定住。

?锚碇分隧道式锚碇和重力式锚碇两种。隧道式锚碇被固定在岩石中,从而能够承担主缆的拉力;重力式锚碇很大很重,靠自身重量和地基的磨阻力承担主缆的拉力。还有一重跨度较小的悬索桥,它没有锚碇,主缆的两端的拉力通过桥面主梁传递,自相平衡。

?沿着未来悬索的路径纤起一根或一组暂时的绳或线

?另一股绳被悬挂在第一股绳的上方,在这股绳上一个滑车可以运行。这个滑车可以从一端的锚碇运行到另一端的锚碇。每股悬索需要一个这样的滑车

?一股一般直径小于1厘米的高强度钢筋的一端被固定在一个锚碇中,另一端被固定在滑车上并被这样牵引到另一端的锚碇,然后被固定在这个锚碇上,然后滑车回到它开始的锚碇上去牵引下一股高强度钢筋或从它正所在的方向开始牵引下一股高强度钢筋

?钢筋被牵引后要进行防锈处理

?这样多股高强度钢筋被牵引,连接两端的锚碇。一般这些钢筋的横截面是六角形的,它们被暂时地绑在一起

?所有钢筋被牵引后它们被一个高压液压机构和其它钢筋挤压到一起,这样形成的悬索的横截面是圆形的

?在悬索上在等距离的位置上要加上索夹

?事先计算好的长度的吊索被架在索夹上。这些吊索的另一端将来要固定桥面

?使用专门的起重机,桥面被一块接着一块地挂在悬挂索上。这个起重机可以自己挂在悬索上或挂在特别的临时的索上。桥面可以从桥下的船上吊起或从桥的两端运到它们应该放到的地方。当所有桥面被挂上后,通过调节悬索可以使桥面达到计划的曲线。一般水面上的桥的桥面呈拱形,以便桥下船只通行。

陆上的悬索桥的桥面一般是平的。

?桥面完成后可以进行其它细节工作,比如装灯、栏杆、涂漆、铺路等等

【桥梁】工程文献综述模板

摘要:本文从桥梁工程的定义出发,对桥梁工程做了基本的定界,接着介绍了桥梁的基本组成、桥梁的分类以及特点,随后,阐述了桥梁学科的历史发展以及规律,正是因为在历史的发展中我们不断总结和反思,才更好的推动了桥梁工程突飞猛进的发展。从历史过过渡到当下,进而引出了当下的一些桥梁学科的前沿问题,为后面对桥梁工程未来的展望奠定了基础。最后,对桥梁工程未来的发展方向做出了分析。 关键词:组成;分类;历史,前沿;未来 引言:本篇文献综述的论述主题是桥梁工程,紧紧围绕桥梁工程来展开本文。桥梁工程指桥梁勘测、设计、施工、养护和检定等的工作过程,以及研究这一过程的科学和工程技术,它是土木工程中属于结构工程的的一个分支。桥梁工程学的发展主要取决于交通运输对它的需要。我们在生活中桥梁处处可见,由此可看出桥梁在生产生活中的重要性,通过历史发展我们也可以了解到桥梁在文化,经济,军事每一个方面都有着重大的影响,桥梁随着时间的推移在不断的改变,但却历久弥新。随着科学技术的发展,经济,社会,文化水平的提高,桥梁建筑的需求越来越高。经过几十年的努力,我国的桥梁工程无论在建设规模上,还是在科技水平上,都取得令世界瞩目的成就。现代建筑的价值源于创新精神,桥梁工程也不例外。作为一名工科学子,我们要克服因循守旧,不思进取的风气,敢于质疑传统,在结构形式、施工方法、设计理念和设计方法上创新,对更高科技、更高质量、更环保的工程技术的追求步履不停。

正文: 1.【1】桥梁的基本组成 桥梁的组成与桥梁的结构体系有关。常见的桥梁组一般由上部结构、下部结构两部分组成。在桥跨和墩台之间还设有支座,用于连接和传力。除此之外,还有路堤、挡墙、护坡、导流堤、检查设备、台阶扶梯以及导航装置等附属设施。 1.1上部结构 桥梁位于支座以上的部分称为上部结构,它包括桥跨(也叫承重结构)和桥面。桥跨是桥梁中直接承受桥上交通荷载并架空的结构部分;桥面是承重结构以上的各部分(指公路桥的行车道铺装,铁路桥的道砟,枕木,钢轨,排水防水系统,人行道,安全带,路缘石,栏杆,照明或电力装置,伸缩缝等)。 1.2下部结构 桥梁位于支座以下部分称为下部结构,也叫支承结构。它包括桥墩,桥台以及墩台的基础,基础位于墩台的最下部分,承受墩台传递的全部荷载(包括交通荷载和结构自重)并将其传递给地基的结构物。地基是承受由基础传递的荷载而产生变形的各个土层(包括岩层)。 1.3正桥与引桥 桥梁跨越主要障碍物(或通航河道)的结构称为正桥;连接正桥和路堤的桥梁区段称为引桥。正桥跨度大,基础深,是整个桥梁工程的重点;引桥一般跨度较小,基础较浅;在正桥和引桥的分界处,有时还会设置桥头建筑——桥头堡。 1.4跨度 跨度也叫跨径,是表现桥梁技术水平的重要指标,它表示桥梁的跨越能力。多跨桥梁的最大跨度称为主跨。桥跨结构两支座间的距离L1称为计算跨径,用于结构分析计算;设计洪水位线上两相邻墩台间的水平净距L0称为桥梁净跨径,各孔净跨径之和称为总跨径,它反映的是卡桥梁的泄洪能力。 1.5桥梁全长 《公路桥涵设计通用规范》( D60-2004)规定:有桥台的桥梁为两岸桥台侧墙或八字墙尾端间的距离;无桥台的桥梁为桥面系长度。 1. 6桥下净空高度 设计洪水位或设计通航水位与桥跨结构最下缘的高差H称为桥下净空高度,应大于通航或排水要求的最小数值。 1.7建筑高度 桥面到桥跨结构最下缘的高差h称为桥梁的建筑高度。其数值应小于在桥梁定线中所要求的容许建筑高度。 2.【2】桥梁的分类及特点 桥梁有许多分类方式,人们通常根据桥梁的结构形式、所用材料、所跨越的障碍以及其用途、跨径大小等对桥梁进行分类。 2.1根据桥梁单孔跨径大小和多跨总长的不同,桥梁可分为;小桥、中桥、大桥、特大桥。

2015年造价工程师(土建)讲解:悬索桥施工试题

2015年造价工程师(土建)讲解:悬索桥施工试题 一、单项选择题(共25题,每题2分,每题的备选项中,只有1个事最 符合题意) 1、如果当事人在合同中没有约定通过仲裁解决争议,则只能通过_作为解 决争议的最终方式。 某建筑设计室内地坪标A±0.00,室外地坪标高O45m,基槽挖土方 800m3r 基础工程量560m3,其中标inj-0.45m 至±0?00的丄程量为 lOmSo 根 据《建设丄程工程量清单计价规范》的有关规定,该基础工程的土方回填量为 m3。 3、依据《建设工程工程量清单计价规范》规定,属于暂列金额的是()。 4、下列费用中应属于建设单位经费的是_。 A ?编制项U 可行性研究报告的费用 B ?新建项U 所需办公设备的购置费用 C.工程招标费 D.建设单位所需临时设施的搭设费用 A. 诉讼 B ? 和解 C ? 调解 D. 仲裁 2、 A ? 250 B. 240 C ? 230 D. 200 A. 材料暂估单价、专业工程暂佔价 B. 合同价款调整、索赔、现场签证等的费用 C. 施工图以外的零量项U 或工作 D. 总承包人为配合协调发包人进行的服务工作费用

5、下列选项中,不属于可以采用不平衡报价的情况的是 在编制分部分项工程量清单中,_不需根据全国统一的工程量清单项U 设置规则和il ?量规则填写。 A. 项U 编号 B ?项U 名称 C.工程数量 D.项U 工作内容 7、某工程项U 投资方案一次性投资12000元,预计每年净现金流量4300 元,项 tl 寿命为 5 年。(P/A, 18%, 5)=3.127, (P/A, 20%, 5)=2.991, (P/A, 25%, 5片2?689,则该方案的内部收益率为 A ?小于18% B ? 18% ?20% C ? 20% ?25% D ?大于25% 8、适用于每个房间都需要分别控制室温,而每个房间冷、热负荷变化情况 乂不同的多层.多房间建筑的是()C 有永久性顶盖无W 护结构的场馆看台应按其顶盖水平投影面积的_计算。 A ? B. C ? A. 能够早日结账收款的项U B ? 预计在今后工程量会增加的项U C ? 设计图纸不明确、佔il ?修改后工程量要增加的项U D. 预计在今后多使用施工机械的项U 6、 A. 单风道系统 B ? 双风道系统 C. 全水系统 D. 直接蒸发机组系统 9、

大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月 大跨极窄人行悬索桥动力特性及风振响应研究 熊耀清, 何云明, 吴小宾 (中国建筑西南设计研究院有限公司,成都610081) [摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。 [关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施 Research on dynamic characteristics and wind vibration response of a pedestrian large -span and slender suspension bridge Xiong Yaoqing,He Yunming,Wu Xiaobin (Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China) Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.wendangku.net/doc/f99708355.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement. Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures 作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.wendangku.net/doc/f99708355.html, 。 0 引言 大跨度、窄桥面悬索桥造价低廉、施工方便,在我 国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗 风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1 工程概况 某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型 布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工 字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝 148

自锚式悬索桥

自锚式悬索桥的综述 2005-8-5【大中小】【打印】 摘要:介绍自锚式悬索桥的特点、历史及国内外发展情况。重点分析了钢筋混凝土桥的设计和发展,并对其施工工艺做了简单介绍。总结展望了自锚式悬索桥的发展空间及其需进一步研究的问题。 关键词:悬索桥;自锚式体系;施工;实例 一、前言 一般索桥的主要承重构件主缆都锚固在锚碇上,在少数情况下,为满足特殊的设计要求,也可将主缆直接锚固在加劲梁上,从而取消了庞大的锚碇,变成了自锚式悬索桥。 过去建造的自锚式悬索桥加劲梁大多采用钢结构,如1990 年通车的日本此花大桥,韩国永宗悬索桥、美国旧金山——奥克兰海湾新桥、爱沙尼亚穆胡岛桥墩等。2002年7月在大连建成了世界上第一座钢筋混凝土材料的自锚式悬索桥——金石滩金湾桥墩,为该类桥墩型的研究提供了宝贵的经验。此后在吉林、河北、辽宁又有4座钢筋混凝土自锚式悬索桥正在设计和设计和建造中。 自锚式悬索桥有以下的优点:①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,了可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:①由于主缆直接锚固在加劲梁上,梁承受了很大的轴向力,为此需加大梁的截面,对于钢结构的加劲梁则造价明显增加,对于混凝土材料的加劲梁则增加了主梁自重,从而使主缆钢材用量增加,所以采用了这两种材料跨径都会受到限制。 ②施工步骤受到了限制,必须在加劲梁、桥塔做好之后再吊装主缆、安装吊

20-悬索桥分析一

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手 悬索桥建模助手图1 掌握各参数含义及使用注意事参考帮助说明文档,1是悬索桥建模助手设置对话框,图项。在使用该建模助手时,经常碰到如下疑问:)对于小跨径的人行索桥,没有边跨如何建模?1 )桥面系荷载如何正确定义?2 )横向内力如何计算?3 解决了上述疑问,才能正确的使用悬索桥的建模助手。 2的结构布置:1对于问题,即要实现如图 图2 无边跨悬索桥布置

在建模助手对话框中,通过设置主梁端点A1的坐标和边跨吊杆间距完成无边跨及吊杆的布置。 图3 无边跨悬索桥设置 有边跨无吊杆:A1的x坐标为a,左跨吊杆间距为a的绝对值; 无边跨:A1的x坐标为a,但a输入非常小的数值,例如-0.01,左跨吊杆间距为a的绝对值;对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法 图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图:

悬索桥抗风综述

悬索桥抗风综述 摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。文中还对超长跨径悬索桥建设的可行性进行了研究。 关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器 1. 塔科玛桥的倒塌 1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。 设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。 塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。北美抗风对策的实质是桁架和重量。 2. 欧洲抗风方式的改进 欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。 箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。 采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。 3. 20世纪末的悬索桥 20世纪才真正是长大悬索桥的发展时期,日本架设了跨度近2 000m的世界

20-悬索桥分析(一)

20-悬索桥分析(一)

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手

图1 悬索桥建模助手 图1是悬索桥建模助手设置对话框,参考帮助说明文档,掌握各参数含义及使用注意事项。在使用该建模助手时,经常碰到如下疑问:1)对于小跨径的人行索桥,没有边跨如何建模? 2)桥面系荷载如何正确定义? 3)横向内力如何计算? 解决了上述疑问,才能正确的使用悬索桥的

对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法 图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布

荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图: 图6 实际形状及横向内力 横向内力计算过程如下: 利用节线法求主缆初始坐标及初始横向内力,分为2步骤:首先根据桥面恒载值,等效为吊杆处的节点荷载,进行初次计算,得到相应的主缆坐标和横向内力;然后,考虑主缆和吊杆自重,再迭代分析(主缆坐标影响自重,自重反过来也影响主缆坐标),满足收敛条件,最后得到主缆的初始形状和初始横向力。 当曲线比较平坦时,可以用下式估算横向内力: H=qL2 或H= M c0

Midas Civil悬索桥分析功能使用

MIDAS/Civil悬索桥分析功能使用说明 资料制作日期:2006-8-9 对应软件版本:Civil 2006 1.使用MIDAS/Civil分析悬索桥的基本操作步骤 A.定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; B.打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各参数意义请参考联 机帮助的说明以及下文中的一些内容); C.将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; D.运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元内力数据,并自动 生成“自重”的荷载工况; E.对模型根据实际状况,对单元、边界条件和荷载进行一些必要的编辑后,将主缆上 的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; F.定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收敛。运行完了后程 序会提供平衡单元节点内力数据; G.删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义为相应的结构组、 边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑 非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; H.运行分析后查看该施工阶段的位移是否接近于0以及一些构件的内力是否与几何刚 度初始荷载表格或者平衡单元节点内力表格的数据相同; I.各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态的各种分析; J.详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2.建模助手中选择三维和不选择三维的区别? A.选择三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽度,输入的桥面系 荷载将由两个索面来承担; B.不选择三维时,程序将给建立单索面的空间模型,不需输入桥面的宽度,输入的桥 面系荷载将由单索面来承担。 3.建模助手中主梁和主塔的材料、截面以及重量是如何考虑的? A.因为索单元必须考虑自重,因此建模助手分析中对于主缆和吊杆的自重,程序会自 动考虑; B.但在建模助手中主梁和主塔的材料和截面并不介入分析,程序只是根据输入的几何 数据,给建立几何模型,以便进行下一步的悬索桥精密分析。即,程序不会根据定

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

悬索桥抗风综述

悬索桥桥抗风综述 课程名称:桥梁抗震抗风指导老师:周诗云 专业:土木工程 姓名:罗潇 学号: 20134190060 学生年级:2013级 日期:2016年12月5日

目录 悬索桥抗风综述 (2) 1.塔科玛桥的倒塌 2. 欧洲抗风方式的改进 (2) 3. 20世纪末的悬索桥 (3) 4. 采用拉索系统的新桥型 (3) 5. 空气动力学措施 (4) 6. 机械措施 (4) 7. 超长大跨悬索桥的可能 (6) 参考文献 (6)

悬索桥抗风综述 摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。文中还对超长跨径悬索桥建设的可行性进行了研究。 关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器 1. 塔科玛桥的倒塌 1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全 新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。 设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。 塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。北美抗风对策的实质是桁架和重量。 2. 欧洲抗风方式的改进 欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。 箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。 采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。

悬索桥分析时的一些注意事项

悬索桥分析时的一些注意事项 1)使用MIDAS/Civil分析悬索桥的基本操作步骤 a) 定义主缆、主塔、主梁、吊杆等构件的材料和截面特性; b) 打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数(各 参数意义请参考联机帮助的说明以及下文中的一些内容); c) 将建模助手的数据另存为“*.wzd”文件,以便以后修改或确认; d) 运行建模助手后,程序会提供几何刚度初始荷载数据和初始单元 内力数据,并自动生成“自重”的荷载工况; e) 对模型根据实际状况,对单元、边界条件和荷载进行一些必要的 编辑后,将主缆上的各节点定义为更新节点组,将塔顶节点和跨中最低点定义为垂点组; f) 定义悬索桥分析控制数据后运行。运行过程中需确认是否最终收 敛。运行完了后程序会提供平衡单元节点内力数据; g) 删除悬索桥分析控制数据,将所有结构、边界条件和荷载都定义 为相应的结构组、边界组和荷载组,定义一个一次成桥的施工阶段,在施工阶段对话框中选择“考虑非线性分析/独立模型”,并勾选“包含平衡单元节点内力”; h) 运行分析后查看该施工阶段的位移是否接近于0以及一些构件的 内力是否与几何刚度初始荷载表格或者平衡单元节点内力表格的数据相同; i) 各项结果都满足要求后即可进行倒拆施工阶段分析或者成桥状态 的各种分析; j) 详细计算原理请参考技术资料《用MIDAS做悬索桥分析》。 2)建模助手中选择三维和不勾选三维的区别? a) 勾选三维就是指按空间双索面来计算悬索桥,需要输入桥面的宽 度,输入的桥面系荷载将由两个索面来承担; b) 不勾选三维时,程序将给建立单索面的空间模型,不需输入桥面 的宽度,输入的桥面系荷载将由单索面来承担。

斜拉桥发展史及现状综述

从斜拉桥看桥梁技术的发展 姓名:马哲昊 班级:1403 专业:建筑与土木工程 学号:143085213086

摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。 关键词: 斜拉桥;发展史;现状;展望 Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward. Key words: Cable-stayed bridge; Review; Looking forward to

1.斜拉桥的发展 1.1 斜拉桥的历史 斜拉桥是一种古老而年轻的桥型结构。早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。1818 年,英国一座跨越特威德河的人行桥也毁于风振。现在看来,这些桥梁的垮塌主要是由于当时工业水平的限制、对斜拉桥这样高次超静定结构体系缺乏理论分析方法和技术手段以及桥梁结构构造存在缺陷。世界上第一座现代化的大跨径斜拉桥诞生于 1955 年,在第二次世界大战结束后,Dischinger 在瑞典设计建成了 Stromsund 桥。该桥主跨 182.6m,全桥采用斜拉式结构,主梁为钢板梁,中间用横梁连接,双塔式,每塔只用了两对高强钢丝拉索,梁上索距 35m 左右,梁高 3.25m 为跨径的 1/56,塔高 28m 为跨径的 1/6.5。这座桥在现代的观点来看虽然在细节上存在着一些不足,如桥面采用的分离的混凝土梁,索塔的造型缺乏美感等,但在桥梁结构上却开创了一个新的纪元,创造出了一种新的桥梁体系,且这种桥梁结构拥有着诸多优点: ①用少量拉索取代了深水桥墩,不但节省了费用、降低了施工难度,而且有效的提高了桥梁的跨越能力,利于通航和排洪。 ②拉索作为主梁的中间弹性支承,使得在桥梁跨径增大的同时,主梁的梁高却可以减小,从而使主梁本身以梁以及段引桥的造价得以降低。 ③拉索自锚固于主梁上,梁身能够得到免费的预压应力,在很多情况下,尤其对于中等跨径桥梁是有利的,和悬索桥相比还可以节省庞大而昂贵的地锚。 ④拉索和索塔、主梁组成了多个三角形结构,稳定性高,刚度大。静、动力性能都良好。 ⑤整体结构新颖,造型美观。 斜拉桥这种新桥型的的出现,以其先进的技术,经济的造价、美观的外形,很快的得到了社会的认同,并在许多国家得到了推广,从Stromsund 桥建成后的第二年起,诸多有名的斜拉桥相继诞生,且发展的速度很快,平均每年就能完一座斜拉桥的修建。早期的斜拉桥结构大多采用当时盛行的轻型钢结构正交异性桥面板,各桥不仅在形式上不尽相同,

悬索桥施工安全控制要点(正式)

编订:__________________ 单位:__________________ 时间:__________________ 悬索桥施工安全控制要点 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9091-16 悬索桥施工安全控制要点(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 6.8.2、悬索桥中央扣梁段的安装施工安全控制要点: 中央扣梁段的安装需重点解决好以下问题,以确保施工安全。 1、高空漂浮状态下螺栓群的定位连接; 2、加劲梁吊装引起主缆线形的变化导致中央扣索夹两端局部应力的增加。 3、在跨中梁段吊装前,应先将中央扣索夹下半部按照设计要求预先用高强螺栓连接好,随加劲梁一同吊装,吊装到位后用增设的临时吊杆固定在临时索夹上,待加劲梁线形基本形成后,再进行中央扣索夹上半部的安装及螺栓的紧固。 主缆施工安全防范措施 主缆架设施工过程中,除了要按照猫道架设一般

安全防范措施进行外,还需要特别注意以下几点: 1.在主缆架设施工牵引行进过程中,须有2人全程跟踪,特别注意临时承重绳在受力后出现下挠故障; 2.钢丝束还应注意防扭转、磨损及钢丝鼓丝等。如若出现以上情况,应先对故障进行排除,再进行下步施工; 3.在主缆架设施工过程中,必须严格按照施工技术交底来进行,安全交底工作交底到个人; 4.临时锚固后应及时将锚跨鼓出的钢丝用木锤敲顺,绝不能将鼓丝留在锚跨内; 5.在索股牵引过程中,使索股始终保持一定的反拉力,克服索盘转动惯性引起的“呼啦圈”等不良现象; 6.进行主缆架设施工的队伍必须经过严格培训的,经验丰富的人员,工作中保持信息畅通,严格监控,保障安全。 6.8.5、主缆索股架设施工安全控制要点: 1、研制主缆放索支架,提高放索质量

自锚式与地锚式悬索桥动力特性对比分析

文章编号:1671-2579(2010)04-0156-04 自锚式与地锚式悬索桥动力特性对比分析 王立峰,孙勇,王子强 (东北林业大学土木工程学院,黑龙江哈尔滨 150040) 摘 要:以朝阳市黄河路自锚式悬索桥主桥为研究对象,采用有限元软件M idas/Civ il 建立该桥的有限元动力计算模型。考虑重力刚度的影响,对该桥的动力特性进行计算分析,得到结构的自振频率和振型,同时建立与该桥结构参数完全相同的地锚式悬索桥模型进行对比分析,结合计算结果对自锚式、地锚式悬索桥的动力特性和刚度特点进行讨论。最后,在保证初始刚度不变的情况下,考虑不同结构参数变化对自锚式、地锚式悬索桥固有频率的影响,对结果进行分析。 关键词:自锚式悬索桥;动力特性;结构分析 收稿日期:2010-04-10 作者简介:王立峰,男,博士研究生,副教授.E-mail:co mputerw lf@126.co m 1 工程概况 朝阳市黄河路大桥位于朝阳市黄河路东段,向东跨越大凌河,与凤凰组团开发区相连。大桥全长508.32m,主桥为跨径326m 的预应力混凝土自锚式悬索桥,桥跨布置为73+180+73m ,设计荷载为城市 -A 级,人群荷载4.0kN/m 2,地震动峰值加速度为0.1g ,相当于7度,按8度设防,设计洪水频率1/100, 最高水位164.7m 。 2 有限元模型建立 利用有限元法分析桥梁结构时,有多种离散模型,常用的有空间梁单元法、板壳法、三维实体单元法及梁格法。综合考虑自锚式悬索桥的几何非线性影响,根据各构件的形式和受力特点,结构可离散为两种单元:索单元和梁单元。 3 结论 (1)第一次设计中腹板主拉应力虽然符合有关规范要求,但主拉应力较大,最大达2.44MPa,经过优化设计后,最大主拉应力已降至1.77M Pa,降低了27%。效果明显。成桥试验结果也证明了此点。(2)箱梁截面在中跨支点处顶板截面存在较大的剪力滞效应,剪力滞系数 t =1.61,在设计中应注意。(3)纵向预应力钢束尽量布置在靠近腹板的位置,可减小剪力滞效应带来的应力分布不均匀的影响。参考文献: [1] JT J 023-85 公路钢筋混凝土及预应力混凝土桥涵设 计规范[S]. [2] 长沙市规则设计院.长沙市三汊矶湘江大桥结构施工图设计图纸[Z],2004. [3] 张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M ].北 京:人民交通出版社,1998. [4] 张士铎,王文州.桥梁工程结构中的负剪力滞效应[M ]. 北京:人民交通出版社,2004. [5] 贺拴海.桥梁结构理论与计算方法[M ].北京:人民交通 出版社,2003. [6] 王焕定,吴德伦.有限单元法及计算程序[M ].北京:中国 建筑工业出版社,2004. [7] 张德锋,茅振伟,吕志涛.预应力混凝土结构裂缝控制及 其可靠性分析[J].工业建筑,2003(4). [8] 袁承斌,张德锋,刘桂荣,等.裂缝对预应力混凝土结构耐 久性影响的试验研究[J].工业建筑,2003(3). [9] 任明飞,胡迎新,郑机.东海大桥近岛段工程预应力混凝 土顶推连续梁的设计与施工[J].桥梁建设,2005(6).[10] 李承君,周世军.顶推法施工的曲线连续梁桥截面实测 应力分析[J].铁道工程学报,2005(2). 156 中 外 公 路 第30卷 第4期2010年8月

悬索桥分析一

-悬索桥分析(一)

————————————————————————————————作者:————————————————————————————————日期:

MIDAS做悬索桥分析(一) 一悬索桥初始平衡状态分析 悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。 1 建模助手 图1 悬索桥建模助手 图1是悬索桥建模助手设置对话框,参考帮助说明文档,掌握各参数含义及使用注意事项。在使用该建模助手时,经常碰到如下疑问: 1)对于小跨径的人行索桥,没有边跨如何建模? 2)桥面系荷载如何正确定义? 3)横向内力如何计算? 解决了上述疑问,才能正确的使用悬索桥的建模助手。

对于问题1,即要实现如图2的结构布置: 图2 无边跨悬索桥布置 在建模助手对话框中,通过设置主梁端点A1的坐标和边跨吊杆间距完成无边跨及吊杆的布置。 图3 无边跨悬索桥设置 有边跨无吊杆:A1的x坐标为a,左跨吊杆间距为a的绝对值; 无边跨:A1的x坐标为a,但a输入非常小的数值,例如-0.01,左跨吊杆间距为a的绝对值; 对于问题2,定义桥面荷载有2种方法,如下图所示: 图4 单位重量法

图5 详细设置 方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。 方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。 对于问题3,在视图选项中,点击实际形状时,程序输出横向内力(主缆水平分力),如下图: 图6 实际形状及横向内力 横向内力计算过程如下: 利用节线法求主缆初始坐标及初始横向内力,分为2步骤:首先根据桥面恒载值,等效为吊杆处的节点荷载,进行初次计算,得到相应的主缆坐标和横向内力;然后,考虑主缆和吊杆自重,再迭代分析(主缆坐标影响自重,自重反过来也影响主缆坐标),满足收敛条件,最后得到主缆的初始形状和初始横向力。 当曲线比较平坦时,可以用下式估算横向内力: H=qL2 8f或H= M c0 f H—主缆水平力; q—桥面等效均布恒荷载,计入主缆和吊杆自重; f—主缆失高; M c0—竖向荷载对跨中的总弯矩。 2 悬索桥初始平衡状态分析流程 使用悬索桥建模助手完成初始平衡状态分析时,建模助手内部经过2个子步骤。首先使用简化计算方法(节线法)进行初始平衡分析。该方法采用了日本Ohtsuki博士使用的计算索平衡状态方程式,是利用桥梁自重和主缆张力的平衡方程计算主缆坐标和主缆张力的方法。其基本假定如下: (1) 吊杆仅在横桥向倾斜,垂直于顺桥向。 (2) 主缆张力沿顺桥向分量在全跨相同。 (3) 假定主缆与吊杆的连接节点之间的索呈直线形状,而非抛物线形状。 (4) 主缆两端坐标、跨中垂度、吊杆在加劲梁上的吊点位置、加劲梁的恒荷载等为已知量。

自锚式悬索桥的受力原理及优缺点

自锚式悬索桥的受力原理及优缺点 自锚式悬索桥的上部结构包括:主梁、主缆、吊杆、主塔四部分。传力路径为:桥面重量、车辆荷载等竖向荷载通过吊杆传至主缆承受,主缆承受拉力,而主缆锚固在梁端,将水平力传递给主梁。由于悬索桥水平力的大小与主缆的矢跨比有关,所以可以通过矢跨比的调整来调节主梁内水平力的大小,一般来讲,跨度较大时,可以适当增加其矢跨比,以减小主梁内的压力,跨度较小时,可以适当减小其矢跨比,使混凝土主梁内的预压力适当提高。由于主缆在塔顶锚固,为了尽量减少主塔承受的水平力,必须保证边跨主缆内的水平力与中跨主缆产生的水平力基本相等,这可以通过合理的跨径比来调节,也可以通过改变主缆的线形来调节。另外,自锚式悬索桥中的恒载由主缆来承受,而活载还需要由主梁来承受,所以主梁必须有一定的抗弯刚度,主梁的形式以采用具有一定抗弯刚度的箱形断面较为合适。 自锚式悬索桥有以下的优点:

①不需要修建大体积的锚碇,所以特别适用于地质条件很差的地区。 ②因受地形限制小,可结合地形灵活布置,既可做成双塔三跨的悬索桥,也可做成单塔双跨的悬索桥。 ③对于钢筋混凝土材料的加劲梁,由于需要承受主缆传递的压力,刚度会提高,节省了大量预应力构造及装置,同时也克服了钢在较大轴向力下容易压屈的缺点。 ④采用混凝土材料可克服以往自锚式悬索桥用钢量大、建造和后期维护费用高的缺点,能取得很好的经济效益和社会效益。 ⑤保留了传统悬索桥的外形,在中小跨径桥梁中是很有竞争力的方案。 ⑥由于采用钢筋混凝土材料造价较低,结构合理,桥梁外形美观,所以不公局限于在地基很差、锚碇修建军困难的地区采用。 自锚式悬索桥也不可避免地有其自身的缺点:

相关文档