文档库 最新最全的文档下载
当前位置:文档库 › 矩阵在自动控制中的应用+

矩阵在自动控制中的应用+

矩阵在自动控制中的应用+
矩阵在自动控制中的应用+

矩阵理论在控制中的应用

吴祥 矩阵5班 201022070738

摘要:本文就控制中的常见问题进行了讨论,并应用矩阵,对控制中的一些问题进行描述,运用矩阵的线性变换对控制理论中一些问题的求解进行了简化。

关键字:状态空间、对角标准型、约当标准型 1、引言

20世纪60年代,随着计算机技术的进步,航空航天技术和综合自动化的发展需要,推动了以状态空间为基础,最优控制为核心,主要在时域研究多输入多输出系统的现代控制理论的诞生。

经典控制理论是以系统的输入输出为研究依据,其基本数学模型为线性定常高阶微分方程、传递函数。对线性定常离散系统,其数学模型为线性定常高阶微分方程、脉冲传递函数。这些模型仅仅描述系统输入、输出之间的外部特性,不能揭示系统的内部物理状态量的运动规律。若要揭示系统内部特性,就引入了状态空间。 2、用矩阵来建立状态空间

假设单输入、单输出线性定常n 阶连续系统,n 个状态变量为1x ,

2x ……. n x 。其状态方程的一般形式为:

'111112211'221122222'1122....................

.........n n n n n n n nn n n x a x a x a x b u x a x a x a x b u x a x a x a x b u

=++++=++++=++++

输出方程为

1122......n n n y c x c x c x b u =++++

其向量-矩阵法方程形式的状态空间表达式为:

'111

11121'2122222

2'12....................n n n n nn n n n

x x b a a a a a a x x b u a a a x x b ??????

?????

??? ??????? ??????? ?=+?????? ??????? ????

??? ????????????

???

1

2

12[.....].

.n n x x y c c c Du x ??

????

??=+??????????

简单记为:

'

x Ax Bu =+

(1-1)

y Cx Du =+ (1-2)

其中1-1和1-2叫做状态空间。1-1式叫做状态方程,1-2式叫做输 出方程。

3、状态向量的线性变换与状态空间表达式标准型

实际上,为了便于揭示系统特性和简化系统的分析、综合工作,通常通过线性奇异变换,将系统的状态空间表达式等价为某种标准型,如能控标准型,能观标准型、对角标准型、约当标准型。 3.1、对角标准型

对线性定常系统

'x Ax Bu =+ y Cx =

若系统的特征值为1λ,2λ………. n λ互异,则必存在非奇异变换矩阵T ,

使A 矩阵变换为对角阵。即

A= 12

.n λλλ??

??

??????

?

? 3.2、约当标准型

但如果1λ,2λ………. n λ非互异时就不能变为对角阵,那么必存 在非奇异变换矩阵T 使系统变换为约当标准型。即

A=12

.n J J J ??

??

??????

?

? 其中i J =11.1i i i λλλ??

??

??????

?

? 4、线性定常齐次状态方程的解

对线性系统动态性能进行定量分析的实质是求解其动态数学模 型方程并分析解得性质,有传递函数和状态空间两种分析方法。传递函数分析方法是经典控制中常用的方法。状态空间分析法是现代控制理论的主要分析方法,其直接将系统的微分方程或差分方程化为描述系统的输入、输入与内部状态的关系的数学模型——状态空间方程,运用矩阵方法求解状态方程,直接确定其动态响应,研究系统方程的解法及分析解得性质,是现代控制理论的主要任务。 4.1、线性定常齐次方程的解

假设线性定常系统在输入u 为0时,由初始状态引起的运动称为

自由运动其状态方程为:

0't=t 0x =Ax

x(t)|=x(t )

(2-1)

式2-1的解()x t 称为自由运动的解或零输入响应。若矩阵A 为一阶即A=a ,则2-1式变为式2-2所示的标量方程,即

0't=t 0x =ax

x(t)|=x(t )

(2-2)

其解为:0

()0()()a t t x t e x t -=将其展开为泰勒级数

()221

10002!!1()().......().....a t t k k k e a t t a t t a t t -=+-+-++-+ (2-3)

将2-3式代入2-1中得到:

0()

22

1

1100002!!

!0

()().......().....()A t t k

k

k k k k k e

I A t t A t t A t t A t t ∞

-==+-+-++

-+=-∑

于是2-1方程的解可用系统矩阵指数表达为

()0()()A t t x t e x t -= (2-4)

一般把0

()A t t e -称为状态转移矩阵记为0()t t Φ-。

4.2、利用特征值标准形及相似变换计算状态转移矩阵

由于就矩阵转移函数时涉及到k A ,但对一般矩阵的k A 计算比较困难而当A 矩阵为对角矩阵,约当矩阵时对k A 的计算比较容易。下面用矩阵线性变换来求解0()t t Φ-。

若系统的特征值为1λ,2λ………. n λ互异,则必存在非奇异变换矩阵T ,使A 矩阵变换为对角阵则

112211()..k

k k n n A V V V V λλλλλλ--????

????

????==????????

???

?

1112

1!0

!

1110

0!0

!0()..k k

n

k

k k k At k k k k k k k e e e A t t V V V V e λλλλλλ∞=∞

--==∞

=??

??????

??

??????=-==?????

???

??????

??????

∑∑∑∑ 虽然对角矩阵能很好的计算出k A ,但是由于只有单纯矩阵才能相似对角化,所以对一般矩阵往往采用的时将其变为约当标准型,不失一般性设

12.n J J J J ??

??

??=????

?

? (2-5) 式中i J 为形如下式所示的i m 维约当阵。即

i J =11.1i i i i i m m λλλ???

??

??????

?

? (2-6) 所以

12

11.n

J J At k J e e e Pe P P P e --??

????==????

????

有矩阵指数的定义i

J t e 为上三角矩阵,即

1

22

2!(1)!

(2)!1.........1............1m i

i m i i

i i i i

t t m t m J t

t

m m t t e e λ----???

? ? ?= ? ? ? ? ???

5. 应用小结:

5.1、用到的矩阵论相关知识: 矩阵指数函数的定义和性质 对角线标准形和约当标准型

矩阵的运算法则,包括矩阵加法和乘法运算和求逆运算 矩阵特征值和特征向量计算以及可逆变换矩阵的求解 矩阵的可逆变换. 5.2、解题思路:

给定线性定常系统的自治方程的一般形式:

'x Ax =

要求解线性定常系统的零输入响应的表达式时,可以做相似变换:

1A P AP -=

将A 化为对角线标准形或约当标准型,而对角线标准形和约当标准

形的矩阵指数函数At e 很容易求出来,为得到原系统的矩阵指数函数

At e ,只需要再做一下逆变换:

1A PAP -=

就可以得到。这样是求解过程得以简化。

矩阵理论在信号系统中的应用

五邑大学研究生矩阵理论论文

矩阵理论在信号系统中的应用 摘要:在20世纪50年代蓬勃兴起的航天技术的推动下,现代控制理论在上世纪60年代开始形成并得到了迅速的发展。现代控制理论的重要标志和基础就是状态空间方法。现代控制理论用状态空间法描述输入、状态、输出等各种变量间的因果关系。不但反映系统输入与输出的外部特性,而且揭示了系统内部的结果特性,可以研究更复杂而优良的控制算法。现代控制理论及使用于单变量控制系统,有适用于多变量控制系统,既可以用于线性定常系统,又可以用于线性时变系统,还可用于复杂的非线性系统。 本文主要介绍了连续时间线性时不变系统零输入响应运动分析,如何利用数学模型,求解线性定常系统的零输入响应问题。是矩阵理论中约当标准形和对角线标准形在线性系统理论中的一个很典型的应用。 状态与状态变量:系统在时间域中运动信息的集合称为状态。确定系统状态的一组独立(数目最少的)变量称为状态变量。它是能完整地确定地描述系统的时间行为的最少的一组变量。 状态向量:如果n 个状态变量用()1x t 、()2x t 、…()n x t 表示,并把这些状态变量看做是 向量X (t )的分量,则向量X (t )称为状态向量,记为()()()()12n x t x t X t x t ????? ?=???????? 或者()()()()12T n X t x t x t x t =???? 状态空间:以状态变量()1x t 、()2x t 、…()n x t 为坐标轴构成的n 维空间。 状态方程:描述系统的状态变量之间及其和系统输入量之间关系的一阶微分方程组 线性系统:满足叠加原理的系统具有线性特性 零输入响应:若输入的激励信号为零,仅有储能元件的初始储能所激发的响应,称为零输入响应。 一、线性系统状态方程: A :表示系统内部状态关系的系数矩阵 B :表示输入对状态作用的输入矩阵 从数学的角度上,就是相对于给定的初绐状态x0和外输入u (t ),来求解状态方程的解,即系统响应。解的存在性和唯一条件:如果系统A 、B 的所有元在时间定义区间 []0t t α上均为 t 的实值连续函数,而输入u(t)的元在时间定义区间[]0t t α上是连续 实函数,则其状态方程的解X(t)存在且唯一。 ()()[] ()()0 )0(x t t :)(x t t :0 000≥=+=∈=+=t x Bu A t t t x t Bu A x x x x 时不变时变α

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵理论第3章习题解答

第三章 习题解答 1.求矩阵 1141?? =???? A 的谱分解. 解:(1) 求特征值 ()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-. (2) 求特征向量:13λ=对应的特征向量为()11,2;T p = 21λ=-对应的特征向量为()21,2T p =-. (3)谱分解:令1211(,)22P p p ??==?? -??,则1 121124.1 124T T P ωω-?? ????==????????-???? 令1111 124,112T A p ω????==? ?????? ?2221 124,112T A p ω??-??==???? -???? 故谱分解式为123A A A =- 2 求单纯矩阵 296182051240825A -?? ?=- ? ?-?? 的谱分解式. 3.设()1,2,i i n λ= 是正规矩阵n A ∈C 的特征值,证明:()2 1,2,i i n λ= 是H A A 与H AA 的特征值. 证:根据题设矩阵A ,则A 酉相似与对角矩阵,即 ()12diag ,,,H n A U U λλλ= 其中U 为酉矩阵,则 ()() ()() 121 2 diag ,,diag ,,H H H H n n A A U U U U λλλλλλ= ( )222 12diag ,,,H n U U λλλ= 即H A A 的特征值为()2 1,2,i i n λ= ,同理可证()2 1,2,i i n λ= 也是H AA 的特征值。

4 设A 是n n ?阶的实对称矩阵,并且20,A =你能用几种方法证明0.A = 证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即 ,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与 对角矩阵()12diag ,,,n λλλ 所以0.A = (2)设0,A ≠则20,H A A A =≠与题设矛盾,所以结论成立。 5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3 A S =。 证:矩阵A 是一个对称矩阵,则A 酉相似于一个对角矩阵,即 ()H 12diag ,,,,n λλλ= A U U 令12111 333diag ,,n λλλ??= ??? D ,则()3 12diag ,,.n λλλ= D 又由()()()3H H H H .==A UD U UDU UDU UDU 令H ,=S UDU 则3=A S 。 7 证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵. 证明参考课本101页引理3必要性的证明. 8 证明:正规矩阵是幂零阵() 2 0=A 的充要条件是0.=A 证:充分性:0.=A 则结论显然。 必要性:若() 2 0=A ,由题设矩阵A 是正规矩阵,则A 酉相似于一个对角矩阵,即 ()12diag ,,,H n λλλ= A U U () 222221diag ,,0,n H λλλ== A U U 即 () 22221diag ,,0n λλλ= 所以,可得 120,n λλλ==== 即0.=A 结论成立。 9 求矩阵324262423--????=--????--?? A 的谱分解式,并给出n A 的表达式。 解:矩阵A 的特征值:()()()2 det 27,λλλ-=+-E A 所以矩阵A 的特征值为 12,32,7λλ=-=。

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课 。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n 个节点,b 条支路的电路图, 每条支路的电压和电流均为未知,共有2b 个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL 我们也可以列 出(b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我们还可以可以列出b 个方程;总共2b 个方程要解出b 个支 路电流变量和b 个支路电压变量。当b 的数值比较大时,传统 的解数学方程组的方法已经不再适用了,因此我们需要引入矩 阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵 图 1 1. 关联矩阵 在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?? ???-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

矩阵论在神经网络中的应用详解

矩阵论论文 论文题目:矩阵微分在BP神经网络中的应用 姓名: 崔义新 学号: 20140830 院(系、部): 数学与信息技术学院 专业: 数学 班级: 2014级数学研究生 导师: 花强 完成时间: 2015 年 6 月

摘要 矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等. BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分. 关键词:矩阵微分;BP神经网络;

前 言 矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、 最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导. BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer). BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止. 1 矩阵的微分 1.1 相对于向量的微分的定义 定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的 数量函数,即以n 个变量 x i 为自变量的数量函数. 我们将列向量 1n f x f x ???????? ???????????? 叫做数量函数f 对列向量X 的导数, 记作 1n f x df f f d f x ??? ?????= = =????? ???????? grad X 12T n df f f f d x x x ?? ???=? ?????? X (1.1)

矩阵论在电气工程中的应用

题目: 矩阵论在电气工程中的应用指导老师: xxx 学生姓名:xxx 所属院系:电气工程学院 专业:电气工程 学号:xxx 完成日期:20xx年x月x日

矩阵论在电气工程中的应用 摘要 电路分析是电气专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂求解计算量大的特点。为了解决这个问题,因此引入了矩阵理论,并结合软件对矩阵分析的良好支持,以期达到优化分析电路的目的。本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予求解。 关键词:电路分析矩阵法网络拓扑 ABSTRACT: Circuit analysis is an essential ability of professional personnel in the field of electronic. The concept of strong, complex circuit analysis calculation with the knowledge of the characteristics of large amount. In order to alleviate this problem, so we introduced matrix theory, combined with good support analysis software for matrix, in order to achieve the purpose of optimization of circuit analysis. In this paper, the network topology in matrix theory unfolds, introduces the application of network topology in circuit, and to give the solution. KEY WORDS:circuit analysis;matrix method;network topology 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答。当运行这些程序时,能迅速地得到较准确的计算结果。在电子领域基础知识电路分析中,经过理论分析

矩阵理论2017-2018学年期末考试试题

矩阵理论2017-2018学年期末考试试题 ?、选择题 (每题5分,共25分) 1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1 (D)设为空间的任意?空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则?定可逆 (C)矩阵函数对任何矩阵均有定义,?论A 为实矩阵还是复矩阵 (D)对任意?阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵; (B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和?满秩矩阵,则(B)若矩阵为?满秩矩阵,则是正定矩阵(C)设为严格对?占优矩阵,,则的谱半径(D)任何可相似对?化的矩阵,皆可分解为幂等矩阵的加权和,即?、判断题(15分)(正确的打√,错误的打×) 1.若,且,,则 2.若且,则为到的值域上的正交投影 3.设都是可逆矩阵,且齐次线性?程组有?零解,为算?范数,则 4.,定义,则是上的范数 5.设矩阵的最?秩分解为,则当且仅当 ( ) (A ?B =?)H A H B H A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E ?2μμH H ,V 1V 2V dim (+)=dim ()+dim () V 1V 2V 1V 2( ) =A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1 A , B ∈ C n ×n ≥≥?≥>0σ1σ2σn ≥≥?≥>0σ′1σ′2σ′ n >(i =1,2,?,n )σi σ′i ∥>∥A +∥2B +∥2 ( )A =????π000π001π????sinA =????0000000sin 10?? ??A E ?A e A A A ,B =e A e B e A +B ( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r √≥≥?≥σ1σ2σr A ∥=A +∥21σ1 ( ) A B (AB =)+ B +A + A A A H Hermite A =()∈(n >1)a ij C n ×n D =diag (,,?,)a 11a 22a nn E ?A D ?1r (E ?A )≥1 D ?1(i =1,2,?,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A ?)H A ?∥A =n A ?∥2 ( ) A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,?x ∈C m C m A ( ) A , B ∈ C n ×n (A +B )x =0∥?∥∥A ∥≥1B ?1 ( )?(x ,y )∈R 2f (x ,y )=2+3?4xy x 2y 2 ̄  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )

矩阵分析在通信中应用

矩阵论在通信领域中的应用 基于多输入多输出技术(MIMO)信道容量的分析 1 背景分析 频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)技术即利用多副发射天线和多副接收天线进行无线传输的技术的提出很好地解决了这个问题。 多输入多输出(MIMO)技术能极大增加系统容量与改善无线链路质量的优点。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO的信道容量具有巨大的指导意义。但是对信道容量的推导分析是一个很复杂的过程,但是应用矩阵的知识进行分析能很好的解决这个问题,本文把矩阵理论知识与MIMO技术信道容量中的应用紧密结合,首先建立了MIMO信道模型,利用信息论理论和矩阵理论建立系统模型详细推导出MIMO信道容量,通过程序仿真反应实际情况,可以更直观正确的得出重要结论,这些结论的得出没有矩阵的知识是很难实现的。 2 问题的提出 基于MIMO的无线通信理论和传输技术显示了巨大的潜力和发展前景。MIMO 技术的核心是空时信号处理,利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理,有效地利用了信道的随机衰落和多径传播来成倍的提高传输速率,改善传输质量和提高系统容量,能在不额外增加信号带宽的前提下带来无线通信性能上几个数量级的提高。目前对MIMO技术的应用主要集中在以空时编码(STC,Space-Time Codes)为典型的空间分集(diversity)和以BLAST(Bell LAyered Space-Time architecture)为典型的空间复用(multiplexing)两个方面。MIMO作为未来一代宽带无线通信系统的框架技术,是实现充分利用空间资源以提高频谱利用率的一个必然途径。 可问题是,MIMO系统大容量的实现和系统其它性能的提高以及MIMO系统中

重庆大学矩阵理论及其应用论文

“矩阵理论及其应用”课程研究报告 科目:矩阵理论及其应用教师:蒋卫生 姓名:学号: 专业:机械电子工程类别:学术 上课时间:2013 年10 月至2013 年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

最小二乘法问题 摘要:无论在哪个专业领域,都不可避免的要面对测量所得到的一批数据。这些数据看似杂乱无章,但对于特定的时间却是符合特定的规律。而要发现这些规律必须借助一定的手段。矩阵理论作为一门具有强大功能的学科再此发挥了它重要的作用。用矩阵论的理论来处理现代工程技术中的各种问题已经越来越普遍了。在工程技术中引进矩阵理论不仅使理论的表达极为简捷,而且对理论的实质刻画也更为深刻,这一点是不容质疑的,更由于计算机和计算方法的普及发展,不仅为矩阵理论的应用开辟了崭新的研究途径。矩阵理论与方法已成为研究现代工程技术的数学基础。因此,对于数据的处理采用最小二乘法是最恰当不过的了。 关键词:数据处理,矩阵理论,最小二乘法 正文 一、引言 最小二乘法已有近200年的发展历史,它首先由Gauss K F提出并被应用于天文计算中,现已被广泛地用来解决各种技术问题。在过去的30多年里,它已被成功地应用到过程控制系统的参数估计领域,数字计算机技术又使最小二乘原理更有实践价值。参数估计现在模型结构已知时,用实验法所取得的数据来确定表征系统动力学模型中的参数。最小二乘法原理提供了一个数学程序,通过它可以获得一个在最小方差意义下与实践数据拟合最好的模型,它在稳态系统数学模型的回归分析方面应用已很成熟,在动态系统的参数辨识方面也取得了许多重要成果,其参数估计的收敛性质也得到了深入的研究,可以说在参数估计领域中最小二乘方法已达到了完善的程度。 本文讨论的问题如下: 一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据:

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑, 则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约 为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1, 即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位 二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概 率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验 概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷 积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

矩阵理论报告

电子科技大学 矩阵理论课程报告 报告题目:线性投影非负矩阵分解 指导老师:高中喜 学生姓名:陈汪学号: 201521090515 专业:生命科学与技术学院

线性投影非负矩阵分解 摘要对非负矩阵分解迭代方法比较复杂的问题,提出了一种线性投影非负矩阵分解方法.从投影和线性变换角度出发,将Frobenius范数作为目标函数,利用泰勒展开式,严格导出基矩阵和线性变换矩阵的迭代算法,并证明了算法的收敛性.实验结果表明:该算法是收敛的;相对于非负矩阵分解等方法,该方法的基矩阵具有更好的正交性和稀疏性;人脸识别结果说明该方法具有较高的识别率.线性投影非负矩阵分解方法是有效的. 关键词投影非负矩阵分解,线性变换,人脸识别 Method for Linear Projective Non-negative Matrix Factorization Abstract To solve the problem that the iterative method for Non-negative Matrix Factorization,called Linear Projective Non-negative Matrix Factorization(LP-NMF) was proposed.LP-NMF,from projection and linear transformation angle,an objective function of Frobenius norm is considered.The Taylor series expansion is used.An itemtive algorithm for basis matrix and linear transformation matrix is derived strictly and a proof of algorithm convergence is provided.Experimental results show that the algorithm is convergent,and relative to Non-negative Matrix Factorization(NMF)and so on.The orthogonality and the sparseness of the basis matrix ale better,in face recognition,there is higher recognition accuracy.The method for LP-NMF is effective.Keywords Projective non-negative matrix hctorization,Linear transformafion,Face recognition X≈是从“对整体的感知由对组成整体的部分感知构成”观点出非负矩阵分解(NMF)WH 发而构建的数据处理方法.该方法揭示了描述数据的本质,并被广泛应用到数据降维、文本挖掘、光谱数据分析嘲、图像分析、人脸识别等诸多领域. X≈是基于线性变换Q而构建的.在LPBNMF 基于线性投影结构的非负矩阵分解(LPBNMF)WQX 中,提出了一个单调递减算法,定量地分析了基矩阵的正交性和稀疏性,并将它应用到有遮挡的人脸识别问题中. 本文基于LPBNMF方法,实现一种新的非负矩阵分解方法,我们称该方法为线性投影非负矩 X≈. 阵分解((Line project Non-negative Matrix Factorization, LPNUM)方法,WQX

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

矩阵应用简介

矩阵应用简介 The introduction of Matrix application 作者:刁士琦 2015/12/27

摘要 本课题以线性代数的应用为研究对象,通过网络、书籍查询相关知识与技术发展。 全文分为四部分,第一部分是绪论,介绍本课题的重要意义。第二部分是线性代数的发展。第三部分是经典矩阵应用。第四部分是矩阵应用示例。第五部分为结论。 关键词:莱斯利矩阵模型、希尔密码

目录 摘要 (2) 1 引言 (4) 2 矩阵的发展 ............................................................................................ 错误!未定义书签。 3 经典矩阵应用 (4) 3.1矩阵在经济学中的应用 (4) 3.2矩阵在密码学中的应用 (7) 3.3莱斯利矩阵模型 (5) 4 矩阵应用示例 (6) 4.1经济学应用示例 (6) 4.2希尔密码应用示例 (7) 4.3植物基因分布 (7) 6 结论 (8) 参考文献 (9)

1引言 线性代数是以向量和矩阵为对象,以实向量空间为背景的一种抽象数学工具,它的应用遍及科学技术的国民经济各个领域。 2矩阵的发展 1850年,西尔维斯特在研究方程的个数与未知量的个数不相同的线性方程时,由于无法使用行列式,所以引入了Matrix-矩阵这一词语。现代的矩阵理论给出矩阵的定义就是:由mn 个数排成的m行n列的数表。在此之后,西尔维斯特还分别引入了初等因子、不变因子的概念[5]。虽然后来一些著名的数学家都对矩阵中的不同概念给出了的定义,也在矩阵领域的研究中做了很多重要的工作。但是直到凯莱在研究线性变化的不变量时,才把矩阵作为一个独立的数学概念出来,矩阵才作为一个独立的理论加以研究。 矩阵概念的引入,首先是由凯莱发表的一系列和矩阵相关的文章,将零散的矩阵的知识发展为系统完善的理论体系。矩阵论的创立应归功与凯莱。凯莱在矩阵的创立过程中做了极大的贡献。其中矩阵的转置矩阵、对称矩阵和斜对称矩阵的定义都是由凯莱给出的。“从逻辑上来说,矩阵的概念应限于行列式的概念,但在历史上却正好相反。”凯莱如是说。1858年,《A memoir on the theory of matrices》系统阐述了矩阵的理论体系,并在文中给出了矩阵乘积的定义。 对矩阵的研究并没有因为矩阵论的产生而停止。1884年,西尔维斯特给出了矩阵中的对角矩阵和数量矩阵的定义。1861年,史密斯给出齐次方程组的解的存在性和个数时引进了增广矩阵和非增广矩阵的术语。同时,德国数学家弗罗伯纽斯的贡献也是不可磨灭的,他的贡献主要是在矩阵的特征方程、特征根、矩阵的秩、正交矩阵、矩阵方程等方面。并给出了正交矩阵、相似矩阵和合同矩阵的概念,指明了不同类型矩阵之间的关系和矩阵之间的重要性质。 3经典矩阵应用 3.1矩阵在经济学中的应用 投入产出综合平衡模型是一种宏观的经济模型,这是用来全面分析某个经济系统内

矩阵论在人口迁移问题中的应用矩阵论报告

研究生“矩阵论”课程课外作业 姓 名: 学 号: 学 院: 专 业: 类 别: 上课时间: 成 绩: 矩阵论在人口迁移问题中的应用 摘要 本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。文中运用方阵函数()f A 的相关基本理论来解决这一实际问题,使得实际问题得到简化解决,最终得出人口迁移问题的最终结论。 1、待解决问题内容: 假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样? 2、基本术语解释 方阵函数()f A :最简单的方阵函数是矩阵多项式 01()n n B f A a E a A a A ==+++,其中,n n i A C a C ?∈∈。一般运用复变幂级数的和函数定义方阵幂级数和函数—方阵函数。 3、基本理论阐述:

1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为 ()f λ,则有()0f A =。 设A 的特征多项式为:()1101n n n f a a a λλλλ--=++++ Hamilton-Cayley 定理表明: ()11010n n n f A A a A a A a E --=++++=,即方阵函数可以由1,,,,n n A A A E -的线性组合表示。 方阵函数是多项式()01f A a E a A =++,其中,n n i A C a C ?∈∈。 2、最小多项式的相关理论: 定义1:A 是n 阶方阵, ()f λ是方阵A 的特征多项式。如果有()0f A =,则称()f λ是方阵A 的零化多项式。由Hamilton-Cayley 定理知一个矩阵的零化多项式一定存在。 定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。 设n n A C ?∈的最小多项式为1212()()()()s t t t s m λλλλλλλ=--- 其中12s t t t t +++=,(,,1,2, ,)i j i j i j s λλ≠≠=,而方阵函数()f A 是收敛的方阵幂级数 0k k k a A ∞=∑的和函数,即 设1011()t t T b b b λλλ--=+++,使 ()()()()l l i i f T λλ= 1,2,,0,1, ,1i i s l t =?? ?=-??,则0()()k k k T A f A a A ∞===∑ 3、运用()f z 在A 上的谱值计算方阵函数()f A 的理论: 设n 阶方阵A 的最小多项式为12 12()()()()s t t t s m λλλλλλλ=---,其中2,,,s λλλ是A 的互不相同的特征根。如果复函数()f z 及其各阶导数()()l f z 在(1,2, ,)i z i s λ==处的导数值,即 均为有限值,便称函数 ()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上 的谱值。 4、报告正文

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

相关文档
相关文档 最新文档