文档库 最新最全的文档下载
当前位置:文档库 › 垂直轴阻力型风力机功率计算与Fluent数值模拟

垂直轴阻力型风力机功率计算与Fluent数值模拟

垂直轴阻力型风力机功率计算与Fluent数值模拟
垂直轴阻力型风力机功率计算与Fluent数值模拟

基于fluent的阻力计算

基于fluent的兴波阻力计算本文主要研究内容 本文的工作主要涉及小型航行器在近水面航行时的绕流场及兴波模拟和阻力的数值模拟两个方面。在阅读大量文献资料的基础上,通过分析、比较上述领域所采用的理论和方法,针对目前需要解决的问题,选择合理的方法加以有机地综合运用。具体工作体现在以下几个方面: 1.本人利用FLUENT软件的前处理软件GAMBIT自主建立简单回转体潜器模型,利用FLUENT求解器进行计算,得出在不同潜深下潜器直线航行的绕流场、自由面形状及阻力系数的变化情况。 2.通过对比潜器在不同潜深情况下的阻力系数,论证了增加近水面小型航行器的深度可以有效降低阻力。通过对模型型线的改动,为近水面小型航行器的型线设计提供了一定的参考。通过改变附体形状和位置计算了附体对阻力的影响程度,为附体的优化设计提供了一定的依据。 计算模型

航行器粘性流场的数值计算理论 水动力计算数学模型的建立 根据流体运动时所遵循的物理定律,基于合理假设(连续介质假设)用定量的数学关系式表达其运动规律,这些表达式成为流体运动的数学模型,它们是对流体运动的一种定量模型化,称为流体运动控制方程组。根据控制方程组,结合预先给定的初始条件和边界条件,就可以求解反映流体运动的变量值,从而实现对流体运动的数值模拟预报,形成分析报告。 基于连续介质假设的流体力学中流体运动必须满足要遵循的物理定律: 1) 质量守恒定律 2)动量守恒定律 3)能量守恒定律 4)组分质量守恒方程 针对具体研究的问题,有选择的满足上述四个定律。船体的粘性不可压缩绕流运动,如果不考虑水温对水物理性质的影响,水的密度和分子粘性系数都是常数,同时没有能量的转换,就仅仅需要满足质量守恒定律、动量守恒定律。在满足这些定律下所建立的数学模型称为Navier-Stokes方程。 另外,自由液面的存在也需要建立合适的数学模型。本文是利用FLUENT 进行数值模拟,而软件里面关于自由液面模拟是用界面追踪方法的一种-流体体积法(VOF),基于该方法所建立的数学模型称为流体体积分数方程。另外,高雷诺数下的水动力问题还需要考虑粘性不可压缩流体的湍流运动。对于湍流运动的数值模拟一直是流体力学数值计算的一个难点。直接数值模拟(DNS)目前还仅仅在院校中研究,而且也仅限于二维流体问题。大涡模拟(LES)向工程应用的过渡似乎还没有完成,并且就高雷诺数问题而言,对计算机硬件要求很苛刻。目前,从算法的可行性、硬件要求的可实现性、完成任务所消耗时间和人力等方面看,基于湍流模型的数值计算更为工程实际所接受。本章将会对各种湍流模型加以介绍。 粘性不可压缩流体流动数学模型 连续方程 任何流动问题都必须满足质量守恒方程即:连续方程。根据连续介质假设,单位时间内流体微团的质量变化等于同时间间隔内进入微团的总净质量。按照这一定律,连续方程数学表达式写为: (2.1) 以上是在笛卡尔直角坐标系下表示,上面给出的是瞬态可压流体连续方程。由于对于潜艇粘性流场介质的不可压缩,密度ρ为常数,引入散度算子,则方程(2.1)变成为: (2.2)式中:速度矢量V= { u ,v, w }。上式为粘性不可压缩流体运动的连续方程。 动量方程

垂直轴风力发电机大型化的可行性研究_严强

特别关注 SPECIAL ATTENTION 垂直轴风力发电机大型化的 可行性研究 文 严 强 上海麟风风能科技有限公司 目前国内外有许多厂商正在致力于大型垂直轴风力发电机的研发,但通过对一些现有大型化垂直轴风力发电机厂商的开发过程看,基本上都是用小型垂直轴风力发电机的设计思路,把小型垂直轴风力发电机通过一定比例放大后成为大型垂直轴风力发电机。笔者认为以这样的方法开发大型垂直轴风力发电机,说明这些探索者还没有真真理解垂直轴风力发电机的特性。 众所周知垂直轴风力发电机具有低噪音、安全性、无需太高塔架的优点,但多年来经过无数人的努力都没有生产出可商业化应用的大型垂直轴风力发电机,究其原因主要是无法同时解决气动效率、自启动、超速控制、结构稳定性、安全制动等一系列问题,而这些问题在水平轴风力发电机上都已经解决。而效率、超速控制、稳定性、安全制动4个方面的问题也是任何风力发电机需要解决的问题。本文将就这些问题展开讨论,上海麟风是如何解决这些难题。 垂直轴风轮在转动时,叶片在风轮不同位置扭矩大小、方向都不同,在有些位置扭矩大,在有些位置扭矩小,在有些位置扭矩为正,在有些位置扭矩为负。随着风轮直径的增大和转速的下降,这些变化尤其明显,而风轮最终的输出功率是这些扭矩的合力矩,这样垂直风轮的气动效率较低。 按照达里厄上世纪30年代所做实验和结论,垂直风轮较为理想的尖速比为5~6,按此要求做出来的垂直风轮实度比很低,无法自启动,且带载能力也很弱。 当垂直风轮做大以后还面临垂直轴承担的弯矩越来越大的问题,弯矩越大,对轴的强度要求就越高,不仅重量重了,成本也越高,越难以商业化。 当垂直风轮转动时,风轮的主震频率为转速除以叶片数量,当作用于叶片上的风能不能被有效转化成动能(转速)后震动尤其明显。 为了提高自启动性能适当提高叶片宽度将取得明显效果,合理的叶片宽度是风轮半径的1/2~1/4之间。 为了克服叶片角度固定的垂直风轮当叶片在风轮不同位置时扭矩方向相反、不能发挥最大扭矩的缺陷,使用“实时可变攻角”技术可克服这一缺陷。实时可变攻角技术就是当风轮在旋转时,根据风向、叶片位置、风速等要素实时调节叶片角度,以达到改变扭矩方向并使叶片在不同位置都能获得最大扭矩的作用,极大提高了垂直轴风轮的效率。在该系统中,叶片不是固定在悬臂支架上的,而是可以绕叶片回转中心转动的,当风轮转动到不同位置时,系统可以自动调节叶片的“攻角”,使叶片在不同位置时的“攻角”,在圆周上任何一个位置时,始终能够保持在所设定的优化角度范围内。通过风洞实验,在一个1.36米直径、1米叶片长度的风轮,在2米/秒风洞风速下测得的功率达到4~4.5瓦,即风能/机械能的转换效率达到了(60~68)%,超过了59.3%的传统 12风能产业 Wind Energy Industry 2014年2月

阻力型垂直轴风力发电机

阻力型垂直轴风力发电机概述 早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的 石磨。水平轴风力发电机最早出现在欧洲,要比垂直 轴风力发电机晚很多年,所以垂直轴风力发电机可以 称为所有风力发电机的先驱。而垂直轴风力发电机根 据驱动力的不同又可以分为升力型和阻力型垂直轴风 力发电机,本文主要介绍阻力型垂直轴风力发电机。 1.阻力型风力发电机的工作原理 阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。风力作用于上述物体上的空气动力差别也很大。作用力F可表示为:F=1/2?ρ?S·V??C 其中ρ——空气密度,一般取1.25(kg/m?) S——风轮迎风面积 V——来流风速 C——空气动力系数 以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。 阻力型风力发电机的种类及其性能 1.杯式风速计是最简单的阻力型风力发电机。

https://www.wendangku.net/doc/fd9785745.html,fond风轮 这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风 力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。 这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。 3.savonius(萨沃尼斯)式风轮(简称“s”轮) 这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。这种风轮最初是专为帆船提供动力而设计的。它由两个半圆筒组成,其各自中心相错开一段距离。其中D为风轮直径,d为叶片直径,e为间隙。最早形式的结构其相对偏置量为:e/d=1/3。s型风轮是阻力型风力发电机。凹凸两叶片上,风的压力有一个差值,而其气流通过叶片时要转折180°,形成一对气动力偶。阻力型风轮的旋转速度都不会大于风速,也就是尖速比不会超过1。一般情况下,S型的尖速比在0.8和1之间,它的起动力矩大,所以气动性能好,

fluent计算错误分析

1. FlUENT 1.1 求解方面 1.1.1 floating point error是什么意思?怎样避免它? Floating point error已经提过很多次了并且也已经对它讨论了许多。下面是在Fluent论坛上的一些答案: 从数值计算方面看,计算机所执行的运算在计算机内是以浮点数(floating point number)来表示的。那些由于用户的非法数值计算或者所用计算机的限制所引起的错误称为floating point error。 1)非法运算:最简单的例子是使用Newton Raphson方法来求解f(x)=0的根时,如果执行第N次迭代时有,x=x(N),f’(x(N))=0,那么根据公式x(N+1)=x(N)-f(x(N))/ f’(x(N))进行下一次迭代时就会出现被0除的错误。 2)上溢或下溢:这种错误是数据太大或太小造成的,数据太大称为上溢,太小称为下溢。这样的数据在计算机中不能被处理器的算术运算单元进行计算。 3)舍入错误:当对数据进行舍入时,一些重的数字会被丢失并且不可再恢复。例如,如果对0.1进行舍入取整,得到的值为0,如果再对它又进行计算就会导致错误。 避免方法 计算和迭代我认为设一个比较小的时间步长会比较好的。或者改成小的欠松驰因子也会比较好。从我的经验来看,我把欠松驰因子设为默认值的1/3;降低欠松驰因子或使用耦合隐式求解;改变欠松驰因子,如果是非稳态问题可能是时间步长太大;改善solver-control-limits 比例或许会有帮助;你需要降低Courant数;如果仍然有错误,不选择compute from初始化求解域,然后单击init。再选择你想从哪个面初始化并迭代,这样应该会起作用。另外一个原因可能是courant数太大,就样就是说两次迭代之间的时间步太大并且计算结果变化也较大(残差高)。 网格问题当我开始缩放网格时就会发生这个错误。在Gambit中,所有的尺寸都是以mm 为单位,在fluent按scale按钮把它转换成m,然后迭代几百次时就会发生这种错误。但是当我不把网格缩放到m时,让它和在Gambit中一样,迭代就会成功;我认为你应当检查网格,你的网格数太多了,使用较少的网格问题就会解决;网格太多,计算机资源不够用,使使比较粗的网格。 边界条件在我的分析中,我设了一个wall边界条件来代迭axis边界条件,结果fluent拒绝计算并告诉我floating point error。你的边界条件不能代表真实的物理现象;错误的边界条件定义可能会导致floating point error。例如把内边界设成interior;一次我使用对称边界条件模拟2D区间时也遇到这种问题,我把symmetry设为axe symmetric,就发生了floating point error;检查你设的湍流参数,减小湍流强度,先进行50次迭代。 多处理器问题我近来在进行多处理器模拟时也遇到相似的问题。问题的解决方法是在单个处理器上运行,这样就运算得很好。 错误迭代以错误的条件来初始化,在开始迭代时就会发生floating point error。 1.1.2 coupled和segregated求解有什么区别? Coupled会同时求解所有的方程(质量守恒方程、动量守恒方程和能量守恒方程)而不是单个方程求解(方程互相分离)。当速度和压力高度耦合(高压和高速)时应该使用耦合求解,但这样会需要较长的计算时间。 在耦合求解中,能量方程中总是包含组分扩散(Species Diffusion Term)项。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ错误!未找到引用源。错误!未找到引用源。 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段内V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的范围内按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 错误!未找到引用源。3η——变流器效率,取0.95; 错误!未找到引用源。——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

垂直轴风力发电机和水平轴风力发电机对比

垂直轴风力发电机和水平轴风力发电机 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴藏量巨大,全球风能资源总量约为2.74×109兆瓦,其中可利用的风能为2×107兆瓦。中国风能储量很大、分布面广,开发利用潜力巨大。 中国风力装机容量达到1000万千瓦的速度令人惊叹。如果中国能够利用其土地上大约30亿千瓦的风能的话,将能够满足几乎所有中国当前的电力需求,短时期内这是不可能的,不过中国有可能将2020年风电总装机目标由3000万千瓦调高至1亿千瓦。在国际效率标准下运行的话,这能够满足5%的中国电力需求,并且使中国成为世界最大的风能发电国,只要中国采取更进取而有理智的方针,就能最大限度地利用其国家的风能。 当然风能的利用离不开风力发电机,风力发电机的品质和价格成为了人们关注的焦点。 当前风力发电机有两种形式:1 水平轴风力发电机(大、中、小型);2 垂直轴风力发电机(大、中、小型)。 水平轴风力发电机技术发展的比较快,在世界各地人们已经很早就认识了,大型的水平轴风力发电机已经可以做到3-5兆瓦,一般由国有大型企业研发生产,应用技术也趋于成熟。小型的水平轴风力发电机一般是一些小型民营企业生产,对研发生产的技术要求比较低,其技术水平也是参差不齐。 小型水平轴风力发电机的额定转速一般在500-800r/min,转速高,产生的噪音大,启动风速一般在3-5m/s,由于转速高,噪音大,故障频繁,容易发生危险,不适宜在有人居住或经过的地方安装。 垂直轴风力发电机技术发展的较慢一些,因为垂直轴风力发电机对研发生产的技术要求比较高,尤其是对叶片和发电机的要求。近几年垂直轴风力发电机的技术发展很快,尤其小型的垂直轴风力发电机已经很成熟。 小型的垂直轴风力发电机的额定转速一般在60-200r/min,转速低,产生的噪音很小(可以忽略不计),启动风速一般在1.6-4m/s。 由于转速的降低,大大提高了风机的稳定性,没有噪音,启动风速低等优点,使其更适合在人们居住的地方安装,提高了风力发电机的使用范围。 参数对比: 序号性能水平轴风力发电机垂直轴风力发电机 1 发电效率50-60% 70%以上 2 电磁干扰(碳刷)有无 3 对风转向机构有无 1

Fluent性能分析

Fluent性能分析 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合 fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格, fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的 格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合 用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域 所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场) 其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的, 这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得 大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级, 我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算 一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛 速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,压力分布

垂直轴机械式变攻角风力发电机

目录 第1章绪论 (2) ?1.1 风力发电现状介绍 (2) ?1.2 各种创新型风力发电 (3) 第2章?风能资源 (5) ?2.1?风能的计算 (5) 2.2?山东省各市统计平均风速、风向和风向频率 (5) 第3章垂直轴变攻角风轮装置 (6) 3.1?装置的介绍 (6) 第4章solidworks flowsimulation在设计中的应用 (7) 4.1?solidworks flow simulation简介 (7) ?4.2?solidworks flow simulation 在本项目中的应用 (7) 4.3solidworks flow simulation对模型的流体分析···························7 第5章发电机和整流稳压电路 (1) 0 ?5.1 发电机的选用 (10) ?5.2?整流滤波升压电路·················································11 第6章项目总体情况.................................................12 ?6.1项目完成情况.. (12) ?6.2 项目成果·························································12 6.3 项目的目的意义、达到的目标和学习收获 (13) 6.4?对大学生创新项目的建议···········································13 参考文献·································································13

小型垂直轴风力发电机设计

小型垂直轴风力发电系统设计 [摘要]本文介绍了一种小型垂直轴风力发电系统的设计方案,本系统主要面向沿海高层建筑或边远地区用户。经过查阅大量文献资料结合必要的理论计算,系统采用四片NACA0012型叶片构成H型达里厄风力机,利用永磁直驱同步发电机将机械能转化为电能,经过电力电子电路对蓄电池进行充电。文中对主要支撑件和传动件进行了必要的结构校核,对所用的两个角接触球轴承进行了使用寿命校核。最后以垂直轴风轮和永磁直驱发电机为主要对象,用solidworks软件建立三维模型,设计风力发电系统主要零部件,并简要介绍其控制电路、选择蓄电池型号。 [关键字] 垂直轴风力发电机达里厄 NACA0012翼型

Design of the Vertical Axis Wind Turbine [Abstract]This is a design of a kind of vertical axis wind turbine which was used in removed rural area or highrise in seaside city based on related theories. By consulting reference sources and necessary mathematical operation,four NACA0012 air-foil blades were used as the compoments of the H-type Darrieus. The lead-acid bettery was charged by the electrical energy which was generated by a permanent magnet synchronous motor with the operation of power electronic circuits. In this article,some constructures such as the main suppoting parts and the angular contact ball bearings were vertified on the intensity and life. By using of the solidworks2006 software,every important part has a 3D model. We also design a control circuit and bettery breifly. [Keywords] Vertical axis Wind turbine Darrieus NACA0012 air-foil

阻力型垂直轴风力机资料

屏障平板式风力机(垂直轴阻力式风力机之一) 一个垂直于风向的平板会受到一个与风向相同的力,我们称这个力为阻力。屏障平板式风力机就是利用风的阻力做功的风力机。 这是一个屏障平板式风力机的叶片转子(叶轮),在转轴上分布着六个平板叶片。 当风吹向风叶转子时,转子并不会旋转,因为风在转子两侧的阻力相同。 如果在轴的一侧装上挡风的屏障。

在挡风屏障一侧的风将绕屏障外面通过,不对叶片产生推力;而另一侧接受风力,叶片转子就会旋转。 叶片转子的轴垂直于地面安装,结构简单,维护方便。 当风向变化时,为了保证屏障总在转子旋转逆风一面,屏障是可绕轴旋转的,在屏障后侧装有尾舵。安有尾舵的屏障可保证在任何风向下叶片转子都朝一个方向旋转。

风叶片可以是平板,也可以是别的形状,这个屏障式风力机的叶片是弧面的。 屏障平板式风力机对风的利用效率不高,在叶尖速比λ值为0.2至0.6时出力最大。由于结构简单,增速箱与发电机可安装在地面,方便安装维护,适合在小型风电应用,。 平板摆转式风力机(垂直轴阻力式风力机之二) 一个垂直于风向的平板会受到一个与风向相同的力,我们称这个力为阻力。平板摆转式风力机是利用风的阻力做功的风力机。 这是平板摆转式风力机的叶片,在叶片一边有轴

把叶片装在转子支架上,可以旋转,在支架上有挡杆限止叶片的转动角度。在转子支架上安装六个可转动的叶片。 当风吹向风叶转子时,在上侧的叶片顺风摆动,对风不产生阻力;在下侧的叶片在风力作用下,转向挡杆限定的位置,并继续受到风力的作用,于是风叶转子就旋转起来。 叶片转子的轴垂直于地面安装,由于风叶转子结构的对称性,各个方向的风力均可推动它旋转。

FLUENT 15.0 VOF模型测试报告

ANSYS 15.0 系列测试报告 FLUENT 15.0 VOF模型 测试人:崔亮安世亚太公司 测试时间:2013.12.01

1、仿真平台 HP Z820工作站,Intel Xeon E5-2690 * 2,内存64GB,2TB SATA硬盘。安装ANSYS 15.0 Preview3版本。 2、仿真模型 对某车型上带有底部隔板的油箱,在车辆加速时油箱内燃油晃动的瞬态过程进行瞬态仿真分析,网格单元数约10万,使用FLUENT的VOF模型计算空气和燃油的两相交界面。重点考察FLUENT 15.0中VOF模型的计算效率和两相交界面捕捉精度的提升。 测试案例的几何形状 测试案例的网格模型 3、试用情况 1).稳定性 在整个试用过程中,软件保持稳定,未出现任何不流畅、死机、系统崩溃等情况。2).流畅度 模型拖动、旋转、缩放等操作十分流畅,模型设定及求解过程操作十分流畅。 3).效率 该模型使用0.0005秒的时间步长进行瞬态计算,共计算了2000步,共计1.0秒时长。使用15.0 Preview3版本所用的计算时间为3693秒。之前使用13.0版本计算该模型所用计算时间为4381秒。新版本提速15.7%。 4).硬件资源调用情况 由于该模型网格数量较少,仅使用单核进行求解计算。在整个计算过程中,单核占用率达到100%,内存占用峰值约为400 MB。之前使用13.0版本计算该模型的内存占用峰值约

为450兆。新版本对内存的峰值占用约为旧版本的90%左右。 5).计算精度 VOF模型的计算精度体现在两相交界面捕捉的清晰程度,15.0版本的交界面捕捉清晰程度比旧版本略有提升,对于一些较小的气泡有着更好的捕捉能力。 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 4、总结 在ANSYS 15.0 Preview3版本的试用过程中,对FLUENT 15.0中VOF模型的计算效率提升感到满意,相比较于旧版本,约有15%的计算速度提升,这对缩短仿真分析的周期有极大帮助;还有约10%的内存峰值占用量下降,这对于合理利用现有硬件资源进行更大规模的模型计算有着重要意义。此外,新版本VOF模型的计算精度也有所提升,两相交界面捕捉更加锐利,对于一些较小的气泡,相对于旧版本有着更好的捕捉能力

升力型垂直轴风力机

达里厄风力机(升力型垂直轴风力机之一) 阻力型的垂直轴风力机虽然简单可靠,安装维修方便,但其叶尖速比在0.5左右才能获得较高的功率输出,也就是说叶片速度较低,仅为风速的一半,若风轮直径较大时,转速会很低,再说阻力型的垂直轴风力机最大功率系数不超过15%,这就限制了阻力型风力机在大型风力机中的应用。目前大中型风电主要采用水平轴风力机,属升力型风力机,具有转速高、风的利用率较高的优点,其叶尖速比通常在4以上,转速高,最大功率系数可达50%。 垂直轴风力机也有升力型风力机,法国航空工程师达里厄(Darrieus)在1931年发明了升力型垂直轴风力机,后人习惯把升力型垂直轴风力机统称为达里厄风力机(D式风力机),下面介绍这种风力机的原理与结构。 叶轮由两片垂直的叶片阻成,叶片截面为流线型的对称翼型,以相反方向安装在转轴两侧。注:为适合图中表示,叶片长度与支架长度都较实际比例缩小。 在下面图中列举了从0度到315度八个位置的叶片,风从左边进入,浅蓝色的矢量v是风速、绿色的矢量u 是叶片圆周运动的线速度反向(即无风时叶片感受到的气流速度)、蓝色的矢量w是叶片感受到的合成气流速度(即相对风速)、紫色的矢量L是叶片受到的升力。 我们分析一下叶片在这八个角度的受力情况,在90度与270度的位置,相对风速不产生升力,在其它六个位置上叶片受到的升力均能在运动方向产生转矩力,这也是达里厄风力机能在风力下旋转的道理。

实际上情况要复杂得多,前面分析图是理想状态,是在理想的叶尖速比与没有叶片的阻力时的状态。叶片推动风轮旋转的转矩力是升力与阻力的合成力在叶片前进方向的分力。我们取315度时的情况分析一下有阻力的情况,图中黑色的矢量D为叶片受到的阻力,棕色的矢量F是升力L与阻力D的合成力,该力在叶片前进方向的分力M才是实际的转矩力,显然此时的转矩力明显小于理想状况。 而且在180度与270度附近的角度内,升力与阻力的合成力产生的是反向转矩力。

基于FLUENT的水下子弹数值模拟

基于FLUENT的水下子弹数值模拟 一、问题介绍 Fluent是目前处于领先地位的CFD软件包之一,它为流体力学领域提供了强大丰富的计算平台。针对各种复杂流动的物理现象,fluent可以采用不同的离散格式和插值方法,在特定区领域内使计算速度、稳定性和精度等方面达到最佳组合。但是针对特殊的物理情景,其自身无法提供完全近似的物理模型,必须通过其自带的自定义函数UDF(user Defined function)对其进行二次开发。例如,对于水下航行的子弹,现有的模块不能模拟子弹运动过程,只能给定一个逆向的速度入口边界条件来实现,即水动子弹不动。为了更近似的模拟子弹运动过程,需要对FLUENT进行二次开发。 本文采取的方法是利用用户自定义函数UDF,对fluent进行二次改造,采用动网格技术,对子弹匀速运动进行模拟。 二、物理平台 本文用到的软件包括:前处理软件gambit,计算软件fluent12.0,UDF支持语言microsoft visual C++6.0,后处理软件tecplot. Gambit用于建立几何模型,划分网格。本算例采用二维轴对称模型,子弹以一矩形近似代替。 Fluent用于计算子弹运动流场特性,包括速度,压力,阻力等。本算例涉及到子弹运动,需要采用动网格技术,即网格在计算过程不断变化更新,因此通过UDF对fluent进行二次开发。其中UDF是fluent自带的宏命令,其运行环境是C语言,所以必须在计算机中提空支持C语言的运算环境microsoft visual C++6.0(也可以是其他更高版本)。 Tecplot为计算结果后处理软件,可以制作动画,云图等。 三、动网格简介 1.spring based smoothing 弹簧近似光滑模型 2.dynamic layering 动态分层模型 3.local remeshing 局部重构模型 三种动网格技术有自己的使用范围,其中弹簧近似光滑模型对于结构和非结构化网格都适用,对于模拟物体小范围运动或者变形有巨大优势,而对于大范围移动却无法实现,一般情况下此方法很少单独使用,通常是配合后面两种动网格技术使用。网格局部重构模型只适合四面体网格和三角形网格,可以用于模拟大范围平移和旋转,同时在模拟复杂边界移动具有很大优势。动态分层模型只是用于结构化网格,对于三角形和四面体网格则毫无用处。由于本文采用此方法,这里讲具体介绍此模型: 动态分层模型(dynamic layering),对于规则计算域,划分规则四边形网格后,采用此模型有利于实现物体的单方向平动,其优点是不需要网格重构,不会改变运动体周围的网格形态,节约了网格更新的时间,同时能保证网格一致性,提高计算效率。此方法的弱点在于无法模拟物体旋转运动,无论对于二维还是三维模型,只能解决物体平动问题。 此方法的思想是当网格边界缩短小于设定值时自动与上一个网格合并成,而当网格被拉伸小于设定的最大网格线长度时,又自动分裂成两个网格。 无论是哪种动网格模型,对内部的参数设置要求十分严格,若参数设置不当,可能出现

基于FLUENT的某微型面包车外流场数值仿真分析

基于FLUENT的某微型面包车外流场数值仿真分析 摘要:利用UG对某微型轿车进行三维实体建模,将其导入前处理软件ANSYS ICEM中,建立计算域后网格化。用CFD 软件FLUENT对汽车模型的外流场进行三维稳态流动数值模拟,得出汽车周围流场的气流速度和压力分布,并通过计算得到了该车的阻力系数,该仿真分析的数据为进行汽车气动特性分析提供基础,可进一步指导汽车的设计开发。 关键字:汽车空气动力学;计算流体动力学;FLUENT;外流场 ABSTRACT:The 3D model of a mini car is carried out by UG, and then it is introduced into the pre-processing software ANSYS ICEM to establish the computational domain grid. By using the software of CFD FLUENT is to the automobile model flow field numerical simulation of three-dimensional steady flow, flow velocity and pressure distribution of the flow field around the car, the car and the drag coefficient is obtained by calculating, the simulation data for automobile gas analysis provide the basic dynamic characteristics, design and development can further guide the car. Keywords: Automobile aerodynamics;CFD;FLUENT;Outflow field 引言 空气动力学特性是汽车的重要特性之一。汽车行驶时与空气产生复杂的相互作用,承受着强大的气动力,对汽车的行驶状态有着重大影响;汽车行驶时受到的空气阻力与汽车速度平方成正比,汽车克服空气阻力所消耗的功率和燃料与车速的三次方成正比。因此,对汽车外流场空气动力学的研究,不仅可以提高汽车动力性和安全性,还可以提高汽车的燃料经济性。 目前,汽车空气动力学的研究主要有三种方法,即风洞实验、理论分析和计算流体动力学(Computational Fluid Dynamics,CFD)分析。随着计算机技术的发展,计算流体动力学相对于实验和理论计算具有成本低、周期短等特点,因此受到越来越广泛的应用。CFD方法对于预测和改进汽车的气动性能,指导汽车产品设计具有重要意义[1-2]。故本文采用大型商业化CFD 软件的FLUENT对某微型汽车的外流场进行数值仿真分析。 1 汽车空气动力学特性与CFD 理论基础1.1 汽车空气动力学特性 在正常道路行驶过程中的汽车,通常受到两种力的作用,这两种力分别为路面与汽车之间的相互作用力和来自空气的力与力矩。其中,前者主要由汽车自身的物理属性和轮胎的滚动阻力系数等决定;另一种则是来自空气作用的力和力矩,取决于汽车的外形设计、行驶速度以及横摆角[3-4]。 气流作用于汽车上分相互垂直的三个方向的力和绕三个轴的力矩,如图1 所示;在图示坐标系中,X 方向是汽车直线行驶方向,通常的气动阻力就是指来流沿X 方向的作用力;Y 轴方向为汽车的侧向力,还有沿Z 轴方向趋于抬起汽车的升力。汽车在道路行驶过程中这三个方向的空气作用力同时存在,相互影响。除上述三个方向的力外,还有绕三个轴方向的力矩,分别为绕X 轴方向的侧倾力矩、绕Y 轴方向的俯仰力矩以及绕Z 轴方向的横摆力矩。

达里厄风力机

达里厄风力机 达里厄风力机 Darrieus Type Wind Turbine 2013年11月重新编辑(加一动画)阻力型垂直轴风力机虽然简单可靠,安装维修方便,但其叶尖速比在0.5至0.9左右才能获得较高的功率输出,也就是说叶片速度较低,风轮外沿线速度仅为风速的一半多,若风轮直径较大时,转速会很低,再说阻力型的垂直轴风力机功率系数一般不超过15%,S型阻力风力机虽可达25%,但其巨大的风叶生产制造、运输、安装都很困难,这就限制了阻力型风力机的广泛应用。目前大中型风电主要采用水平轴风力机,属升力型风力机,具有转速高、风的利用率较高的优点,其运行叶尖速比通常在4以上,转速高,最大功率系数可达50%。 垂直轴风力机也有升力型风力机,法国航空工程师达里厄(Darrieus)在1931年发明了升力型垂直轴风力机,后人习惯把升力型垂直轴风力机统称为达里厄风力机(D式风力

机),达里厄风力机的原始机型是φ形结构,在国外已运行的大中型达里厄风力机是φ形结构,中小型采用H形结构。在国内目前一些小微型升力阻力结合风力机采用φ形结构,大一些的达里厄风力机多采用H形结构,下面就H形结构达里厄风力机的原理进行介绍。 图1是H形达里厄风力机风轮结构图,风轮由两片与转轴平行的叶片阻成,叶片截面为流线型的对称翼型,以相反方向安装在风力机转轴两侧,风轮绕风力机转轴旋转。为较清晰表示其结构,图中将叶片弦长较实际比例进行夸大。图1--H 型达里厄风力机的风轮下面是H形达里厄风力机的旋转动画。垂直的叶片是如何带动风轮旋转呢,通过图2来分析其原理,风轮轴在叶轮径向线上,叶片随风轮旋转沿翼片轨迹运动到上风面某位置,来风从左边进入,浅蓝色的矢量v 是外来风速、绿色的矢量u是叶片圆周运动的线速度(其箭头方向是无风时翼片感受到的气流方向与速度)、紫色的矢量w 是叶片感受到的合成气流速度(即相对风速)、紫色的矢量L 是叶片受到的升力,黑色的矢量D为叶片受到的阻力,棕色的矢量F是升力L与阻力D的合成力,合成力在叶片前进方向的分力M就是是推动风轮旋转的力,该力形成对风轮转轴的转矩。图2--达里厄风力机叶片受力分析图叶片随风轮旋转到不同角度是否都有推动风轮旋转的转矩呢,图3是叶片随风轮旋转到不同角度的受力图,通过该图来看H形达里厄

fluent经验总结

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什 么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写 出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简 单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包 括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如 果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差 开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。 最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几 步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加, 但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算 并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。 而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于 大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小 默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合 的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用 的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速

相关文档