文档库 最新最全的文档下载
当前位置:文档库 › 汽车专业毕业设计 翻译 中英文(全)automobile emissions

汽车专业毕业设计 翻译 中英文(全)automobile emissions

汽车专业毕业设计 翻译 中英文(全)automobile emissions
汽车专业毕业设计 翻译 中英文(全)automobile emissions

Lesson 6- Automobile Emissions

Traffic Jam

Background Information

Emissions from an individual car are generally low, relative to the smokestack image many people associate with air pollution but in numerous cities across the country, the personal automobile is the single greatest polluter with emissions from millions of vehicles on the road. Driving a private car is probably a typical citizen’s most “polluting” daily activity.

The Clean Air Act of 1970 gave EPA broad authority to

regulate mot or vehicle pollution, and the agency’s emission control policies have become progressively more stringent since the early 1970’s.

EPA standards dictate how much pollution autos may emit but automakers decide how to achieve the pollution limits. The

e mission reductions o

f the 1970’s came about because fundamental improvements in engine design plus the addition of charcoal canisters to collect hydrocarbon vapors and exhaust gas recirculation valves to reduce nitrogen oxides.

The advent of “first generation” catalytic converters in 1975 significantly reduced hydrocarbon and carbon monoxide emissions. The use of converters provided a huge indirect

benefit as well. The converters lead to the widespread introduction of unleaded gasoline because lead inactivates the catalyst. This resulted in dramatic reductions in ambient lead levels and alleviated many serious environmental and human health concerns associated with lead pollution.

The next major milestone in vehicle emission control technology came in 1980-81. In response to tighter standards, manufacturers equipped new cars with even more sophisticated emission control systems. These systems generally include a “three-way” catalyst, an on-board computer, and an oxygen sensor. This equipment helps optimize the efficiency of the catalytic converter.

Provisions of the 1990 Clean Air Act are further reducing vehicle emissions. Mobile source provisions include even tighter tailpipe standards, increased durability, improved control of evaporative emissions, and computerized diagnostic systems

that identify malfunctioning emission controls.

Even though efforts by government and industry have greatly reduced typical vehicle emissions, the number of miles

Americans drive has more than doubled since 1970. The

increase in travel has offset much of the emission control progress. The net result is a modest reduction in each

automotive pollutant except lead for which aggregate emissions have dropped by more than 95 percent.

With ozone continuing to present a persistent urban air pollution problem, future vehicle emission control programs will emphasize hydrocarbon and nitrogen oxide reductions. Carbon monoxide control will remain critical in many cities and limits on vehicle-generated carbon dioxide may become important in the future.

Objectives

After completing the lesson, the students will be able to:

1. Describe how automobile emissions pollute the air.

2. Make inferences and predictions about traffic and air pollution.

3. Organize the data into charts and tables for interpretation.

4. Choose a reasonable solution from various alternatives.

5. Interpret data and draw conclusions pertaining to traffic.

6. Name the benefits of using high occupancy vehicles.

Materials

1. One Traffic Simulation Data Table 1 per student

2. One Traffic Simulation Data Table 2-5 per student

3. 16 oz. plastic soda bottles (one per team of 2-4 students)

4. Large lima beans, kidney beans, black beans, lentils, and split peas or other beans or objects of comparable size (enough to more than fill all the soda bottles)

4. Plastic cups (five per team of 2-4 students)

5. One calculator per student (optional)

Preparation

1. You will need to make one “traffic simulator” per every 2-4 student team. A traffic simulator is a soda bottle filled with three kinds of beans of different sizes. To make the simulators, place one large lima bean in each bottle. This bean represents a form of mass transit (bus) carrying 55 people. Next, place two black beans in each bottle. The black beans represent a car pool with three people in the vehicle. Then fill the rest of the bottle with small kidney beans until it is tightly packed. The kidney beans represent vehicles (cars, trucks, SUVs) carrying one person. Finally, put the top on the bottle and close tightly.

2. To go with each traffic simulator you made, you will also need to prepare two small cups of small beans (one with lentils representing bicycles; the other with split peas representing pedestrians). Later in the lesson, the students will be asked to exchange these smaller beans with some of the larger beans in the simulators.

3. On the board, make the Traffic Simulator Key chart.

Procedure

1. Ask the students if they have ever been in a traffic jam and discuss briefly.

2. Have the students draw a quick sketch of a traffic jam. Give them about five minutes to draw and then ask them what they think causes traffic jams.

3. Have the students draw something to represent air quality in their pi ctures. Remind them of the “Knocking Over Pollutants” lesson and how the class had made invisible things visible. Give them time to complete this and then discuss. Guide students to identify ground-level ozone, nitrogen oxides, and carbon monoxide as the most common pollutants that come heavily from cars, trucks, and other motor vehicles.

4. Write the word “emissions” on the board and explain that the exhaust that comes from car tailpipes is called “emissions.” Emissions also come from under the hood of the car when the engine gets hot. Ask the students to explain why a traffic jam would cause even more pollution than a large number of cars moving freely. Guide students to understand that cars idling in traffic or at the drive-through windows use fuel inefficiently because they are not moving forward toward their destination.

5. Write the word “congestion” on the board and ask the

students to define it and explain how “congestion” is applied to traffic. Tell the students that there are people called transportation planners whose job it is to figure out how to get

rid of the congestion in cities. These people often use models in their work to get a picture of what traffic might be like in a city. Traffic planners have to think a lot about how to reduce air pollution.

6. Show students a pre-make traffic simulator and tell them that in this lesson they will be transportation planners using a model called a “traffic simulator.”

7. Divide the students into teams of 2-4 (depending on the number of traffic simulators available). Give each team a simulator and explain that the simulator represents a traffic jam.

Explain what each type of bean represents using the Traffic Simulator Key chart.

8. Have the students shake their simulators. Ask them what happens. They should respond that the beans barely move. Ask the students why this model is like a highway or street. Point out that it is a confined space and can only hold a finite amount. When you have too many cars on the highway, the vehicles slow down and can’t move very much. When there is all that congestion, air pollution increases.

9. Explain that this model represents a “rush hour” situation in which people are trying to get to work in the morning. Discuss the size of each “vehicle” and the number of people it can move. Give each student a copy of the “Traffic Simulation Data Table 1” handout. Have the students open the traffic simulators and

count the number of beans/vehicle of each type currently in the simulator. Have them record this data in Data Table 1.

10. Guide the students to determine the mathematical operation for discovering how many total people are carried by each type

of vehicle (multiplication) and demonstrate with an example (e.g.

5 buses x 55 people per bus = 275 people carried by buses). Ask the students to calculate the total number of people carried by each type of vehicle and enter this data in Data Table 1. Instruct the students to also calculate the total number of vehicles in this scenario as well as the total number of people being moved and write the numbers in the Total column of Table 1. Tell the students to leave the “Pollution Value” row blank for now.

11. Tell the students that, as good transportation planners, we want the beans/vehicles to move about freely so that the people can get where they are going in a timely fashion and not create excess air pollution.

12. Ask the students if there are any other options for getting to work other than the ones already named. (If the students

suggest trains, planes, or boats, indicate that we are focusing on

roads in cities.) Focus on bicycles and walking as two ways people can get to work and write them in on the traffic simulator key in the blank spaces next to lentil and split pea. Indicate that they carry one person and write that in the “number of people” column.

13. Hand out two additional cups of small beans; one with lentils representing bicycles and the other with split peas representing walkers or “pedestrians”. Discuss why these beans are small (a bicycle takes up approximately 1/12 of the space a car does). Indicate, however, that it takes longer to go far distances by bicycle and even longer to go by foot. In addition, tell students that some employees are allowed to telework which means that they can work from home rather than at the office. In this activity, no more than five people who are represented in the simulators at the beginning will be allowed to telework so the students may take out up to five beans.

14. Now challenge the students to work in a group using the simulator to find bean combinations that allow the bean “traffic” to move freely but to move the maximum number of people as possible. Give each team three additional plastic cups for their extra beans. Make extra beans of each type available to the students. Hand out copies of the Traffic Simulation Data Tables 2-5 to each student. Have the groups work together to try different combinations and shake simulators to determine if the scenario allows for movement of the vehicles and people.

15. After each trial combination, each student should

individually record the numbers of vehicle types, bikes, or pedestrians and calculate the number of people moving by each mode of transportation. Students should try at least four

different combinations and record their results in the other data tables. Remind students to calculate the total number of vehicles, bikes, or pedestrians and total number of people moved for each scenario and write the numbers in each table’s “totals” column. Tell the students to leave the “Pollution Value” rows blank for now.

16. Each team should select their “best-case scenario” model that allowed the bean vehicles, bikes, and pedestrians to move most freely while moving the greatest number of people.

17. Have each group share their results with the class. Guide students to draw some conclusions as transportation planners about what can be done to reduce traffic jams.

18. Tell students that calculating the number of people moving freely is very important in transportation planning but planners also have to think about air quality. The Environmental Protection Agency insists that transportation planners in certain cities use models to calculate pollutants from cars. Tell the students that as planners we are going to assign a number to each mode of transportation according to how much pollution it puts out for every person it carries.

19. On the traffic simulator key, write the number “10” in the Pollution Value column in the Car row. Write in “3” for Car Pools, “2” for Buses, “0” for Bicycles, and “0” for pedestrians. Briefly explain why the number assigned to a carpool is approximately 1/3 as much as for a single-occupancy car and why the number assigned to a bus is very small. Ask the students to explain why the number for bicycles and walking is “0”.

20. Demonstrate on the board how to calculate the Total Pollution Value by multiplying the number of people carried per vehicle by the pollution value assigned. Work through the pollution values calculations for Table 1 as a class. Have the students work in groups to calculate pollution values for at least two of their other trials including the “best-case scenario” for movement. The students should record the totals in the “Pollution Value” row of their data tables. Ask students to share their results with the class.

21. Have the students use what they learned about traffic pollution and traffic planning to create solutions to traffic

problems in their area. The students can make posters to post around the city encouraging people to carpool and take public transportation.

Extensions

1. Have the local traffic planner come to class to speak about his or her job and traffic problems in the area.

2. Have the students make observations about the traffic congestion around the school building especially in the mornings and afternoons when the students are arriving or leaving the school building. Challenge the students to create a “School Transportation Plan” that gets students to school on time, reduces congestion, and improves air quality. Have the students present their plan to the school principal.

3. Discuss how Oklahoma no longer requires Vehicle Inspection Stickers. How does this decision affect air quality? What can be done to change this situation?

Sources

“Teacher Resource Manual” Georgia Clean Air Campaign.

https://www.wendangku.net/doc/f710843358.html,/index.php/cac/for_school.

“Traffic Jams” Georgia Clean Air Campaign.

https://www.wendangku.net/doc/f710843358.html,/index.php/cac/for_school.

Traffic Simulator Key

Traffic Simulation Data Table #1

Notes and Calculations:

Traffic Simulation Data Table #3

Traffic Simulation Data Table #5

第6课-汽车排放

交通堵塞

背景资料

从个人汽车的排放量普遍偏低,相对于很多人烟囱图像与空气污染,而且在全国许多城市的联营公司,个人汽车是最大的单一由数以百万计的车辆在道路上排放污染。驾驶一辆私家车可能是一个典型的公民最“污染”的日常活动。

清洁空气法1970年美国环保署了广泛的权力,规范机动车污染,该机构的排放控制政策已逐步变得更加严格,因为70年代初。

环保署标准规定汽车多少污染排放,但汽车制造商可能会决定如何实现污染的限制。减少的排放量在1970年的约,因为在发动机设计,加上除了木炭罐收集根本的改善碳氢化合物气体和废气再循环阀,以减少来氮氧化物。

“第一代的来临”在1975年显着降低催化转换器的碳氢化合物和一氧化碳的排放。使用的转换提供了一个巨大的间接受益。转换器导致广泛使用无铅汽油,因为铅催化剂的失活。这导致大幅度削减空气的含铅量,减轻了许多严重的环境和人类健康与铅污染相关的关切。

其次,在汽车排放控制技术的重要里程碑出现在1980-81针对更严格的标准。商,制造商配备了更先进的排放控制系统的新车型。这些系统通常包括“三路”的催化剂,一载计算机和一个氧传感器。此设备可帮助优化催化转换器的效率。

1990年清洁空气法的规定进一步减少车辆排放的废气。流动污染源的规定包括更紧密的废气标准,提高了耐用性,改进的蒸发排放控制,电脑诊断系统,查明故障的排放控制。

尽管政府和工业界的努力,大大减少车辆废气排放典型的美国人驾驶的里程数增加了一倍多自1970年以来。的旅费增加抵消了排放控制的进展了。最后的结果是在每一个汽车略为降低除牵头污染物的排放总量已超过百分之九十五下降。

由于臭氧继续提出一个持久的城市空气污染的问题,未来汽车排放控制计划将强调碳氢化合物和氮氧化物的减少。一氧化碳的控制将继续留在许多城市和车辆的限制关键生成二氧化碳可能成为未来的重要。

目标

课程完成后,学生将能够:

1。描述如何汽车排放污染空气。

2。进行推论和有关交通和空气污染的预测。

3。整理成图和表中的数据解释。

4。选择不同选择合理的解决办法。

5。解释数据,并得出结论,有关的交通。

6。名称使用高占用车辆的好处。

材料

1。一个交通仿真数据表1每个学生

2。一个交通仿真数据表2-5每个学生

3。16盎司塑料饮料瓶(每个学生的2-4队)

4。大型利马豆,芸豆,黑豆,扁豆和豌豆或其他豆类或类似大小的物体(足以满足所有以上的饮料瓶)

4。(占2-4学生代表队5塑料杯)

5。一个计算器,每名学生(可选)

制备

1。您将需要2-4学生,每队一“交通模拟器”。甲交通模拟器是一个苏打瓶三种不同大小的豆种满。要在每个瓶子的模拟器,放置一个大青豆。这个bean代表的集体运输(车)载55人在每个瓶子。下,放置2黑豆表单。黑豆,是一个3人在汽车的汽车库。然后再填入小肾的瓶子其余豆类,直到它紧凑。豆角代表的车辆(汽车,卡车,SUV)携带一人。最后,放在瓶子的顶部和密闭。

2。为配合各交通模拟器所做,您还需要准备两个小豆小杯(自行车扁豆与代表之一,代表与分裂行人豌豆等)。在稍后的课,学生将被要求交换模拟器在一些较大的豆类这些小豆。

3。板,使交通仿真关键图表。

程序

1。请问,他们有否在交通堵塞,并简要地讨论一下学生。

2。有学生绘制的交通拥堵速写。给他们5分钟左右,然后绘制问他们什么,他们认为造成交通堵塞。

3。学生有借鉴的东西,代表他们的照片空气质量。提醒超额污染物“敲他们的”教训以及如何类作出了有形无形的东西。让他们有时间来完成此操作,然后进行讨论。引导学生识别地面臭氧,氮氧化物和一氧化碳作为最常见的污染物来自汽车,卡车严重,和其它机动车辆。

4。写在黑板上字“排放量”,并解释说,从汽车尾气排气管来自被称为“排放量。”排放量也从下汽车时,发动机罩变热来。请学生解释为什么会造成交通堵塞比汽车数量大迁徙,甚至更严重的污染。引导学生了解,汽车在交通或空转时通过Windows的驱动器使用的燃料效率低下,因为它们不是走向自己的目的地前进。

5。写出单词“挤塞对板”,要求学生界定和解释“拥塞”适用于交通。告诉学生说,有人称为交通规划师的工作是弄清楚如何摆脱在城市的交通挤塞。这些人往往利用他们的工作模式,以得到什么的流量可能会像在城市的图片。交通规划要考虑了很多,如何减少空气污染。

6。查看学生前使交通模拟器,并告诉他们,在这一课,他们将利用交通规划模型,称为“交通模拟器。”

7。分成2-4组的学生(在交通仿真数目而定)。给每队一个模拟器,并解释说,模拟器代表了交通堵塞。解释每豆类类型表示使用模拟器主要交通图。

8。有学生摇头模拟器。问问他们发生了什么。他们应该作出回应说,豆一动不动。请学生说,这种模式是像公路或街道。指出,这是一个密闭空间仅能容纳有限金额。当你在公路上的汽车数量太多,车辆慢下来,就不能取得很大了。当有所有的交通堵塞,空气污染增加。

9。说明该模型是一个“尖峰时刻”情况是,人们试图去在早晨上班。讨论每个“车辆大小”和它的人民可以移动号码。给每个学生一副本“交通仿真数据表1”施舍。有学生开放的交通模拟器并计算豆数量/模拟器目前在每种类型的车辆。让它们记录在数据表1数据。

10。引导学生,以确定发现总共有多少人的数学运算是由每车(乘法)类

型,举一个例子(例如5辆× 55 =每车275人的公共汽车进行)。询问的人学生计算每一车辆类型进行的总人数,然后在数据表1数据。指示学生还计算出在这种情况下,车辆总数以及总人数被移动和写入在表1的总列数。告诉学生离开现在的“污染价值”行空白。

汽车专业英语翻译综合

第一章汽车总论 1)Today’s average car contains more than 15,000 separate, individual parts that must work together. These parts can be grouped into four major categories: body, engine, chassis and electrical equipment 。P1 现在的车辆一般都由15000多个分散、独立且相互配合的零部件组成。这些零部件主要分为四类:车身、发动机、底盘和电气设备。 2)The engine acts as the power unit. The internal combustion engine is most common: this obtains its power by burning a liquid fuel inside the engine cylinder. There are two types of engine: gasoline (also called a spark-ignition engine) and diesel (also called a compression-ignition engine). Both engines are called heat engines; the burning fuel generates heat which causes the gas inside the cylinder to increase its pressure and supply power to rotate a shaft connected to the power train. P3 发动机作为动力设备,常见的类型是内燃机,其原理是通过发动机缸内的液体燃料燃烧而产生能量。发动机可分为两类:汽油机(点燃式)和柴油机(压燃式),都属于热力发动机。燃料燃烧产生热量使缸内气压上升,产生的能量驱动轴旋转,并传递给动力传动系。 第二章内燃机 1)Power train system: conveys the drive to the wheels 2)Steering system: controls the direction of movement 3)Suspension system: absorbs the road shocks 4)Braking system: slows down the vehicle P4 传动系把发动机输出的扭矩传递给驱动轮。传动系包括离合器(对应机械变速器)或液力变矩器(对应液力自动变速器)、变速器、驱动轴、主减速器、差速器和驱动桥。 5)Drum brakes have a drum attached to the wheel hub, and braking occurs by means of brake shoes expanding against the inside of the drum. With disc brakes, a disc attached to the wheel hub is clenched between two brake pads. P6 鼓式制动器的制动鼓和轮毂连接,制动蹄张开压紧制动鼓内侧从而产生制动。在盘式制动器上,连着轮毂的制动盘被紧紧夹在两个制动块之间。 1)Linking the piston by a connecting rod to a crankshaft causes the gas to rotate the shaft through half a turn.The power stroke"uses up"the gas,so means must be provided to expel the burnt gas and recharge the cylinder with a fresh petrol-air mixture:this control of gas movement is the duty of the valves;An inlet valve allows the mixture to enter at the right time and an exhaust valve lets out the burnt gas after the gas has done its job . P10 活塞通过连杆和曲轴连接,使得气体带动曲轴旋转半圈。作功冲程耗尽了所有的气体,这样就必须采取相应的措施排出废气并且向气缸内充入新的可燃混合气:气体的运动由气门来控制。进气门使可燃混合气在恰当的时刻进入气缸,排气门使燃烧后的废气排出气缸。 2)The spark-ignition engine is an internal-combustion engine with externally supplied in ignition,which converts the energy cntained in the fuel to kinetic energy.The cycle of operations is spread over four piston strokes. To complete the full cycle it takes two revolutions of the crankshaft. P11 火花点火式发动机是由外部提供点火的内燃机,从而将含在燃料内的能量转化成动能。发动机的一个工作循环分布在活塞的四个行程中,一个完整的工作循环曲轴需要转动两圈。 3)The oil pump in the lubricating system draws oil from the oil pan and sends it to all working parts in the engine. The oil drains off and runs down into the pan. Thus,there is constant circulation of oil between the pan and the working parts of the engine. P15

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

汽车专业英语翻译

About car engine Of all automobile components,an automobile engie is the most complicated assembly with dominant effects on the function of an autombile.So, the engine is generally called the"heat"of an automobile. 在汽车的所有部件中,汽车发动机是最复杂的组件,其对整车性能有着决定性的作用。因而发动机往往被称作发动机的“心脏”。 There are actually various types of engines such as electric motors,stream engines,andinternal combustion engines.The internal combustion engines seem to have almost complete dominance of the automotive field.The internal combustion engine,as its name indicates,burns fuel within the cylinders and converts the expanding force of the combustion into rotary force used to propel the vehicle. 事实上,按动力来源分发动机有很多种,如电动机、蒸汽机、外燃机等。然而内燃机似乎在发动机领域有着绝对的统治地位。就像其字面意思一样,内燃机的染料在气缸内燃烧,通过将燃烧产生气体的膨胀力转换成转动力来驱动发动机前进。 Engine is the power source of the automobile.Power is produced by the linear motion of a piston in a cylinder.However,this linear motion must be changed into rotary motion to turn the wheels of cars or trucks.The puston attached to the top of a connecting rod by a pin,called a piston pin or wrist pin.The bottom of the connecting rod is attached to the crankshaft.The connecting rod transmits the up-and-down motion of the piston to the crankshaft,which changes it into rotary motion.The connecting rod is mounted on the crankshaft with large bearings called rod bearing.Similar bearings, called main bearings,are used to mount the crankshaft in the block. 发动机是整部车的动力来源。能量来自于活塞在气缸内的(往复)直线运动。然而这种(往复)直线运动必须要转换成旋转运动才能驱动车轮。活塞与连杆通过一个销来连接,这个销称为活塞销。连杆的下部连接于曲拐。连杆把活塞的上下往复运动传递给曲拐,从而将往复直线运动转变成旋转运动。连杆和曲拐的连接使用大的轴承,称之为连杆轴承,类似的轴承也用于将曲轴连接到机体,称之为主轴承。 They are generally two different types of cooling system:water-cooling system and air-cooling system.Water-cooling system is more common.The cooling medium, or coolant, in them is either water or some low-freezing liquid, called antifreeze.A water-cooling system consists of the engine water jacket, thermostat, water pump, radiator, radiator cap, fan, fan drive belt and neccessary hoses. 主要有两种类型的冷却系统:水冷和风冷。水冷系统更为普遍。系统所用冷却介质或是冷却液常委水或其他低凝固点液体,称为抗凝剂。一个完整的水冷系统包括机体水套,节温器,水泵,散热器,散热器罩,风扇,风扇驱动皮带和必需的水管。 A water-cooling system means that water is used as a cooling agent to circulate through the engine to absorb the heat and carry it to the radiator for disposal.The ebgine is cooled mainly through heat transfer and heat dissipation.The heat generated by the mixture burned in the engine must be transferred from the iron or aluminum cylinder to the waterin the water jacket.The outside of the water jacket dissipates some of the heat to the air surrounding it, but most of the heat is carried by the cooling water to the radiator for dissipation.When the coolant temperature in the system reaches 90°,the termostat valve open fully, its slanted edge shutting off

毕业设计英文翻译

使用高级分析法的钢框架创新设计 1.导言 在美国,钢结构设计方法包括允许应力设计法(ASD),塑性设计法(PD)和荷载阻力系数设计法(LRFD)。在允许应力设计中,应力计算基于一阶弹性分析,而几何非线性影响则隐含在细部设计方程中。在塑性设计中,结构分析中使用的是一阶塑性铰分析。塑性设计使整个结构体系的弹性力重新分配。尽管几何非线性和逐步高产效应并不在塑性设计之中,但它们近似细部设计方程。在荷载和阻力系数设计中,含放大系数的一阶弹性分析或单纯的二阶弹性分析被用于几何非线性分析,而梁柱的极限强度隐藏在互动设计方程。所有三个设计方法需要独立进行检查,包括系数K计算。在下面,对荷载抗力系数设计法的特点进行了简要介绍。 结构系统内的内力及稳定性和它的构件是相关的,但目前美国钢结构协会(AISC)的荷载抗力系数规范把这种分开来处理的。在目前的实际应用中,结构体系和它构件的相互影响反映在有效长度这一因素上。这一点在社会科学研究技术备忘录第五录摘录中有描述。 尽管结构最大内力和构件最大内力是相互依存的(但不一定共存),应当承认,严格考虑这种相互依存关系,很多结构是不实际的。与此同时,众所周知当遇到复杂框架设计中试图在柱设计时自动弥补整个结构的不稳定(例如通过调整柱的有效长度)是很困难的。因此,社会科学研究委员会建议在实际设计中,这两方面应单独考虑单独构件的稳定性和结构的基础及结构整体稳定性。图28.1就是这种方法的间接分析和设计方法。

在目前的美国钢结构协会荷载抗力系数规范中,分析结构体系的方法是一阶弹性分析或二阶弹性分析。在使用一阶弹性分析时,考虑到二阶效果,一阶力矩都是由B1,B2系数放大。在规范中,所有细部都是从结构体系中独立出来,他们通过细部内力曲线和规范给出的那些隐含二阶效应,非弹性,残余应力和挠度的相互作用设计的。理论解答和实验性数据的拟合曲线得到了柱曲线和梁曲线,同时Kanchanalai发现的所谓“精确”塑性区解决方案的拟合曲线确定了梁柱相互作用方程。 为了证明单个细部内力对整个结构体系的影响,使用了有效长度系数,如图28.2所示。有效长度方法为框架结构提供了一个良好的设计。然而,有效长度方法的

汽车制动系统-毕业设计外文资料翻译

Automobile Brake System The braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes. Two complete independent braking systems are used on the car. They are the service brake and the parking brake. The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the parking brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set. The brake system is composed of the following basic c omponents: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the car. The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure).

土木工程毕业设计中英文翻译

附录:中英文翻译 英文部分: LOADS Loads that act on structures are usually classified as dead loads or live loads are fixed in location and constant in magnitude throughout the life of the the self-weight of a structure is the most important part of the structure and the unit weight of the density varies from about 90 to 120 pcf (14 to 19 KN/m)for lightweight concrete,and is about 145 pcf (23 KN/m)for normal calculating the dead load of structural concrete,usually a 5 pcf (1 KN/m)increment is included with the weight of the concrete to account for the presence of the reinforcement. Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic may be either fully or partially in place,or not present at may also change in location. Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces. Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be is oftern important to distinguish between the

汽车专业英语_单词表

unit1 body 车身chassis 底盘enclosure外壳、套hood车棚、车顶sway 摇摆frame车架steering转向、操作brake 制动weld焊接rivet铆钉bolt螺钉washer垫圈vibration 振动stabilizer稳定器ride乘坐舒适性handling操作稳定性linkages转向传动机构plier钳子distributor分电器alternator交流发电机regulator调节器carburetor化油器radiator散热器、水箱defroster除冰装置sludge金属碎屑transmission变速器differential 差速器power train 传动系unitized body 承载式车身suspension system 悬架系统steering system 转向系braking system 制动系shock absorbers减震器control arms控制臂steering wheel 转向盘steering column转向管柱steering gears 转向器tie rod 横拉杆idler arm随动臂brake shoe制动蹄disc brake 盘式制动器drum brakes 鼓式制动器ignition system 点火系统exhaust system 排气系统lubrication system 润滑系oil filters 机油滤清器drive(or propeller)shaft传动轴universal joints 万向节dynamo发电机horn喇叭swived 旋转steering box转向器timing gear 正时齿轮bevel gear 锥齿轮mesh with与啮合leaf spring 钢板弹簧stub axle 转向节 unit2 longitudinal纵向的transverse横向的reciprocate往复spin旋转piston活塞ignite点火rub摩擦quart夸脱reservoir油箱mechanical机械的enclosed被附上的gallon加仑stroke冲程camshaft凸轮轴combustion燃烧disengaged脱离啮合的flywheel飞轮internal-combustion engine内燃机diesel-fuel柴油LPG=Liquefied Petroleum Gas液化石油气体CNG=Compressed natural gas压缩天然气spark ignition火花点火compression ignition压缩点火spark plug火花塞gas-turbine engine蒸汽机Stirling engine斯特灵发动机lubricating system润滑系统oil pan油底壳oil pump机油泵exhaust system排气系统emission-control system排放控制系统energy conversion能量转换air/fuel ratio空燃比connecting rod连杆TDC=Top Dead Center上止点BDC=Bottom Dead Center 下止点intake stroke进气冲程compression stroke压缩冲程power stroke作功冲程exhaust stroke排气冲程compression ratio压缩比lifter挺柱rocker摇臂retainer弹簧座seal密封件tappet 推杆lobe凸起gasket垫圈valve train配气机构cam follower气门挺柱rocker arm摇臂combustion chamber燃烧室intake valve进气阀exhaust valve排气阀valve stem气门杆valve cover气门室盖valve port阀口valve guide气门导管 unit3

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.wendangku.net/doc/f710843358.html,,niuzhiguo@https://www.wendangku.net/doc/f710843358.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.wendangku.net/doc/f710843358.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

汽车制动系统(机械、车辆工程毕业论文英文文献及翻译)

Automobile Brake System汽车制动系统 The braking system is the most important system in cars. If the brakes fail, the result can be disastrous. Brakes are actually energy conversion devices, which convert the kinetic energy (momentum) of the vehicle into thermal energy (heat).When stepping on the brakes, the driver commands a stopping force ten times as powerful as the force that puts the car in motion. The braking system can exert thousands of pounds of pressure on each of the four brakes. Two complete independent braking systems are used on the car. They are the service brake and the parking brake. The service brake acts to slow, stop, or hold the vehicle during normal driving. They are foot-operated by the driver depressing and releasing the brake pedal. The primary purpose of the brake is to hold the vehicle stationary while it is unattended. The parking brake is mechanically operated by when a separate parking brake foot pedal or hand lever is set. The brake system is composed of the following basic components: the “master cylinder” which is located under the hood, and is directly connected to the brake pedal, converts driver foot’s mechanical pressure into hydraulic pressure. Steel “brake lines” and flexible “brake hoses” connect the master cylinder to the “slave cylinders” located at each wheel. Brake fluid, specially designed to work in extreme conditions, fills the system. “Shoes” and “pads” are pushed by the slave cylinders to contact the “drums” and “rotors” thus causing drag, which (hopefully) slows the c ar. The typical brake system consists of disk brakes in front and either disk or drum brakes in the rear connected by a system of tubes and hoses that link the brake at each wheel to the master cylinder (Figure). Basically, all car brakes are friction brakes. When the driver applies the brake, the control device forces brake shoes, or pads, against the rotating brake drum or disks at wheel. Friction between the shoes or pads and the drums or disks then slows or stops the wheel so that the car is braked.

毕业设计中英文翻译

本科毕业设计(论文)中英文对照翻译 院(系部)电气工程与自动化学院 专业名称电气工程及其自动化 年级班级电气05-5班 学生姓名辛玉龙 指导老师封海潮 2009年6月10日

可编程序控制器 可编程序控制器或可编程逻辑控制器(PLC),是一个具有编程能力且完成一定控制功能的设备。 PLC是1968年被美国通用汽车公司的一组工程师设想出来。可编程控制器起初被设计用于基于程序的灵敏性控制和执行逻辑指令。人们意识到它的主要优点是被用于梯形图编程语言,简化了维修并且减少了其余部分的清查。而且,PLC提供了更短的安装时间并通过程序实现比硬接线更加快捷的传输。 当前,世界上已有50多个不同的可编程控制器的生产厂家,因为有如此多的PLC在使用,所以涵盖市场上所有类型的设备是不可能的,幸运的是,根本就没有必要去理解每一个可用的PLC。所有的机器都有许多的相同之处。 1 可编程控制器的组成 所有的可编程控制器都有输入输出接口、存储器编程方法、中央处理器、电源。 输入接口为机器提供一个连接,或使过程被控制。 输入接口是模块且是可扩展的,当控制任务增加时,可以通过扩展模块来接收更多的输入。输入数量的多少是由CPU和存储容量来限制的。输入接口的功能与输出接口相反,它将信号从CPU输出,且将其转换成被外部设备螺线圈、电机启动器等设备来产生控制动作。输出接口本质上也是一个模块,所以当需要时,可以加入输出扩展功能。 PLC的编程语言有多种形式,大多数PLC语言都是基本梯形逻辑,它比继电器逻辑更加先进。流程图程序语言也被用于一些PLC中,流程图是图形语言,它显示出一个过程中的变量相互之间的关系。 编程设备或程序终端允许用户用程序的形式来键入指令,并存入存储器。 程序是由用户编写且存储于PLC的存储器当中,是在特定处理条件下用来产生正确的控制信号的所需动作的表现形式。这样一个程序包括允许

相关文档
相关文档 最新文档