文档库 最新最全的文档下载
当前位置:文档库 › 基因克隆技术的研究与进展

基因克隆技术的研究与进展

基因克隆技术的研究与进展
基因克隆技术的研究与进展

基因克隆技术的研究与进展

————————————————————————————————作者: ————————————————————————————————日期:

浅谈生物克隆技术及其未来应用问题与前景

浅谈生物克隆技术及其未来应用问题与前景 肖婷2012333500202 浙江理工大学经管学院工商管理专业 指导老师:解纯刚浙江理工大学生科学院 【摘要】:随着生命科学时代的到来,基因研究已经取得了巨大的进展,克隆技术特别是人的克隆技术作为基因研究的重要组成部分,愈来愈引起社会各界的广泛关注。克隆技术作为人类的创造性活动,有其产生和存在的合理性,在诸多领域蕴藏巨大的应用潜力与巨大应用价值和广阔的发展前景。但克隆技术目前仍存在一些问题,如克隆技术对社会伦理和人类健康的影响。人类克隆技术的进步为人类带来的利益是巨大的,因而它的发展是难以阻止的。应对人类克隆技术带来的巨大挑战。 【关键词】:克隆技术;利弊;社会影响;应用前景 一、克隆是什么? 克隆是英文Clone一词的音译,意为无性繁殖系,即通过无性繁殖(如细胞丝分裂)可连续传代并形成的群体,常用于细胞水平的描述。克隆的定义是指独立细胞繁殖系,指后代完全由一个细胞复制,具有完全相同的物遗传质。 一个细菌经过20分钟左右就可一分为二;一根葡萄枝切成十段就可能变成十株葡萄;仙人掌切成几块,每块落地就生根;一株草莓依靠它沿地“爬走”的匍匐茎,一年内就能长出数百株草莓苗。凡此种种,都是生物靠自身的一分为二或自身的一小部分的扩大来繁衍后代,这就是无性繁殖。时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡来自一个祖先,经过无性繁殖出的一群个体,也叫“克隆”。 自然界的许多动物,在正常情况下都是依靠父方产生的雄性细胞(精子)与母方产生的雌性细胞(卵子)融合(受精)成受精卵(合子),再由受精卵经过一系列细胞分裂长成胚胎,最终形成新的个体。这种依靠父母双方提供性细胞、并经两性细胞融合产生后代的繁殖方法就叫做有性繁殖,但是,如果我们用外科手术将一个胚胎分割成两块,四块、八块……最后通过特殊的方法使一个胚胎长成两个、四个,八个……生物体,这些生物体就是克隆个体,而这些个体就叫做无性繁殖系。 二、克隆技术是什么? 克隆技术是利用生物技术由无性生殖产生与原个体有完全相同基因组织后代的过程。科学家把人工遗传操作动物繁殖的过程叫克隆,这门生物技术叫克隆技术,含义是无性繁殖。

克隆技术的最新发展

Germany embryologists pointed out for the first time, and then was born dolly, then what the pig sheep cow came, Use the way monkey cloning embryos split researchers recently announced that they in biotechnology fields have achieved a landmark progress. Scientists use the cloning of embryos split ways, created a monkey. Rather, it is a rhesus monkeys, named "TaiTeLa", it is the first time scientists have been cloned way to foster primates. Now the technology have been developed to human cloning is not a problem, but it is the condemnation of the factors against, so it YuKeLong application on organs necrosis, for the benefit of mankind. 德国胚胎学家首次提出的,然后就诞生了克隆羊多莉,接着的什么猪羊牛的都来了, 运用分裂胚胎的方式克隆猴子科研人员最近宣布,他们在生物工艺学领域取得了一项有里程碑意义的进展。科学家们利用分裂胚胎的克隆方式,培育出了一只猴子。确切地说,这是一只恒河猴,名叫“泰特拉”,它是科学家首次以克隆方式培育出的灵长目动物。 现在的技术已经发展到克隆人是不成问题的,但这会受到社会的谴责的因素的反对,所以就把它应用于克隆坏死的器官上,为人类造福。 Cloning technology, has experienced three periods: the first period is microbial cloning, which is a bacteria soon copies of tens of thousands of and it exactly the same bacteria, and become a bacteria group; The second period is biological cloning technology, such as by using the genetic gene-DNA cloned; The third period is animal cloning, namely the a cells cloned into an animal. Cloned sheep "duoli" by a head of s omatic cells and to which cloning, the use of animal cloning technology is. 克隆技术,已经经历了三个发展时期:第一个时期是微生物克隆,即用一个细菌很快复制出成千上万个和它一模一样的细菌,而变成一个细菌群;第二个时期是生物技术克隆,比如用遗传基因――DNA克隆;第三个时期是动物克隆,即由一个细胞克隆成一个动物。克隆绵羊“多利”由一头母羊的体细胞克隆而来,使用的便是动物克隆技术。 As the new century advanced science, cloning technology from its birth of the moment attracts many the world's attention. As the world's largest developing country, China has been dedicated to the frontier science research. 作为新世纪的尖端科学,克隆技术从它诞生的那一刻起就吸引了众多世人的目光。作为世界最大的发展中国家,中国一直在致力于前沿科学的研究。 Science has always been a double-edged sword. But, a scientific and technological progress is not really good for people, the key lies in how to treat and apply it to humans, and not for the temporary unreasonable of it. 科学从来都是一把双刃剑。但是,某项科技进步是否真正有益于人类,关键在于人类如何对待和应用它,而不能因为暂时不合情理就因噎废食。 Cloning, is Clone of transliteration, meaning asexual reproduction, cloning technology which asexual reproduction technology. Recently reported the roslin institute of British trials are successful dolly, is for the first time use somatic cells cloned successfully, it in the biological engineering in history has turned a new page. 克隆,是Clone的译音,意为无性繁殖,克隆技术即无性繁殖技术。前不久报道的英国罗斯林研究所试验成功的克隆羊多利,是首次利用体细胞克隆成功的,它在生物工程史上揭开了新的一页。 At present, cloning, gene engineering research is improved by leaps and bounds of forward development, the establishment of the gene concept and the theory, opened the humans to understand life and control the window of the life. Genetic research has become the current scientific research of one of the most decisive field, become the impetus biological pharmaceutical industry, food and the development of the engine. As is known to all, the development of the 20 th century genetics worldwide attention, because the genetics of development, the social function of science and social science to the restriction of the more concern, from the test tube babies to cloning technology to the human genome map the affects all the hearts of men. 21 century is the century of biological technology revolution, the cloning technology application will promote genetics, cell developmental biology, produce scientific disciplines such as research, and to the whole world of scientific progress and improve the quality of life, the life of mankind will have

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

基因克隆技术的研究进展_钟军

第6卷第4期(专辑) 2002年12月 生命科学研究 Life Science Research Vol.6No.4(Suppl.) Dec.2002基因克隆技术的研究进展X 钟军,李,官春云 (湖南农业大学油料作物研究所,中国湖南长沙410128) 摘要:为能快速而准确地克隆目的基因,综述了一些基因克隆常用技术,包括差异表达基因分离技术、转座子标签技术、图位克隆技术、同源序列技术、表达序列标签技术的原理、应用及应用潜力,并对其作了简要的评价. 这些技术有利有弊,应根据不同的实验目的和水平来选择相应的技术. 关键词:基因;克隆;差异表达基因分离技术;转座子标签技术;图位克隆技术;同源序列技术;表达序列标签技术 中图分类号:Q78文献标识码:A文章编号:1007-7847(2002)S1-0148-05 Advances in Gene Cloning Technique ZHONG Jun,LI Xun,GUAN Chun-yun (T he Oil Crop Institute of H unan Agriculture University,Chan gsha410128,H unan,China) Abstract:To clone candidate gene quickly and correctly,advances about gene cloning included map-based cloning, transposon tagging,homology-based candidate gene method,expressed sequence tagging methods and some differen-tially expressed gene clone method are introduced and appraised.Because of the advantages and disadvanta ges of those techniques,various technique should be selected according special purpose and level. Key words:gene;clone;differentially e xpressed gene clone method;transposon tagging;map-based cloning;ho-mology-based candidate gene method;e xpressed sequence ta gging method (Li f e Science Research,2002,6(Suppl):148~152) 克隆基因的途径有两种,正向遗传学和反向遗传学途径.前者是依据目标基因所表现的功能为基础,通过鉴定其产物或某种表型突变而进行的;后者则着眼于基因本身,通过特定的序列或在基因组中的位置进行.近几十年来,许多重点实验室致力于植物基因的克隆,到1992年取得了突破性进展.基因的克隆一般采用下列技术:差异表达基因分离技术、转座子标签技术、表达序列标签技术、图位克隆技术和同源序列技术等. 1差异表达基因分离技术 1.1扣除杂交技术 扣除杂交技术的原理是用有特异性表达基因的目标样提取mRNA经逆转录形成cDNA探针,与无特异性表达基因的参照样的过量mRNA或cDNA杂交,经两轮充分杂交后,移去杂交分子和过量的无特异性表达基因的参照样mRNA或cD-NA,将不形成杂交体的有特异性表达基因的目标样cDNA纯化富集、扩增,建立相应cDNA文库即为差异表达基因cDNA文库.此技术最早是由Lamar和Palmer于1984年提出[1],他们先用超声波打断雌性小鼠的DNA,用Mbo1完全消化雄性小鼠DNA;将两者一起变性、复性,再将产物克隆入表达载体的Bam H I位点中,只有那些两端有GATC序列的基因才能被克隆入载体,这样就达到了扣除两者共有序列的目的,并得到雄性小鼠 X收稿日期:2002-06-11;修回日期:2002-10-14 作者简介:钟军(1973-),女,湖南沅江人,博士研究生,从事分子遗传学研究.Tel:+86-0731-*******,E-mail:zhhjp@s https://www.wendangku.net/doc/f910086699.html,

DNA分子克隆技术(也称基因克隆技术)

DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。 载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。 细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。质粒载体是在天然质粒的基础上人工改造拼接而成。最常用的质粒是 pBR322。 基因库的建造 含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。 cDNA库的建造 是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。 特异基因的筛选 常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。 核酸序列测定 DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。无论从基因库中筛选的癌基因或经PCR法扩增的基因,最终均需进行核酸序列分析,可藉以了解基因的精细结构,获得其限制性内切酶图谱,分析基因的突变及对功能的影响,帮助人工俣成基因、设计引物,以及研究肿瘤的分子发病机制等。测序是在高分辨率变性聚丙烯酰胺凝胶电泳技术的基础上建立起来的。目前最常用的方法有Maxam-Gilbert的化学降解少和Sanger的双脱氧法等,近年来已有DNA序列自动测定仪问世。化学降解法是在DNA的片段的5`端标记核素,然后用专一性化学试剂将DNA特异地降解,在电泳和自显影后,可得到从标记端延伸的片段供测读序列和进行比较。一般能读出200-250个核苷酸序列。双脱氧法是采用核苷酸链终止剂,如:2`,3`-双脱氧核苷三磷酸ddNTP(如ddTTP、ddTTP、ddGTP和ddCTP中的一种)掺入到DNA链中以终止链的延长,与掺入4种正常的dNTP的混合物分成四组进行反应,这样可得到一组结尾长衙不一、不同专一性核苷酸链终止剂结尾的DNA片段,经凝胶电泳分离和放射自显影,可读出合成的DNA核苷酸序列,根据碱基互补原则,可推算出模板DNA分子的序列。

克隆技术及其应用_陈大元

科技与社会 克隆技术及其应用 陈大元 (中国科学院动物研究所生殖生物学国家重点实验室 北京 100080) 摘要 “克隆”的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,这个细胞系中每个细胞的基因彼此是相同的。动物克隆,就是指通过无性繁殖由一个细胞产生一个和亲代遗传性状一致,形态非常相像的动物。随着动物克隆研究的发展、克隆技术将广泛应用于医学、畜牧业和濒危动物保护等领域。 关键词 克隆,动物,胚胎细胞, 体细胞 “克隆”是“clone” 的音译,其含义是无性 繁殖,即由同一个祖先 细胞分裂繁殖而成的 纯细胞系,该细胞系中 每个细胞的基因彼此 是相同的。动物克隆, 就是指通过无性繁殖 由一个细胞产生一个 和亲代遗传性状一致、形态非常相像的动物。 科学家们很早就开始了动物克隆的研究。早在1938年,德国胚胎学家Sp emann即提出“奇异的实验”的设想。1952年,英国科学家Briggs和King 首次报道了蛙的核移植研究。1962年,英国剑桥大学的Gurdon获得了成年蛙。我国已故科学家童第周教授在20世纪60—70年代曾用囊胚细胞进行鱼类细胞核移植工作,获得属间和种间移核鱼,使我国鱼类核移植研究居世界领先水平。 早期的动物克隆研究仅限于两栖类和鱼类,直到20世纪80年代,核移植克隆技术才开始应用于哺乳动物。根据供核细胞的不同,可将动物克隆研究分为三个阶段: 1 胚胎细胞克隆阶段 1981年,Illmensee和Hop pe报道了他们用小鼠的正常囊胚或孤雌活化囊胚的内细胞团细胞作为核供体,直接注入去掉雌雄原核的受精卵胞质中,重构胚体外发育到桑葚胚或囊胚后移植寄母子宫,获得克隆小鼠,这是第一次用胚胎细胞对哺乳类进行核移植获得成功。1983年,美国科学家利用核移植技术和细胞融合方法获得了克隆小鼠。1986年,英国的Willadsen用绵羊的8—16细胞阶段的胚胎细胞作为供体进行核移植,首次应用电融合的方法克隆出一只小羊。此后,科学家们又相继克隆出小鼠、绵羊、牛、兔、猪和猴等。我国科学家也在20世纪90年代成功开展了胚胎细胞克隆兔、山羊、小鼠、牛和猪等研究。 2 同种体细胞克隆阶段 1997年2月,英国罗斯林研究所Wilmut等人宣布,他们用6岁成年羊的高度分化的乳腺细胞进行了核移植,成功地获得了克隆羊“多莉”[10]。这是第一次用成年体细胞作为供核细胞,由此说明高度分化的成年动物的体细胞可在适当条件下发生逆转,  2002年中 国 科 学 院 院 刊第3期 收稿日期:2002年4月25日 DOI:10.16418/j.issn.1000-3045.2002.03.005

克隆技术及其应用与发展

克隆技术及其应用与发展 目前克隆技术、基因工程研究正突飞猛进向前发展,基因概念及其理论的建立,打开了人类了解生命并控制生命的窗口。基因研究已成为当前科学研究中最有决定性的领域之一,成为推动生物、食品和制药产业发展的引擎。众所周知,20世纪遗传学的发展举世瞩目,由于遗传学的发展,科学的社会功能以及社会对科学的制约更受关注,从试管婴儿到克隆技术再到人类基因图谱的绘制无不牵动着世人的心。21世纪是生物技术革命的世纪,克隆技术的应用将促进遗传学,细胞发育生物学,产科学等学科的研究进展,有利于整个世界的科学进步和生活质量的提高,对人类的生活将会产生深远的影响。 克隆、克隆技术 以及克隆的基本过程 “克隆”一词源于“Clone”的音译,指的是人工诱导动、植物的无性繁殖过程,这门生物技术就叫克隆技术。无性繁殖是指不经过雌雄两性生殖细胞的结合,只由一个生物体产生后代的生殖方式,如:由植物的根、茎、叶等经过压条或嫁接等方式产生新个体。绵羊、猴子和牛等动物没有人工操作是不能进行无性繁殖的。克隆的基本过程是先将含有遗传物质的供体细胞的核移植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后再被植入动物子宫中使动物怀孕便可产下与提供细胞者基因相同的动物。这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化。我们可将其研究或操作的对象分为基因克隆、细胞克隆和个体克隆三大类。 基因克隆是指在分子(DNA)水平上开展研究工作以获得大量的相同基因及其表达产物。 细胞克隆则是在细胞水平上开展研究工作以获得大量相同的细胞。 个体克隆则是经过一系列的操作产生一个或多个与亲代完全相同的个体,这种克隆所用的生物材料可能是一个细胞,也可能是一个组织。可以看出,基因克隆、细胞克隆和个体克隆是在三个不同的层次上开展的研究工作,以原有的基因或细胞或生物个体作为模板,复制出多个与原来模板完全相同的基因或细胞或生物个体来。这就有点像大家利用复印机复印资料,或用胶片冲洗照片一样,从原有的资料或底片复制出许多完全一样的资料或照片来。但实际上并非复制胚胎,只是从成年人体内的一个细胞抽取当中包含的基因资料,然后将植入一个没有核子的卵子细胞内,通过体外受精的方法使这个新细胞发育成一个胚胎。例如小羊多利就是利用体细胞进行细胞核移植而克隆成功的,多利羊的产生与三只母羊有关,其克隆过程如下:科学家选取了三只母羊,先将一只母羊的卵细胞中所有遗传物质吸出,然后将另一只6岁母羊的乳腺细胞与之融合,形成一个含有新遗传物质的卵细胞,并促使它分裂发育成胚胎,当这一胚胎生长到一定程度时再将它植入第三只母羊的子宫中,由它孕育并产下克隆羊多利,出生的“羊多”小绵羊与6岁母羊具有完全相同的外貌。 克隆技术在相关领域的应用 克隆的最终产物,如克隆牛、克隆鼠等都不是最重要的成果,基因克隆技术应是建立转基因动物模板的核心和关键性技术,利用转基因动物的体细胞大量复制出具有相同优良性状的个体。由于动物体细胞克隆可以复制出的数量巨大的优良个体,因此动物克隆技术可以首先应用于畜牧业育种上。通常在动物育种中所采用的方法主要是杂交育种,即把两个具有不同优良性状的雌雄个体进行交配,然后在后代中去选择人们所需要的个体。要获得一个优良品种,往往需要几年甚至几十年的时间,而且必须不断地进行育种。如果采用动物个体克隆技术,就可以大量复制出人类所需要的优良个体,还可以大大缩短育种时间和节省大量的人力、物力。克隆技术的完善为转基因动物的繁殖开辟了一条通道,应用克隆技术可以将转基因绵羊

基因工程与克隆技术

基因工程与克隆技术 考点1 基因工程 1.(2015·浙江10月选考,节选)从扩大培养的大肠杆菌中提取含有目的基因的DNA,用 分别切割含目的 基因的DNA 和农杆菌的Ti 质粒,然后用DNA 连接酶连接,形成重组DNA 并导入农杆菌。 2.(2016·浙江4月选考,节选)兔肝细胞中的基因E 编码代谢甲醛的酶,拟利用基因工程技术将基因E 转入矮牵牛中,以提高矮牵牛对甲醛的代谢能力。请回答: (1)从兔肝细胞中提取mRNA,在 酶的作用下形成互补DNA,然后以此DNA 为模板扩增得到基因E 。在相关酶的作用下,将基因E 与Ti 质粒连接在一起,形成 ,再导入用氯化钙处理的 ,侵染矮牵牛叶片,将被侵染的叶片除菌后进行培养,最终得到转基因矮牵牛。其中培养过程正确的是 (A.叶片在含合适浓度生长素的培养基上分化形成愈伤组织 B.愈伤组织在含细胞分裂素和生长素配比较高的培养基上形成芽 C.再生的芽在细胞分裂素含量高的培养基 上生根 D.愈伤组织在含合适浓度植物生长调节剂的培养基上脱分化形成再生植株)。 (2)取转基因矮牵牛叶片,放入含MS 液体培养基和适量浓度甲醛且密封的试管中。将试管置于 上,进行液体悬浮培 养。一段时间后测定培养基中甲醛的含量,以判断基因E 是否在转基因矮牵牛中正常表达。培养过程中液体培养基的作用: 一是提供营养;二是 ,从而使叶片保持正常的形态。 3.(2018·浙江4月选考,节选)回答与基因工程和植物克隆有关的问题: (1)将含某抗虫基因的载体和含卡那霉素抗性基因的载体pBI121均用限制性核酸内切酶EcoR Ⅰ酶切,在切口处形成 。选取含抗虫基因的DNA 片段与切割后的pBI121用DNA 连接酶连接,在两个片段相邻处形成 ,获得重组质粒。 (2)已知用CaCl 2处理细菌,会改变其某些生理状态。取CaCl 2处理过的农杆菌与重组质粒在离心管内进行混合等操作,使重组质粒进入农杆菌,完成 实验。在离心管中加入液体培养基,置于摇床慢速培养一段时间,其目的是 , 从而表达卡那霉素抗性基因,并大量增殖。 【考点梳理】 1.基因工程的工具 2.基因工程的原理与操作步骤 (1)基因工程的原理 ①基本原理:让人们感兴趣的基因(即目的基因)在宿主细胞中稳 定和高效地表达。 ②基本要素:多种工具酶、目的基因、载体和宿主细胞等。 (2)基因工程的基本操作步骤 3.形成重组DNA 分子 (1)单酶切法(如右图):将同一种限制性核酸内切酶切割的质粒与目的基因片 段混合,加入DNA 连接酶,两两连接的产物(重组DNA 分子)有以下3种:目的基因与目的基因的连接物;质粒与质粒的连接物;目的基因与质粒的连接物。其中,只有目的基因与质粒的连接物才是真正需要的。 (2)双酶切法

基因克隆技术攻略:让更多的新手迅速走出基因克隆的阴霾

基因克隆技术攻略:让更多的新手迅速走出基因克隆的阴霾 一直以来都想把自己在基因克隆方面的心得写出来,让更多的刚刚进入生命科学领域的人受益,因为自己刚开始做克隆时也遇到过各种问题,经过较长时间的总结和实践,我的题组现在的基因克隆都是一次到位的,基本不需要重复做。其实我只是一个只有几十万科研经费的小青椒,不过我对科研非常热爱,我喜欢买实验用的各种酶啊,好用的耗材之类的东东超过我对自己的衣服鞋子的热爱,所以我看起来穿的及其普通,可是我的实验花费有点奢华,呵呵,可能像我这样的人不多吧,哈哈,反正无所谓开心就好。下面言归正传 (1)是酶切位点的选择。我的实验室有Takara、Promega以及NEB三种公司的常用的酶,这极大的丰富了我们的选择,所以在设计PCR产物的酶切位点之前首先要看看哪两个酶之间是可以进行同时酶切的。因为这三家公司的双酶切表的组合完全不同,最佳的方案是我们能够按照需要去选择合适的酶。有人说这得花很多钱吧,其实不然,Takara几乎每年9月都有一次促销活动,在他们七折的时候我一下买了三千块钱的酶,这一年来有用之不尽的感觉。Promega的酶也非常好用,而且长期五折,我也是常用的酶买了一批放在实验室里。至于NEB的实在是有一点贵的,我一般不批量买了,在NEB买的一般都是不常用的酶,比如FseI、AscI等等。酶的选择是实验成功的关键吆。 (2)PCR引物的设计这一点我不想多说,虽然有很多的攻略里面讲到了PCR引物设计的原则等等,大家设计的时候要参考各种原则,我认为不然,因为做过实验的战友都清楚,有的时候很多PCR引物的选择是没有选择的,比如我要扩增一个完整的基因的ORF框,那么它的起始密码子,终止密码子部分都要克隆出来的,不能多也不能少一个碱基,即使起始部位或者终止部位的AT含量很高,高到你难以忍受,那怎么办呢,基本我们没有选择,如果实在是没办法的条件下,只能在PCR引物的5端加入人为设计的碱基而把引物的扩增部分后移或前移来避开难以扩增的部位,我不知道说清楚没有,如果引物序列OK,可以忽略上句话。所以大多数情况下引物我们是没得选择的,那么我们只能从PCR扩增条件上下功夫。(3)PCR扩增对于PCR扩增其实不同的基因可能策略不同,我来说几点相同的。首先很多新手会忽略引物的浓度问题,我在最开始做PCR的时候因为当时的基因非常容易扩增,所以其实我的条件并不是最佳的,但当时把基因扩出来了我也没有在意,直到有一天我需要在基因的5端加入3个HA标签,这样的PCR引物长度差异很大,一支引物100多bp,一支引物只有30bp,于是当我还有以前的条件时我扩不出任何的基因。当时扩了几次都不成功,各种温度都试过了也不成。于是我静下心来,把PCR的实验条件进行了全方位优化,在PCR 反应体系中,把引物调整到各种浓度的,把模板调整到各种浓度的,有的加Mg2+,有的加BSA,还使用梯度PCR的条件,试了各种扩增温度的,结果让我很开心,最后我的基因被扩增出来了,而且好亮好亮的那种。记得当时自己高兴地跳了起来。也许这就是科研的魅力吧!在这次试验中我找到了最佳的PCR条件,这是三年前的事了,这个条件让我在三年中屡试不爽,几十个基因的扩增从未失手过。其实体系很简单,50ul体系中buffer 5ul、Mg2+ 1mM、dNTP 0.2mM、引物每支1ul(配成10umol/L浓度)、PCR酶一般是0.5ul、其余部分用水补平,混匀,离心一下,进行PCR扩增。其中引物从公司拿到干粉后我一般用水溶解至100umol/L浓度保存,吸取少量稀释十倍后用于PCR反应,这个浓度是最佳的。所以PCR 体系中引物并不是越多越好,同样的模板的量也很关键,一般我都在10ng-100ng之间,太少或太多都会抑制PCR反应。当然,不同的基因其退火温度差异较大,建议第一次做直接做梯度PCR,设置的温度范围宽些,总会有扩出来的。反正把反应体系加好,把温度控制好应该就万事大吉了,如果这样仍然扩不出来,那就直接调整DNA模版的量吧,其他的因素应该不是原因(当然得保证引物,以及酶的质量得前提下)。 (4)PCR产物的酶切,这是最简单的一步,一般我都是酶切过夜的。因为我认为PCR产物切得尽可能的充分对克隆很重要,毕竟保护性碱基只有几个。

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

基因工程原理讲义:目的基因的克隆

第九讲目的基因的克隆 中国科学院遗传与发育生物学研究所 2017年8月

目录 一、基因克隆的一般概念 1.基因克隆定义 2.“克隆”的不同含义 3.基因克隆的过程 4.DNA片段的产生与分离 5.基因文库 二、基因克隆与分离的实验策略 1.物理策略 2.生物策略 3.克隆样品的选择 4.基因文库库容测算 三、cDNA基因克隆 1.概述 2.cDNA文库的构建 3.低丰度mRNA之cDNA克隆 4.稀少mRNA的cDNA克隆 5.全长cDNA的合成 6.cDNA克隆的优越性 四、基因组DNA克隆

1.cDNA克隆的局限性 2.基因组DNA克隆的优越性 3.构建基因组文库的载体类型五、基因定位定隆 1.基因定位克隆概述 2.RFLP分子标记 3.RFLP作图原理与步骤 4.染色体步移 5.大尺度物理图谱的构建

目的基因的克隆 一、基因克隆的概念 1.基因克隆的定义 基因克隆亦叫做DNA克隆(DNA cloning),它是指将外源基因或DNA片段插入到克隆载体的分子上,构成重组的DNA群体,并转化到寄主细胞进行复制和繁殖,以便从大分子DNA或DNA片段混合物中分离纯化目的基因或特定DNA片段的实验操作,叫做基因克隆。严格地说,基因克隆应叫做DNA克隆,因为被克隆的是基因组的全部(理论上)的DNA片段,而并不是所有的DNA片段都编码有基因。 *要注意基因克隆与基因分离两者在概念上的差别!完成了基因克隆并不等于完成了基因的分离!尽管两者之间存在密切的相互关系。因此在日常交谈中或是一般文字叙述中,甚至于某些正式有关文件中,常把“基因克隆”与“基因分离”等同使用,不作区分,是不妥当的。 *有时我们所说的基因克隆,即所谓的“分子克隆”(Molecular cloning),实质上包含着目的基因的分离与鉴定两个主要的内容,基因克隆的全过程包括如下四个步骤:

克隆技术的发展与应用前景

克隆技术的发展及应用前景 克隆通常是一种人工诱导的无性生殖方式或者自然的无性生殖方式(如植物)。一个克隆就是一个多细胞生物在遗传上与另外一种生物完全一样。克隆可以是自然克隆,例如由无性生殖或是由于偶然的原因产生两个遗传上完全一样的个体(就像同卵双生一样)。但是通常所说的克隆是指通过有意识的设计来产生的完全一样的复制。克隆技术在现代生物学中被称为“生物放大技术”,它已经历了三个发展时期:第一个时期是微生物克隆,即用一个细菌很快复制出成千上万个和它一模一样的细菌,而变成一个细菌群;第二个时期是生物技术克隆,比如用遗传基因――DNA克隆;第三个时期是动物克隆,即由一个细胞克隆成一个动物。克隆绵羊“多利”由一头母羊的体细胞克隆而来,使用的便是动物克隆技术。 目前,克隆技术发展十分迅速。各国政府有关人士、民间对克隆技术的评价褒贬不一。克隆技术已展示出广阔的应用前景,包括以下四个方面: (1)培育优良畜种和生产实验动物; (2)生产转基因动物; (3)生产人胚胎干细胞用于细胞和组织替代疗法; (4)复制濒危的动物物种,保存和传播动物物种资源。 在不久的将来,克隆技术技术将可以用来治疗糖尿病、中风、癌症、爱滋病、心脏病以及诸如帕金森综合症等精神疾病,并极大改变现有的器官移植理论和治疗手段,给人类带来福音。 克隆技术会给人类带来极大的好处,例如,英国PPL公司已培育出羊奶中含有治疗肺气肿的a-1抗胰蛋白酶的母羊。这种羊奶的售价是6千美元一升。一只母羊就好比一座制药厂,用什么办法能最有效、最方便地使这种羊扩大繁殖呢?最好的办法就是“克隆”。同样,荷兰PHP公司培育出能分泌人乳铁蛋白的牛,以色列LAS公司育成了能生产血清白蛋白的羊,这些高附加值的牲畜如何有效地繁殖?答案当然还是“克隆”。母马配公驴可以得到杂种优势特别强的动物——骡,骡不能繁殖后代,那么,优良的骡如何扩大繁殖?最好的办法也是“克隆”,我国的大熊猫是国宝,但自然交配成功率低,因此已濒临绝种。如何挽救这类珍稀动物?“克隆”为人类提供了切实可行的途径。具体应用有以下几个方面: 转基因动物研究 转基因动物研究是动物生物工程领域中最诱人和最有发展前景的课题之一,转基因动物可作为医用器官移植的供体、作为生物反应器,以及用于家畜遗传改良、创建疾病实验模型等。但转基因动物的实际应用并不多,除单一基因修饰的转基因小鼠医学模型较早得到应用外,转基因动物乳腺生物反应器生产药物蛋白的研究时间较长,已进行了10多年,但在全世界范围内仅有2例药品进入3期临床试验,5~6个药品进入2期临床试验;而其农艺性状发生改良、可资畜牧生产应用的转基因家畜品系至今没有诞生。转基因动物制作效率低、定点整合困难所导致的成本过高和调控失灵,以及转基因动物有性繁殖后代遗传性状出现分离、难以保持始祖的优良胜状,是制约当今转基因动物实用化进程的主要原因。 体细胞克隆 体细胞克隆的成功为转基因动物生产掀起一场新的革命,动物体细胞克隆技术为迅速放大转基因动物所产生的种质创新效果提供了技术可能。采用简便的体细胞转染技术实施目标基因的转移,可以避免家畜生殖细胞来源困难和低效率。同时,采用转基因体细胞系,可以在实验室条件下进行转基因整合预检和性别预选。在核移植前,先把目的外源基因和

基因克隆的四大要素(Four Elements for Gene Cloning)

将外源基因通过体外重组后导入受体细胞,使该基因能在受体细胞内复制、转录、翻译和表达,整个操作称为基因重组技术。要实施该技术必须具备四大要素:工具酶、载体、基因和受体(宿主)细胞。 22楼 一、工具酶: 基因工程的基本技术是人工进行基因的剪切、拼接、组合。基因是一段具有一定功能的DNA分子,要把不同基因的DNA 线形分子片段准确地切出来,需要各种限制性核酸内切酶(restriction endonuclease);要把不同片段连接起来,需要DNA 连接酶(DNA ligase);要合成基因或其中的一个片段,需要DNA 聚合酶(DNA polymerase)等。因此,酶是DNA 重组技术中必不可少的工具,基因工程中所用的酶统称为工具酶。 工具酶就其用途而言可分为三大类:限制性内切酶、连接酶和修饰酶,其中限制性内切酶为一大类酶(达上千种)。基因重组正是利用了这些工具酶对DNA 分子进行一系列的酶催化反应,才得以在体外实现DNA 分子的切割和连接。因此,工具酶的发现为基因操作提供了十分重要的技术基础。首先重点介绍限制性内切酶(restriction endonucleases=restriction enzyme),其他酶在相关内容中再一一介绍。 从分子生物学发展历史看,核酸限制性内切酶的发现和应用对该学科发展所起的作用是难以估量的。首先使外源基因在大肠杆菌中克隆的实验是在1973 年完成的,Stanley Cohen,Herbert Boyer(见补充资料2.1)正是利用了限制性内切酶这一分子手术刀才得以实现。 核酸限制性内切酶是原核生物中的一类能识别双链DNA 中特定碱基顺序的核酸水解酶。原核生物的限制和修饰系统犹如高等动物的免疫系统,依靠一对识别相同序列的核酸限制性内切酶和甲基化酶活性来对抗外来DNA 的入侵:当自身的基因组在复制完成下轮DNA 复制尚未开始前就被甲基化酶修饰(使某特定序列 甲基化), 避免了被对应的限制性内切酶的识别和水解,而入侵的噬菌体由于未来得及修饰而被破坏,从而保护细菌不受噬菌体的感染。各种细菌都能合成一种或几种顺序专一的核酸内切酶。这些酶的功能就是通过特异性序列的识别后进行DNA 的切割,来限制外源性DNA 侵入自身的细胞内,所以称这种核酸内切酶为限制酶。 根据酶的识别切割序列的特性、催化条件以及是否具有修饰酶的活性而分成三类:I、II、III类: 第I 类限制性内切酶是双功能酶,具有修饰活性(甲基化)和内切酶活性,作用时需要消耗ATP,能识别专一的核苷酸顺序,并在距离识别点大约1000 个核苷酸对处切割DNA 分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。 第II 类限制性内切酶只具有核酸内切酶活性,能识别专一的具有回文结构的核苷酸顺序,并在该顺序内的固定位置上切割双链,作用时不需要水解ATP 提供能量。 第III 类限制性内切酶也同时具有修饰活性和内切酶活性,具有专一的识别顺序,但不是对称的回文顺序。它在识别顺序旁边24-26 个核苷酸对的固定位置上切割双链,但这几个核苷酸对则是任意的。

相关文档