文档库 最新最全的文档下载
当前位置:文档库 › 最新多组分系统热力学练习题及答案

最新多组分系统热力学练习题及答案

最新多组分系统热力学练习题及答案
最新多组分系统热力学练习题及答案

第三章多组分系统热力学

一、选择题

1. 1 mol A与n mol B组成的溶液,体积为0.65dm3,当x B= 0.8时,A的偏摩尔体积V A=

0.090dm3·mol-1,那么B的偏摩尔V B 为:A

(A) 0.140 dm3·mol-1;(B) 0.072 dm3·mol-1;

(C) 0.028 dm3·mol-1;(D) 0.010 dm3·mol-1。

2. 对于亨利定律,下列表述中不正确的是:C

(A) 仅适用于溶质在气相和溶液相分子状态相同的非电解质稀溶液;

(B) 其表达式中的浓度可用x B,c B,m B ;

(C) 其表达式中的压力p是指溶液面上的混合气体总压;

(D) 对于非理想溶液*B p

k x=。

k x≠,只有理想溶液有*B p

3、在293K时,从一组成为NH3·19/2 H2O的大量溶液中取出1molNH3往另一组成为NH3·21H2O

的溶液中转移,此过程的Δμ的表达式为:( C )

A.Δμ=RTln(2/19)

B.Δμ=RTln(1/22)

C.Δμ=RTln(21/44)

D.Δμ=RTln(44/21)

4. 对于偏摩尔量,指出下列说法错误者( C )

(1)偏摩尔量必须有恒温恒压条件;

(2)偏摩尔量不随各组分浓度的变化而变化;

(3)偏摩尔量不随温度T和压力p的变化而变化;

(4)偏摩尔量不但随温度T、压力p的变化而变化,而且也随各组分浓度变化而变化。

(A) (2) (4) (B) (3) (4) (C) (2) (3) (D) (1) (4)

5. 下列气体溶于水溶剂中,哪个气体不能用亨利定律:C

(A) N2;(B) O2;(C) NO2;(D) CO 。

6. 298.2K,1×105Pa,有两瓶四氯化碳溶液,第一瓶为1dm3(含有0.2mol的碘),第二瓶为2dm3(含

0.4mol的碘),若以μ1和μ2分别表示两瓶中碘的化学势,则( C )

(A) μ12=μ2(B) 10μ1=μ2(C) μ1=μ2(D) 2μ1=μ2

7. 在恒温密封容器中有A、B两杯稀盐水溶液,盐的浓度分别为c A和c B(c A> c B),放置足够长的时间后:A

(A) A杯盐的浓度降低,B杯盐的浓度增加;

(B) A杯液体量减少,B杯液体量增加;

(C) A杯盐的浓度增加,B杯盐的浓度降低;

(D) A、B两杯中盐的浓度会同时增大。

8. 化学势不具有的基本性质是( C )

(A) 是体系的状态函数 (B) 是体系的强度性质

(C) 与温度、压力无关 (D) 其绝对值不能确定

9. 在298.2K 、101325Pa 压力下,二瓶体积均为1dm 3的萘溶于苯的溶液,第一瓶中含萘1mol ;第二瓶中含萘0.5mol 。若以μ1及μ2分别表示二瓶萘的化学势,则:A

(A) μ1 > μ2 ; (B) μ1 < μ2 ; (C) μ1 = μ2 ; (D) 不能确定。

10、已知水的两种状态A(373K ,101.3kPa ,g),B(373K ,101.3kPa ,l),则μA 与μB 的关系为:( A )

A.μA =μB

B.μA >μB

C.μA <μB

D.两者不能比较

11. 下列哪个是化学势( D )

(A)()j n ,p ,T i n U/?? (B)()j n ,p ,T i n H/??

(C)()j n ,p ,T i n A/?? (D)()j n ,p ,T i n G/??

12. 下列各式哪个不是化学势( B )

(A)()j n ,p ,T i n G/?? (B)()j n ,p ,T i n A/??

(C)()j n ,V ,S i n U/?? (D)()j n ,p ,S i n H/??

13. ()j n ,p ,T i n G/??( C )

(A)只能称为偏摩尔量 (B)只能称为化学势

(C)既可称为化学势也可称为偏摩尔量 (D)首先是B 物质的摩尔吉氏自由能

14. 溶剂服从拉乌尔定律及溶质服从亨利定律的二元溶液是( C )

(A)理想混合物 (B)实际溶液 (C)理想稀溶液 (D)胶体溶液

15. 由A 及B 二种液体组成理想溶液,A 、B 的饱和蒸气压分别为p *A 、p *B ,x 为液相组成,y

为气相组成,若p *A > p *B ( * 表示纯态),则:D

(A) x A > x B ; (B) x A > y A ; (C) 无法确定 ; (D) x A < y A 。

16. 挥发性溶质溶于溶剂形成的稀溶液,溶液的沸点会:D

(A) 降低 ; (B) 升高 ; (C) 不变 ;(D) 可能升高或降低 。

17、实际气体化学位是μ=μ?(T)+RTln(γp/p ?)=μ?(T)+RTln(f/p ?),则( C )

A.f 是气体的真实压力

B.p 是实际气体校正后的压力

C.f 是实际气体校正后的压力,称实际气体的有效压力,即逸度

D.逸度系数γ的数值仅取决于气体的特性,而与温度和压力无关

18. 偏摩尔量集合公式∑==k

1

B B B n X X 的适用条件是( D )

(A)等温、等容各物质的量不变

(B)等压、等熵各物质的浓度发生微小改变

(C)等温、等容各物质的比例为定值

(D)等温、等压各物质浓度不变

19. 对于稀溶液中的溶质,下列各式何者不正确?( D )

(A) p B=k x x B(B) p B=k m m B

(C) p B=k c c B(D) p B=k n n B

20. 拉乌尔定律适用于( C )

(A)非理想溶液中的溶剂(B)稀溶液中的溶质;

(C)稀溶液中的溶剂(D)稀溶液中的溶剂及溶质

二、判断题:

1.溶液的化学势等于溶液中各组分化学势之和。

2.系统达到平衡时,偏摩尔量为一个确定的值。

3.对于纯组分,化学势等于其吉布斯函数。

4.在同一稀溶液中组分B的浓度可用x B、m B、c B表示,因而标准态的选择是不相同的,所以相应的化学势也不同。

5.水溶液的蒸气压一定小于同温度下纯水的饱和蒸气压。

6.将少量挥发性液体加入溶剂中形成稀溶液,则溶液的沸点一定高于相同压力下纯溶剂的沸点。溶液的凝固点也一定低于相同压力下纯溶剂的凝固点。

7.纯物质的熔点一定随压力升高而增加,蒸气压一定随温度的增加而增加,

沸点一定随压力的升高而升高。

8.理想稀溶液中溶剂分子与溶质分子之间只有非常小的作用力,以至可以忽略不计。9.在一定的温度和同一溶剂中,某气体的亨利系数越大,则此气体在该溶剂中的溶解度也越大。

10.物质B在α相和β相之间进行宏观转移的方向总是从浓度高的相迁至浓度低的相。

三、计算题

1. 在373K时,己烷和辛烷能形成理想混合物,己烷的蒸气压为245.0kPa,辛烷为47.10kPa。若某组成的该液态混合物,在标准压力下,于373K时沸腾,问:

(1)液相的组成为多少?

(2)平衡气相的组成又是怎样?

2. 25℃时,溴(2) 在CCl4(1) 中的浓度为x2 = 0.00599 时,测得溴的蒸气压p2 = 0.319kPa,巳知同温下纯溴的蒸气压为28.40kPa,求:

(1)以纯溴为标准态,溶液中溴的活度与活度系数是多少;

(2)以无限稀CCl 4溶液中x 2→1符合亨利定律的状态为标准态,求溶液中溴的活度与活度系数,巳知亨利常数为K x = 53.86 kPa 。

3. 60℃时乙醇A.和甲醇B.的蒸气压分别为

4.70×104Pa 和8.33×104Pa 。今有质量百分数位为50%

的乙醇和甲醇的混合物(看成理想溶液),求该温度时液面上方蒸气的组成。

4. 293K 时,NH 3与H 2O 按1:8.5组成的溶液A 上方的蒸气压为10.64kPa ,而按1:21组成

的溶液B 上方的蒸气压为3.597kPa 。

(1)293K 时,从大量的溶液A 中转移1molNH 3到大量的溶液B 中的ΔG m 为多少?

(2)293K 时,若将101.325kPa 的1molNH 3溶解于大量的溶液B 中,求ΔG m 为多少? 答案一1. A 2.C 3.C 4.C 5.C 6.C 7.A 8.C 9.A 10.A

11.D 12.B 13.C 14.C 15.D 16.D 17.C 18.D 19.D 20.C 二。

1. 错,对溶液整体没有化学势的概念。

2. 错,不同相中的偏摩量一般不相同。

3. 错,纯组分物质的化学势应等于摩尔吉布斯函数。

4. 错,化学势与标准态、浓标的选择无关。

5. 错,当溶质不挥发时才一定成立。

6. 错,因加人挥发性溶质,沸点不一定升高。凝固点是否降低要看溶质是否析出。

7. 第一个结论错,如水的熔点随压力增大而降低。后两个结论都正确。

8. 错,两种分子之间的作用力和同种分子之间的作用力都较大,不可忽略。

9.错,当压力一定时,溶解度与亨利系数成反比。

10.错,相变的方向是以化学势的大小而不是以浓度的大小来判断。达平衡时,两相的浓度一般不相等。

三、1. 解:己烷在液相的物质的量为X ,则正常沸腾时有

245.0X+ 47.10(1–X )=101.3

解之,X=0.274,故X (己烷)=0.274;

X (辛烷)=0.726

蒸气压p (己烷)=245.0×0.274=67.1

p (辛烷)=47.10×0.726=34.1

气相组成X (己烷)=67.1/101.3=0.662

X (辛烷)=34.1/101.3=0.338

2. 解: (1) 以纯溴为标准态,用拉乌尔定律:

87.100599.00112.00112.040.28319.022*2

2======x a p p a γ,

(2) 以假想态为标准态,用亨利定律: p 2 = K x a 2

988.000599

.000592.000592.086.53319.02222======x a K p a x γ,

3. 解:x A =n A /n=(W A /M A )/n, x B =n B /n=(W B /M B )/n

∴x A /x B = M B /M A =32/46=0.696

∵x A +x B =1

∴x A =0.41,x B =0.59

p A =p A *x A =4.70×104×0.41Pa=1.927×104Pa

p B =p B *x B =8.33×104×0.59Pa=4.915×104Pa

p=p A +p B =6.842×104Pa

y A =p A /p=1.927×104/(6.842×104)=0.282,y B =0.718

4. 解:(1))/ln(),(),(G 33m A B A B p p RT g NH g NH =-=?μμ

[]1·)64.10/597.3ln(293314.8-?=mol J

1·2642--=mol J

(2)[]),(/ln ),(),(G 3*3*3m g NH p p RT g NH g NH B B =-=?μμ

[]1·)325.101/597.3ln(293314.8-?=mol J

1·8312--=mol J

1. 苯和甲苯在恒温恒压条件下混合形成理想液体混合物,其△mix S… ( A )

(A) >0 (B) <0 (C) =0 (D)≠0

2. 纯水的凝固点为T f *,沸点为T b *,食盐稀溶液的凝固点为T f ,沸点为T b

则……………………………………………………………………………( A )

(A) T f *>T f ,T b *T b

(C) T f *>T f ,T b *>T b (D) T f *

3. 下列各式哪一个是对化学势的正确表示:…………………………………( B ) (A)C n ,p ,T B B n U ???? ????=μ

(B)C n ,p ,T B B n G ???? ????=μ (C)C n ,V ,S B B n A ???? ????=μ (D)C

n ,V ,S B B n H ???? ????=μ 4. 在讨论稀溶液的蒸气压降低规律时,溶质必须是…………………( C )

(A) 挥发性物质 (B) 电解质

(C) 非挥发性物质 (D) 气体物质

5. 在α、β两相中都含有A 和B 两种物质,当达到相平衡时… ( B )

(A)()()B μαμα=A (B) ()()A μαμβ=A

(C)()()B

μβμβ=A (D) ()()B μαμβ=A 6. 对于含0.5mol 乙醇和0.5mol 水的溶液体积为V ,已知水的偏摩尔体积为V 水,则乙醇的偏

摩尔体积V 乙醇为2V-V 水。

7. 乙醇和甲醇组成理想混合物,在293K 时纯乙醇的饱和蒸气压为5933Pa ,纯甲醇的饱和蒸气压为11826Pa 。已知甲醇和乙醇的相对分子质量为32和46。

(1) 计算甲醇和乙醇各100g所组成的混合物中,乙醇的物质的量分数x乙;

(2) 求混合物的总蒸气压p总与两物质的分压p甲、p乙(Pa) ;

(3) 求甲醇在气相中的物质的量分数y甲。

8. 80℃时纯苯的蒸气压为100kPa,纯甲苯的蒸气压为38.7kPa。两液体可形成理想液态混合物。若有苯-甲苯的气-液平衡混合物,80℃时气相中苯的摩尔分数y(苯)=0.300,求液相的组成。

答案:1. A 2. A 3. B 4.C 5. B

6. 2V-V水

7. 解:(1) n A=100/32=3.125mol, n乙=100/46=2.17mol

x乙= n乙/( n甲+ n乙)= 2.17/(3.125+2.17)= 0.41

(2)理想液态混合物,使用拉乌尔定律:P甲= p甲*×x甲=11826×(1-0.41)= 6977Pa; p乙= p乙*×x乙=5933×0.41=2433Pa…p总=p甲+p乙=6977Pa+2433kPa=9410Pa (3)根据分压定律,可求出气相中甲醇的物质的量分数y甲=p甲/p总=6977/9410=0.7414

8.解:卫生统计学

第一章绪论

1、卫生统计学的概念(P1)

卫生统计学是应用概率论和数理统计学的基本原理和方法,研究居民卫生状况以及卫生服务领域中数据的收集、整理和分析的一门科学,是卫生及其相关领域研究中不可缺少的分析问题。

2、卫生统计学的4个基本步骤(P3):

设计、收集资料、整理资料、分析资料

3、卫生统计学的几个基本概念(P4):

⑴同质:在统计学中,若某些观察对象具有相同的特征或属性,我们就称

之为同质,或具有同质性。

⑵变异:同质个体的某项特征或属性的观察值或测量值之间的差异。

⑶总体:同质的所有观察单位某种特征或属性的观察值或测量值的集合。

⑷样本:从总体中随机抽取的具有代表性的部分观察单位的集合。样本中

包含的观察单位个数成为样本含量。

⑸参数:反映总体特征的指标,一般是未知的,常用希腊字母表示,如总

体均数μ、总体率π等。

⑹统计量:根据样本观察值计算出来的指标,常用拉丁字母表示,如样本

均数?x 、样本率ρ等。

⑺变量与资料:对每个观察单位进行观察或测量的某项特征或属性称为变

量;变量值的集合成为资料。

⑻定量资料:亦称计量资料,其变量值是定量的,表现为数值大小,一般

有度、量、衡单位。

⑼定性资料:亦称分类资料,其观察值是定性的,表现为互不相容的类别

或属性,一般无度、量、衡单位。可细分为:①计数资料;②等级资料第二章调查研究设计

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

多组分系统热力学 读书笔记

第四章多组分系统热力学 主要公式及其适用条件 基本概念 1. 溶剂和溶质 如果组成溶液的物质有不同的状态,通常将液态物质称为溶剂,气态或固态物质称为溶质。 如果都是液态,则把含量多的一种称为溶剂,含量少的称为溶质。 2. 溶液 广义地说,两种或两种以上物质彼此以分子或离子状态均匀混合所形成的体系称为溶液。 溶液以物态可分为气态溶液、固态溶液和液态溶液。 根据溶液中溶质的导电性又可分为电解质溶液和非电解质溶液。 3. 混合物 多组分均匀体系中,溶剂和溶质不加区分,各组分均可选用相同的标准态,使用相同的经验定律,这种体系称为混合物,也可分为气态混合物、液态混合物和固态混合物。 1. 偏摩尔量的定义 偏摩尔量的物理意义:在定温定压条件下,往无限大的系统中(可以看作其浓度不变)加入1 mol 物质B 所引起的系统中某个(容量性质的)热力学量X 的变化。 几点注意事项: 只有在定温和定压条件下才有偏摩尔量。 只有广度性质才有偏摩尔量,而偏摩尔量是强度性质。 纯物质的偏摩尔量就是它的摩尔量。

任何偏摩尔量都是T,p和组成的函数。 化学势定义 保持温度、压力和除B以外的其它组分不变,体系的G自由能随nB的变化率称为化学势,所以化学势就是偏摩尔G自由能。 化学势在判断相变和化学变化的方向和限度方面有重要作用。化学势的物理意义:是决定物质传递方向和限度的强度因素。 多相和多组分体系的热力学基本方程 多组分系统多相平衡的条件为:除系统中各相的温度和压力必须相同以外,各物质在各相中的化学势必须相等。如果某物质在各相中的化学势不等,则该物质必然从化学势较大的相向化学势较小的相转移。 由于考虑了系统中各组分物质的量的变化对热力学状态函数的影响。因此该方程不仅能应用于封闭系统,也能应用于开放系统。 拉乌尔定律和亨利定律 乌拉尔定义:一定温度时,溶液中溶剂的蒸气压pA与溶剂在溶液中的物质的量分数xA成正比,其比例系数是纯溶剂在该温度时的蒸气压pA*。 拉乌尔定律只适用于稀溶液中的溶剂 1. 在稀溶液中,溶剂分子之间的引力受溶质分子的影响很小,即溶剂分子周围的环境与纯溶剂几乎相同。 2. 混合物中各种分子之间的相互作用力完全相同。

多组分系统热力学

第三章 多组分系统热力学 3.1 溶液(s o l u t i o n ) 广义地说,两种或两种以上物质彼此以分子或离子状态均匀混合所形成的体系称为溶液。 溶液以物态可分为气态溶液、固态溶液和液态溶液。根据溶液中溶质的导电性又可分为电解质溶液和非电解质溶液。 本章主要讨论液态的非电解质溶液。 溶剂(solvent )和溶质(solute ) 如果组成溶液的物质有不同的状态,通常将液态物质称为溶剂,气态或固态物质称为溶质。 如果都是液态,则把含量多的一种称为溶剂,含量少的称为溶质。混合物(mixture ) 多组分均匀体系中,溶剂和溶质不加区分,各组分均可选用相同的标准态,使用相同的经验定律,这种体系称为混合物,也可分为气态混合物、液态混合物和固态混合物。 3.2 溶液组成的表示法 在液态的非电解质溶液中,溶质B 的浓度表示法主要有如下四种: 1.物质的量分数 B x (mole fraction) B B def (n x n 总) 溶质B 的物质的量与溶液中总的物质的量之比称为溶质B 的物质的量分数,又称为摩尔分数,单位为1。 2.质量摩尔浓度m B (molality ) B B A def n m m

溶质B 的物质的量与溶剂A 的质量之比称为溶质B 的质量摩尔浓度,单位是-1mol kg ?。这个表示方法的优点是可以用准确的称重法来配制溶液,不受温度影响,电化学中用的很多。 3.物质的量浓度c B (molarity ) B def B n c V 溶质B 的物质的量与溶液体积V 的比值称为溶质B 的物质的量浓度,或称为溶质B 的浓度,单位是 3mol m -? ,但常用单位是3mol dm -?。 4.质量分数w B (mass fraction ) B B () m w m = 总 溶质B 的质量与溶液总质量之比称为溶质B 的质量分数,单位为1。 3.3 偏摩尔量与化学势 3.3.1 单组分体系的摩尔热力学函数值 体系的状态函数中V ,U ,H ,S ,A ,G 等是广度性质,与物质的量有关。设由物质B 组成的单组分体系的物质的量为B n ,则各摩尔热力学函数值的定义式分别为: 摩尔体积(molar volume ) * m,B B V V n = 摩尔热力学能(molar thermodynamic energy ) * m,B B U U n = 摩尔焓(molar enthalpy ) *m,B B S S n = 摩尔Helmholz 自由能(molar Helmholz free energy ) * m,B B A A n = 摩尔Gibbs 自由能(molar Gibbs free energy ) * m,B B G G n = 这些摩尔热力学函数值都是强度性质。 3.3.2 多组分体系的偏摩尔热力学函数值

《化工热力学》第三版课后习题答案

化工热力学课后答案 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα, 。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =() 1121T P P R C ig P ??? ? ??--, U =( )11 2 1T P P R C ig P ??? ? ? ?--,H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,U = 0 ,H = 0 。 C 绝热过程的 W =( ) ???? ????? ? -???? ??--112 11ig P C R ig P P P R V P R C ,Q = 0 ,U = ( ) ??????????-???? ??-11211ig P C R ig P P P R V P R C ,H =1121T P P C ig P C R ig P ??????????-???? ??。

工程热力学思考题答案,第三章

第三章 理想气体的性质 1.怎样正确看待“理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式? 答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。 判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。若为理想气体则可使用理想气体的公式。 2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol? 答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异? 答:摩尔气体常数不因气体的种类及状态的不同而变化。 4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。 5.对于一种确定的理想气体,()p v C C 是否等于定值?p v C C 是否为定

值?在不同温度下()p v C C -、p v C C 是否总是同一定值? 答:对于确定的理想气体在同一温度下()p v C C -为定值, p v C C 为定值。在不同温度下()p v C C -为定值,p v C C 不是定值。 6.麦耶公式p v g C C R -=是否适用于理想气体混合物?是否适用于实际 气体? 答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。 7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾?为什么? 答:不矛盾。实际气体有两个独立的参数。理想气体忽略了分子间的作用力,所以只取决于温度。 8.为什么工质的热力学能、焓、熵为零的基准可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何? 答:在工程热力学里需要的是过程中热力学能、焓、熵的变化量。热力学能、焓、熵都只是温度的单值函数,变化量的计算与基准的选取无关。热力学能或焓的参照状态通常取 0K 或 0℃时焓时为0,热力学能值为 0。熵的基准状态取p 0=101325Pa 、T 0=0K 熵值为 0 。 9.气体热力性质表中的h 、u 及s 0的基准是什么状态? 答:气体热力性质表中的h 、u 及s 0的基准是什么状态00(,)T P 00T K =

化工热力学习题集及答案

模拟题一 一.单项选择题(每题1分,共20分) T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( ) 饱和蒸汽 超临界流体 过热蒸汽 T 温度下的过冷纯液体的压力P ( ) >()T P s <()T P s = ()T P s T 温度下的过热纯蒸汽的压力P ( ) >() T P s <() T P s =() T P s 纯物质的第二virial 系数B ( ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) 第三virial 系数 第二virial 系数 无穷项 只需要理想气体方程 液化石油气的主要成分是( ) 丙烷、丁烷和少量的戊烷 甲烷、乙烷 正己烷 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) 饱和液摩尔体积 饱和汽摩尔体积 无物理意义 偏心因子的定义式( ) 0.7lg()1s r Tr P ω==-- 0.8lg()1 s r Tr P ω==-- 1.0 lg()s r Tr P ω==- 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 关于偏离函数MR ,理想性质M*,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. * R M M M =- D. *R M M M =+ 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( ). a. X1dln γ1/dX 1+ X2dln γ2/dX2 = 0 b. X1dln γ1/dX 2+ X2 dln γ2/dX1 = 0 c. X1dln γ1/dX 1+ X2dln γ2/dX1 = 0 d. X1dln γ1/dX 1– X2 dln γ2/dX1 = 0 关于化学势的下列说法中不正确的是( ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向 15.关于活度和活度系数的下列说法中不正确的是 ( ) (A )活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C )活度系数表示实际溶液与理想溶液的偏差。(D )任何纯物质的活度均为1。 (E )的偏摩尔量。 16 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将:( ) A. 增加 B. 减小 C. 不变 D. 不一定 17.下列各式中,化学位的定义式是 ( ) 18.混合物中组分i 的逸度的完整定义式是 。 j j j j n nS T i i n T P i i n nS nV i i n nS P i i n nU d n nA c n nG b n nH a ,,,,,,,,]) ([.)([.])([.)([.??≡??≡??≡??≡μμμμ

工程热力学第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学第四版沈维道 思考题 完整版 第1章 基本概念及定义 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗 答:否。当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 ⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 ⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗在绝对压力计算公式 中,当地大气压是否必定是环境大气压 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压 ) ( )( b v b b e b P P P P P P P P P P <-=>+=;

多组分系统热力学

多组分系统热力学 一、判断题: 1 克拉佩龙方程适用于纯物质的任何两相平衡。() 2 克—克方程比克拉佩龙方程的精确度高。( ) 3 一定温度下的乙醇水溶液,可应用克—克方程式计算其饱和蒸气压。() 4 将克—克方程的微分式用于纯物质的液气两相平衡,因为vap H m>0,所以随着温度的 升高,液体的饱和蒸气压总是升高的。() 5 二组分理想液态混合物的总蒸气压大于任一纯组分的蒸气压。() 6 理想混合气体中任意组分B的逸度就等于其分压力p B。() 7 因为溶入了溶质,故溶液的凝固点一定低于纯溶剂的凝固点。() 8 溶剂中溶入挥发性溶质,肯定会引起溶液的蒸气压升高。() 9 理想稀溶液中的溶剂遵从亨利定律,溶质遵从拉乌尔定律() 10 理想液态混合物与其蒸气成气、液两相平衡时,气相总压力p与液相组成x B呈线性关 系。() 11 如同理想气体一样,理想液态混合物中分子间没有相互作用力。() 12 一定温度下,微溶气体在水中的溶解度与其平衡气相分压成正比。() 13 化学势是一广度量。() 14 只有广度性质才有偏摩尔量。() 15 稀溶液的沸点总是高于纯溶剂的沸点。() 16 单组分系统的熔点随压力的变化可用克劳休斯-克拉佩龙方程解释。() 17.公式d G = -S d T + V d p只适用于可逆过程。() 18.某一体系达平衡时,熵最大,自由能最小。() 19.封闭体系中,由状态1经定温、定压过程变化到状态2,非体积功W/<0,且有W/>?G和?G<0,则此变化过程一定能发生。() 20.根据热力学第二定律,能得出,从而得到。() 21.只有可逆过程的?G才可以直接计算。() 22.凡是自由能降低的过程一定都是自发过程。() 23.只做体积功的封闭体系,的值一定大于零。() 24.偏摩尔量就是化学势。() 25.在一个多组分溶液中,只有溶质才有偏摩尔量。() 26.两组分混合成溶液时,没有热效应产生,此时形成的溶液为理想溶液。() 27.拉乌尔定律和亨利定律既适合于理想溶液,也适合于稀溶液。() 28.偏摩尔量因为与浓度有关,因此它不是一个强度性质。() 29.化学势判据就是Gibbs自由能判据。() 30.自由能G是一状态函数,从始态I到终态II,不管经历何途径,?G总是一定的。()31.定温、定压及W/=0时,化学反应达平衡,反应物的化学势之和等于产物的化学势之和。()

化工热力学答案解析

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106 = 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6 =0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2 =0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3 ·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为550.1cm 3 ·mol -1 所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

(完整版)工程热力学思考题答案,第四章

e i r e 第四章 气体和蒸汽的基本热力过程 4.1试以理想气体的定温过程为例,归纳气体的热力过程要解决的问题及使用 方法解决。 答:主要解决的问题及方法: (1)根据过程特点(及状态方程)——确定过程方程(2)根据过程方程——确定始、终状态参数之间的关系 (3)由热力学的一些基本定律——计算,,,,,t q w w u h s ???(4)分析能量转换关系(P—V 图及T—S 图)(根据需要可以定性也可以定量) 例:1)过程方程式: =常数 (特征) =常数 (方程) T PV 2)始、终状态参数之间的关系: =12p p 2 1 v v 3)计算各量:=0 、 =0 、==u ?h ?s ?21p RIn p -21 v RIn v 2211 v v dv w pdv pv pvIn RTIn v v v ====?? 2 1 t v w w RTIn v ==2 1 t v q w w RTIn v ===4) P ?V 图,T ? S 图上工质状态参数的变化规律及能量转换情况

A t h 4.2 对于理想气体的任何一种过程,下列两组公式是否都适用? 21212121(),();(),()v p v p u c t t h c t t q u c t t q h c t t ?=-?=-=?=-=?=-答:不是都适用。第一组公式适用于任何一种过程。第二组公式 适于定容过程, 适用于定压过程。 21()v q u c t t =?=-21()p q h c t t =?=-4.3在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。定温过程气体的温度不变,在定温过程中是否需对气体加入热量?如果加入的话应如何计算? 答:定温过程对气体应加入的热量 2211 v v dv w pdv pv pvIn RTIn v v v ====??21 t v w w RTIn v ==21 t v q w w RTIn v ===4.4 过程热量 和过程功都是过程量,都和过程的途径有关。由理想气体 q w 可逆定温过程热量公式可知,故只要状态参数、和确定了, 2 111 v q p v In v =1p 1v 2v 的数值也确定了,是否 与途径无关? q q 答:对于一个定温过程,过程途径就已经确定了。所以说理想气体可逆过程 q

第四章 多组分系统热力学及其在溶液中的应用自测题及答案

第四章多组分系统热力学及其在溶液中的应用 一、选择题 1.恒温时,在A-B双液系中,若增加A组分使其分压p A上升,则B 组分在气相中的分压p B将()。 (a)上升(b)下降(c)不变(d)不确定 2.已知373K时液体A的饱和蒸气压为105Pa,液体B的饱和蒸气压为105Pa。设A和B构成理想溶液,则当A在溶液中的摩尔分数为时,在气相中A的摩尔分数为()。 (a)1 (b)1/2 (c)2/3 (d)1/3 3.,101325Pa下,1dm3水中能溶解49mol氧或氮,在标准情况下,1dm3水中能溶解的空气的量为()。 (a) (b) (c)96mol (d) 4.一封闭钟罩中放一杯纯水A和一杯糖水B,静置足够长时间后发现()。 (a)A杯水减少,B杯水满后不再变化 — (b)A杯水减少至空杯,B杯水满后溢出 (c) B杯水减少,A杯水满后不再变化 (d) B杯水减少至空杯,A杯水满后溢出 5.保持压力不变,在稀溶液中溶剂的化学势随温度降低而()。 (a)降低(b)不变(c)增大(d)不确定 6.温度为273K,压力为1106Pa下液态水和固态水的化学势(l)和(s)之间的关系为()。

(a)(l)>(s)(b)(l)=(s) (c)(l)<(s)(d)无确定关系 7.在等温、等压下,溶剂A和溶质B形成一定浓度的稀溶液,采用不同浓度表示的话,则()。 (a)溶液中A和B的活度不变 < (b)溶液中A和B的标准化学势不变 (c)溶液中A和B的活度因子不变 (d)溶液中A和B的化学势值不变 8.有一稀溶液质量摩尔浓度为m,沸点升高值为T b,凝固点降低值为T f,则()。 (a)T f >T b(b)T f =T b (c)T f

化工热力学(第三版)课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情 况下的摩尔体积id V 为 33168.314(400273.15) 1.381104.05310id RT V m mol p --?+= ==??? (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5()()RT a V b V b p T pV V b -=+-+ (E1) 其中 2 2.50.427480.08664c c c c R T a p RT b p == 从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入 a, b 表达式得

2 2.5 6-20.560.427488.314190.6 3.2217m Pa mol K 4.6010 a ??==???? 53160.086648.314190.6 2.9846104.6010 b m mol --??==??? 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 5168.314673.15 2.9846104.05310 V -?=+?? 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610) -----??-?-??????+? 355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=?? 第二次迭代得2V 为 3535 20.56335355 331 3.2217(1.389610 2.984610)1.38110 2.984610673.15 4.05310 1.389610(1.389610 2.984610)1.38110 2.984610 2.1120101.389710V m mol ------------??-?=?+?-??????+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。故用RK 方程求得的摩尔体积近 似为 3311.39010V m mol --=?? (3)用PR 方程求摩尔体积 将PR 方程稍加变形,可写为 ()()()RT a V b V b p pV V b pb V b -=+-++-

工程热力学第四章思考题答案

第四章思考题 4-1 容器被闸板分割为A、B两部分。A中气体参数为P A、T A,B为真空。现将隔板抽去,气体作绝热自由膨胀,终压将为P2,试问终了温 度T2是否可用下式计算?为什么? 1 2 2 () k k A A p T T p -= 答:气体作绝热自由膨胀是不可逆绝热过程,因此终了温度T2不可用上式计算。 4-2 今有任意两过程a-b,b-c,b、c两点在同一定熵线上,如图所示。试问:Δuab、Δuac哪个大?再设b、c 两点在同一条定温线上,结果又如何? 答:由题可知,因b、c两点在同一定熵 线上T b>T c, ub>uc. Δuab>Δuac。若b、 c两点在同一条定温线上,T b=T c, ub=u c. Δuab=Δuac。 4-3将满足下列要求的多变过程表示在p-v图和T-s图上(工质为空气)。

(1)工质又升压、又升温、又放热;(2)工质又膨胀、又降温、又放热; (3)n=1.6的膨胀过程,判 断q,w,Δu的正负; 答:n=1.6的压缩过程在p-v 图和T-s图上表示为1→2 过程。在此过程中q>0, w<0,Δu>0 (4)n=1.3的压缩过程,判断q,w,Δu的正负。

答:n=1.3的压缩过程在p-v图和T-s图上表示为1→2过程。在此过程中q<0,w<0,Δu>0 4-4将p-v图表示的循环,如图所示,表示在T-s图上。图中:2-3,5-1,为定容过程;1-2,4-5为定熵过程;3-4为定压过程。 答:T-s图如图 所示

4-5 以空气为工质进行的某过程中,加热量的一半转变为功,试问过程的多变指数n 为多少?试在p-v 图和T-s 图上画出该过程的大概位置(比热容比可视为定值)。 答:多变过程中,遵循热力学第一定律q u w =?+,由题可知12q u =?,由于v 21()1n -k q c T T n =--,所以() v 21v 21()()21n -k c T T c T T n -=--即: () 121n -k n =-,0.6n = 4-6如果采用了有效的冷却方法后,使气体在压气机汽缸中实现了定温压缩,这时是否还需要采用多级压缩?为什么?(6分) 答:还需要采用多级压缩,由余隙效率可知, 12111n v p c p λ??????=-- ????????? ,余隙使一部分气缸容积不能被有效利用,压力比越大越不利。因此,当需要获得较高压力时,必须采用多级压缩。

工程热力学思考题答案,第二章

第二章热力学第一定律 1.热力学能就是热量吗? 答:不是,热是能量的一种,而热力学能包括内位能,内动能,化学能,原子能,电磁能,热力学能是状态参数,与过程无关,热与过程有关。 2.若在研究飞机发动机中工质的能量转换规律时把参考坐标建在飞 机上,工质的总能中是否包括外部储能?在以氢氧为燃料的电池系统中系统的热力学能是否包括氢氧的化学能? 答:不包括,相对飞机坐标系,外部储能为0; 以氢氧为燃料的电池系统的热力学能要包括化学能,因为系统中有化学反应 3.能否由基本能量方程得出功、热量和热力学能是相同性质的参数 结论? 答:不会,Q U W ?为热力学能的差值,非热力学能,热=?+可知,公式中的U 力学能为状态参数,与过程无关。 4.刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-1 所示。若将隔板抽去,分析容器中空气的热力学能如何变化?若隔板上有一小孔,气体泄漏入 B 中,分析A、B 两部分压力相同时A、B 两部分气体的热力学能如何变化? 答:将隔板抽去,根据热力学第一定律q u w w=所以容 =?+其中0 q=0 器中空气的热力学能不变。若有一小孔,以B 为热力系进行分析

2 1 2 2 222111()()22f f cv j C C Q dE h gz m h gz m W δδδδ=+++-+++ 只有流体的流入没有流出,0,0j Q W δδ==忽略动能、势能c v l l d E h m δ=l l dU h m δ=l l U h m δ?=。B 部分气体的热力学能增量为U ? ,A 部分气体的热力学能减少量为U ? 5.热力学第一定律能量方程式是否可以写成下列两种形式: 212121()()q q u u w w -=-+-,q u w =?+的形式,为什么? 答:热力学第一定律能量方程式不可以写成题中所述的形式。对于 q u w =?+只有在特殊情况下,功w 可以写成pv 。热力学第一定律是一个针对任何情况的定律,不具有w =pv 这样一个必需条件。对于公式212121()()q q u u w w -=-+-,功和热量不是状态参数所以不能写成该式的形式。 6.热力学第一定律解析式有时写成下列两种形式: q u w =?+ 2 1 q u pdV =?+? 分别讨论上述两式的适用范围. 答: q u w =?+适用于任何过程,任何工质。 2 1 q u pdV =?+? 可逆过程,任何工质 7.为什么推动功出现在开口系能量方程式中,而不出现在闭口系能量

多组分系统热力学习总结题参考答案点评

多组分系统热力学习题参考答案 三、习题的主要类型 1.计算溶液中由于某组分物质的量改变引起偏摩尔体积的变化以及溶液混合过程中体积的变化。(例3-2, 例3-4) 2.计算从大量或少量等物质量的A 和B 之理想混合物中分离出1mol 纯A 过程的吉布斯自由能。(例3-6) 3.由液体和固体的饱和蒸气压与温度的关系式,计算不可逆相变过程的热力学函数。(例4-14题) 4.用拉乌尔定律和亨利定律计算溶液的气、液组成以及亨利系数 (1) 根据气液平衡计算蒸气分压力。(例3-7) (2) 根据气液平衡计算亨利系数。(例3-8) (3) 根据稀溶液气液平衡计算溶质的溶解度。(例3-9) (4) 计算蒸发过程中,最后一滴液体的组成。(例3-10) (5) 根据克-克方程和拉乌尔定律,计算气、液组成。(例3-11题) 5.逸度及活度的应用与计算 (1) 气体的逸度和逸度系数的概念和计算。(例3-5) (2) 由非理想液态混合物应用拉乌尔定律时,其浓度应以活度表示的方法计算活度。(例 3-15题) 6.稀溶液依数性的计算。(例3-12、例3-13题) 7.证明题 (1) 证明物质的摩尔分数、物质的质量摩尔浓度和量浓度三种浓度表示法之间的联系。 (例3-1) (2)证明偏摩尔体积与物质浓度之间的关系。(例3-3题) 四、精选题及其解 例3-1 若以x 代表物质的摩尔分数,m 代表质量摩尔浓度,c 代表物质的量浓度。 (1)证明这三种浓度表示法有如下关系 B B A B B A B B B A 1.0A c M m M x c M c M m M ρ= = -++ 式中,ρ为溶液的密度,单位为kg·m -3,A M 、B M 分别为溶剂和溶质的摩尔质量。 (2)证明当浓度很稀时有如下关系 B A B B A A c M x m M ρ= = 式中,A ρ为纯溶剂的密度。

化工热力学答案

第二章 均相反应动力学习题 1. 【动力学方程形式】 有一气相反应,经实验测定在400℃下的速率方程式为: 2 3.66A A dP P dt = 若转化为2 (/.)A kC A r mol hl =形式, 求相应的速率常数值及其单位。 2. [恒温恒容变压定级数] 在恒容等温下,用等摩尔H 2和NO 进行实验,测得如下数据: 总压(MPa )0.0272 0.0326 0.038 0.0435 0.0543 半衰期(s ) 256 186 135 104 67 求此反应级数 3.[二级反应恒容定时间] 4.醋酸和乙醇的反应为二级反应,在间歇反应反应器中,5min 转化率可达50%,问转化率为75%时需增加多少时间? 4、【二级恒容非等摩尔加料】 溴代异丁烷与乙醇钠在乙醇溶液中发生如下反应: i-C 4H 9Br+C 2H 5Na →Na Br+i-C 4H 9 OC 2H 5 (A) (B) (C) (D) 溴代异丁烷的初始浓度为C A0=0.050mol/l 乙醇钠的初始浓度为C B0=0.0762mol/l,在368.15K 测得不同时间的乙醇钠的浓度为: t(min) 0 5 10 20 30 50 C B (mol/l) 0.0762 0.0703 0.0655 0.0580 0.0532 0.0451 已知反应为二级,试求:(1)反应速率常数;(2)反应一小时后溶液中溴代异丁烷的浓度;(3)溴代异丁烷消耗一半所用的时间。 5. [恒温恒容变压定级数] 二甲醚的气相分解反应CH 3OCH 3 → CH 4 +H 2 +CO 在恒温恒容下进行,在504℃获得如下数据: t (s ) 0 390 777 1195 3155 ∞ Pt ×103(Pa ) 41.6 54.4 65.1 74.9 103.9 124.1

工程热力学思考题答案

第十一章制冷循环 1.家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么 答:为了维持冰箱的低温,需要将热量不断地传输到高温热源(环境大气),如果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离。 在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经济效益,没有必要把冷库的温度定的超乎需要的低。 2.为什么压缩空气制冷循环不采用逆向卡诺循环 答:由于空气定温加热和定温放热不易实现,故不能按逆向卡诺循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程。 3.压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法为什么 答:压缩空气制冷循环不能采用节流阀来代替膨胀机。工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。

4.压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如何 答: 压缩空气制冷循环的制冷系数为:()() 14 2314-----o o net k o q q h h w q q h h h h ε= == 空气视为理想气体,且比热容为定值,则:()() 14 2314T T T T T T ε-= --- 循环压缩比为:2 1 p p π= 过程1-2和3-4都是定熵过程,因而有:1 3 22114 k k T T P T P T -??== ??? 代入制冷系数表达式可得:11 1 k k επ -= - 由此式可知,制冷系数与增压比有关。循环压缩比愈小,制冷系数愈大,但是循环压缩比减小会导致膨胀温差变小从而使循环制冷量减小,如图(b )中循环1-7-8-9-1的循环压缩比较循环1-2-3-4-1的小,其制冷量 (面 T s O 4′ 9′ 1′ O v (a (b ) 压缩空气制冷循环状态参数

相关文档