文档库 最新最全的文档下载
当前位置:文档库 › 专题提升二次函数在实际生活中的应用 实际问题分类整理

专题提升二次函数在实际生活中的应用 实际问题分类整理

专题提升二次函数在实际生活中的应用 实际问题分类整理
专题提升二次函数在实际生活中的应用 实际问题分类整理

专题提升(八)二次函数在实际生活中的应用

【经典母题】

某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?

解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,

y=(x-9)(1 360-80x)

=-80x2+2 080x-12 240(10≤x≤14).

-b

2a=-

2 080

2×(-80)

=13,

∵10≤13≤14,∴当x=13时,y取最大值,

y最大=-80×132+2 080×13-12 240=1 280(元).

答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.

【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.

【中考变形】

1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.

(1)图中点P所表示的实际意义是__当售价定为35元

/件时,销售量为300件__;销售单价每提高1元时,

销售量相应减少__20__件;

(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

+1_000__;自变量x 的取值范围为__30≤x ≤50__;

(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;

第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).

(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得???400=30k +b ,300=35k +b ,解得???k =-20,b =1 000,

∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,

∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,

由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,

∵-20<0,∴当x =35时,W 取最大值4 500.

答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.

2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:

若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;

(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费

用);

(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?

解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得???110k +b =50,115k +b =45,解得???k =-1,b =160, ∴y =-x +160(0<x ≤160);

(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,

∴当x =130时,W 取最大值500.

答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;

(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.

∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.

3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1

.下表是去年该酒店豪华间某两天的相关记录:

(1)该酒店豪华间有多少间?旺季每间价格为多少元?

(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实

行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)

解:(1)设淡季每间的价格为x 元,依题意得 40 000x ? ?

?

??1+13=24 000

x +10,解得x =600, ∴酒店豪华间有40 000x ? ????1+13=

40 000

600×? ?

???1+13=50(间), 旺季每间价格为x +13x =600+1

3×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )? ????50-x 25=-125(x -225)2

+42 025, ∴当x =225时,y 取最大值42 025.

答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.

4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元

/t.

图Z8-2

(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;

②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =???-x +14(2≤x <8),6(x ≥8);

(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,

W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,

∴函数表达式为W =???-x 2

+7x +48(2≤x <8),

-x +48(x ≥8);

②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.

答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.

①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,

当x =4时,有最大毛利润64万元. 此时,m =643,m -x =52

3;

②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.

答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅52

3 t ,公司能获得最大毛利润64万元.

【中考预测】

某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.

(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;

(2)当销售价定为45元时,计算月销售量和销售利润;

(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,

销售价应定为多少?

(4)当销售价定为多少元时会获得最大利润?求出最大利润.

解:(1)由题意可得月销售利润y与售价之间的函数关系式为

y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;

(2)当x=45时,600-10(x-40)=550(件),

y=-10×452+1 300×45-30 000=8 250(元);

(3)令y=10 000,代入(1)中函数关系式,得

10 000=-10x2+1 300x-30 000,

解得x1=50,x2=80.

当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;

(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大

值12 250.

答:当销售价定为65元时会获得最大利润,最大利润为12 250元.

二次函数与实际问题分类整理

1、理论应用(基本性质的考查:解析式、图象、性质等)

2、实际应用(拱桥问题,求最值、最大利润、最大面积等)

类型一:最大面积问题

例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?

变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?

类型二:利润问题

例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?

设销售单价为x元,(0<x≤13.5)元,那么

(1)销售量可以表示为____________________;

(2)销售额可以表示为____________________;

(3)所获利润可以表示为__________________;

(4)当销售单价是________元时,可以获得最大利润,最大利润是__________

变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?

变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).

(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;

(2)求截止到几月末公司累积利润可达到30万元?

(3)求第8个月公司所获利润是多少万元?

变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).

y (件)

(1)求y 与x 之间的函数关系式;

(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?

类型三:实际抛物线问题

例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系,求该抛物线对应的函数关系式;

(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m ,车与箱共高4.5m ,此车能否通过隧道?并说明理由。

变式练习3:如图是抛物线型的拱桥,已知水位在AB 位置时,水面宽

64米,水位上升3米就达到警戒水位线CD ,这时水面宽34

米,

例2图

若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶?

变式练习4:如图,某大学的校门是一抛物线形状的水泥建筑物,大门的地面高度为8米,两侧距地面4米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为6米,则校门的高度为。(精确到0.1米)

第3题图

题图

变式:1如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)

(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出边界,求h的取值范围。

课后练习:

一,利润问题:

1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增

加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.

(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?

(2)每件衬衫降低多少元时,商场平均每天盈利最多?

二,面积问题:

2,如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上.

(1)设长方形的一边AB=x m,那么AD边的长度如何表示?

(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?

3. 有一个抛物线形拱桥,其最大高度为16m,跨度为40m,

现把它的示意图放在平面直角坐标系中,

如图该抛物线的解析式为。

4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关

系为y=-

1

12

(x-4)2+3,由此可知铅球推出的距离是________m

.

5、如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .

6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4 m,跨度为10 m.如图所示,把它的图形放在直角坐标系中.

(1)求这条抛物线所对应的函数关系式;

(2)如图,在对称轴右边1 m处,桥洞离水面的高是多少?

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元? 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=- 2 080 2×(-80) =13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

二次函数综合应用题(有答案)

解:(1) y=50- x (0≤x ≤160,且 x 是 10 的整数倍)。 2 2(3) W= - x +34x +8000= - (x -170) +10890, ∴当 x=160 时,W 最大=10880,当 x=160 时,y=50- x=34。答:一天订住 34 个房间时, ( ( 函数综合应用题 题目分析及题目对学生的要求 1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。 需要注意的是: (1) 不能忘记写自变量的取值范围(需要用的前提下) (2) 在考虑自变量的取值范围时要结合它所代表的实际意义。 2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项 式进行配方,利用解析式探讨实际问题中的最值问题。 一般式化为定点式) 最值的求法: (1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。 (2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。 3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起 来。 推荐思路:画出不等式左右两边的图象,结合函数图象求出 x 的取值范围。 备选思路一:先将不等号看做等号,求出 x 的取值,再结合图象考虑将等号还原为不等号后 x 的取值范围; 备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在 注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。 一、求利润的最值 1. (本题满分 10 分) 某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时, 房间会全部住满。当每个房间每天的房价每增加 10 元时,就会有一个房间空闲。宾馆需对 游客居住的每个房间每天支出 20 元的各种费用。根据规定,每个房间每天的房价不得高于 340 元。设每个房间的房价每天增加 x 元(x 为 10 的正整数倍)。 (1) 设一天订住的房间数为 y ,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围; (2) 设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 1 10 1 1 (2) W=(50- x)(180+x -20)= - x 2 +34x +8000; 10 10 1 1 10 10 当 x<170 时,W 随 x 增大而增大,但 0≤x ≤160, 1 10 宾馆每天利润最大,最大利润是 10880 元。 2. 本题满分 10 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件; 如果每件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件 商品的售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以上结论,请你直接 写出售价在什么范围时,每个月的利润不低于 2200 元?

二次函数解决实际问题归纳.doc

二次函数解决实际问题归纳及练习 一、应用二次函数解决实际问题的基本思路和步骤: 1、基本思路:理解问题一分析问题中的变量和常量以及它们之间的关系一用函数关系式表示它们的关系f用数学方法求解f检验结果的合理性; 2、基本步骤:审题一建模(建立二次两数模型)一解模(求解)一回答(用生活语言回答,即问什么答什么)。 二、利用二次函数解决实际问题的类型 1、用二次函数解决几类典型问题 解决最值问题应用题思路区别于一般应用题有两点:①设未知数在“当某某为何值时,什么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。 (1)利用二次函数解决利润最大问题 此类问题围绕总利润二单件利润X销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。 例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y (件)与降价x (元)之间的函数关系式为y=20+4x(x > 0) ①求M型服装的进价 ②求促销期间每天销售M型服装所获得的利润W的最大值。 (2)利用二次函数解决面积最值 例:已知正方形ABCD边长为8, E、F、P分别是AB、CD、AD ±的点(不与正方形顶点重合),且PE丄PF, PE=PF 问当AE为多长时,五边形EBCFP面积最小,最小面积多少? 2、用二次函数解抛物线形问题

常见情形具体方法 抛物线形 建筑物问 题 几种常见的抛物线形建筑物有拱 形桥洞、涵洞、隧道洞口、拱形 门窗等 (1)建立适当的平面直角坐标系,将抛物线形状的 图形放到坐标系之中; (2)从己知和图象中获得求二次函数表达式所需条 件; (3)利用待定系数法求出抛物线的表达式; (4)运用已求出抛物线的表达式去解决相关问题。运动路线 (轨迹)问 题 运动员空屮跳跃轨迹、球类飞行 轨迹、喷头喷出水的轨迹等 牢记(1)解决这类问题的关键首先在于建立一次函数模型,将实际问题转化为数学问题,其次是充分运用已知的条件利用待定系数法求出抛物线的表达式; (2)把哪一点当作原点建立坐标系,将会直接关系到解题的难易程度或是否可解; (3)一般把抛物线形的顶点作为坐标系的原点建立坐标系,这样得出的二次函数的表 达式最为简单。 巧记实际问题要解决,正确建模是关键;根据题意的函数,提取配方定顶点;抛物线有对称轴,增减特性可看图;线轴交点是顶点,顶点纵标最值出。 练习 1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1. 6m,涵洞顶点O到水面的距离为2. 4m,在 图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由. 3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(X为正整数),每个月的销售利润为y元. (1)求y与兀的函数关系式并直接写出自变量兀的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围吋,每个月的利润不低于2200元? 4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。(1)试求a的值; (2)公司在试销过程中进行了市场调查,发现试销量y (件)与每件售价x (元)满足关系式y= - 10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x (元)之间的函数关系式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 一、利用二次函数解决几何面积最大问题 1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。 (1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式; (2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少? 解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴? ??- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是: 利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式 中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18) (2)∵x x x x y 18)18(2 +-=-=中,a= -1<0,∴y 有最大值, 即当9) 1(2182=-?-=-=a b x 时, 81)1(41804422max =-?-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。 点评:在回答问题实际时,一定注意不要遗漏了单位。 2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大? 解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x -)(米), 根据题意,得:x x x x y 252 1)250(2+-=-=; 又∵500,02 500<x<>x x >∴?????- ∵x x x x y 252 1)250(2+-=-=中,a=21-<0,∴y 有最大值,

二次函数典型应用题

个性化辅导教育 新启点教育学科辅导讲义 年级:姓名:辅导科目: 授课内容 教学内容

个性化辅导教育 二次函数应用题分类 二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类: 第一类、利用待定系数法 对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。 例1. 某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表: x (十万元) 0 1 2 … y 1 1.5 1.8 … (1)求y 与x 的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式; (3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大? 二、分析数量关系型 题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。 例2. 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x 元,日均获利为y 元。 (1)求y 关于x 的二次函数关系式,并注明x 的取值范围; (2)将(1)中所求出的二次函数配方成的形 式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价 定为多少元时日均获得最多,是多少? a 4 b a c 4)a 2b x (a y 2 2-+ +=

二次函数实际应用问题及解析

中考压轴题中函数之二次函数的实际应用问题,主要是解答题,也有少量的选择和填空题,常见问题有以几何为背景问题,以球类为背景问题,以桥、隧道为背景问题和以利润为背景问题四类。 一. 以几何为背景问题 原创模拟预测题1. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中: (1)求抛物线的函数解析式; (2)求水流的落地点D 到A 点的距离是多少m ? 【答案】(1)213222y x x =-++;(2)(2+m . 【解析】 试题分析:(1)把抛物线的问题放到直角坐标系中解决,是探究实际问题常用的方法,本题关键是解等腰直角三角形,求出抛物线顶点C (2,3.5)及B (0,1.5),设顶点式求解析式; (2)求AD ,实际上是求当y=0时点D 横坐标. 在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=, 点坐标为(23.5), (1)设抛物线的函数解析式为2 (0)y ax bx c a =++≠,

则抛物线过点(01.5),顶点为(23.5), , 当0x =时, 1.5y c == 由22b a -=,得4b a =-, 由24 3.54ac b a -=,得2 616 3.54a a a -= 解之,得0a =(舍去),1422a b a =-∴=-=,. 所以抛物线的解析式为213222 y x x =-++. 考点:本题考查点的坐标的求法及二次函数的实际应用 点评:此题为数学建模题,借助二次函数解决实际问题.结合实际问题并从 中抽象出函数模型,试着用函数的知识解决实际问题,学会数形结合解答二次函数的相关题型. 原创模拟预测题2.在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m ). (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)满足条件的花园面积能达到200 m 吗?若能,求出此时x 的值;若不能,说明理由; (3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少? 【答案】(1)x x y 202 12+- =)150(≤

二次函数应用题题型归纳.docx

二次函数应用题 题型一面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为兀米. (1)若平行于墙的一边的长为y米,直接写出y与无之间的函数关系式及其自变量兀的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于能平方米时,试结合函数图像,直接写出x的取值范围. 1BX 2某学校要在I韦I墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠I韦I墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.己知木栏总长为120米, 设AB边的长为x米,长方形ABCD的面积为S平方米. (1)求S与x之间的函数关系式(不要求写出自变量X的収值范围).当x为何值时,S収得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为0、 和q ,且0\到AB. BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当⑴中S収得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. B ------------------------------ C ° F G

题型二利润问题 1利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降加元.在不考虑其他因素的条件下,当加定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 信息仁甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少 c 1元. 2 ,2015年长江屮下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买I型、II型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出%和乃的函数解析式; (2)有一农户同时对I型、II型两种设备共投资10万元购买,请你设计一个能获得最人补贴金额的方案,并求出按此方案能获得的最人补贴金额. I型设备11型设备 型号 金额 投资金额x(万元) X5X24 补贴金额y (万元) yi=kx(k^0)2y2=ax2+bx(a^0) 2.4 3.2

二次函数在实际中的应用

二次函数在实际中的应用 法国著名数学家的卡尔说过:“我们所解决的每一个问题,将成为一种模式,用于解决其它问题”.本文用二次函数的模式,解答生产、生活、体育等实际中的问题,达到触类旁通的目的. 一、借助二次函数解答桥梁问题 例1、(2006吉林省)如图1,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m . ⑴ 建立如图所示的直角坐标系,求此抛物线的解析式; ⑵ 现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米? 解:(1)设抛物线的解析式为2y ax =,桥拱最高点O 到水面CD 的距离为h 米,则D (5,h -),B (10,3h --). ∴25100 3.a h a h =-??=--?,解得1251a h ?=-???=? ,∴抛物线的解析式为2125y x =-. (2)水位由CD 处涨到点O 的时间为:1÷0.25 = 4(小时), 货车按原来速度行驶的路程为:40×1+40×4 = 200<280, ∴货车按原来速度行驶不能安全通过此桥,设货车速度提高到x 千米/小时, 当4401280x +?=时,解得60x = , ∴要使货车安全通过此桥,货车的速度应超过60千米小时. 二、应用二次函数剖析撞车问题 例2、(2006苏州市)司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”,如图2. 已知汽车的刹车距离s(单位:m)与车速v(单位:m /s)之同有如下关系:s=tv+kv 2其中t 为司机的反应时间(单位:s),k 为制动系数.某机构为测试司机饮酒后刹车距离的变化,对某种型号的汽车进行了“醉汉”驾车测试,已知该型号汽车的制动系数k=0.08,并测得志愿者在未饮酒时的反应时间t=O.7s 图1

二次函数的应用题总结

二次函数的应用 一、顶点坐标公式的应用(基本题型) 1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50 元销售,平均每天可销售90 箱,价格每降低1 元,平均每天多销售3 箱;价格每升高1 元,平均每天少销售3 箱. (1)写出平均每天的销售量y(箱)与每箱售价x(元)之间的函数关系式(注明自变量x 的取值范围); (2)求出超市平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润 b 24a c b 2 =售价-进价);(3)请把(2)中所求出的二次函数配方成y a(x )2的形式,并指出当x=40、70 时, 2a 4a W 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少? 练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30 元/千克收购了这种野生菌1000 千克存 放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计310 元,而且这类野生菌在冷库中最多保存160 天,同时,平均每天有 3 千克的野生菌损坏不能出售. (1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式. (2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元? (利润=销售总额-收购成本-各种费用) 练习3、汽车城销售某种型号的汽车,每辆进货价为25 万元,市场调研表明:当销售价为29 万元时,平均每周能售 出8 辆,而当销售价每降低0.5 万元时,平均每周能多售出4 辆.如果设每.辆.汽车降价x 万元,每辆汽车的销售.利.润.为y 万元.(销售利润销售价进货价) (1)求y 与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(3 分) (2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3分) (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?( 4 分) 练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。试运营发现:每辆次小车的停车费不超过 5 元时,每天来此处停放的小车为1440 辆次,超过 5 元时,每涨 1 元,每天来此处停放的小车就减少120 辆次,而此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800 元。为便天结算,规定每辆次小车的停车费x(元)只取整数,用y (元)表示此停车场的日净收入,且要求日净收不低于2512 元。(日净收入=每天共收取的停车费-每天的固定支出) (1)当x≤5时,写出y 与x 之间的关系式。并说明每辆次小车的停车费最少不低于多少元;(2)当x>5时,写出y 与x 之间的函数关系式(不必写出x 的取值范围); (3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次校多,又要有较大的日净收入。按此要求,每辆次小车的停

二次函数在实际问题中的应用

孟老师12月23日初三学案 二次函数在实际问题中的应用 一抛物线形的物体 研究抛物线的问题,需要建立适当的平面直角坐标系,根据已知条件,求出相关点的坐标,确定解析式,这是解答其它问题的基础,. (2012?益阳)已知:如图,抛物线y=a(x﹣1)2+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明 通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等 于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号) 2(2010?南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内? 二应用二次函数解决实际问题中的最值 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法. 二次函数的性质在实际生活中的应用

二次函数应用题含答案

二次函数应用题 1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少? 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙 另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所 示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积 为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的 取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2 y ax bx c =++(0a ≠),当2b x a =-时,244ac b y a -=最大(小)值) 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表: 月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少? (2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164) 5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.

二次函数及实际应用之利润最大(小)值问题

二次函数的实际应用——利润最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2 [例1]:求下列二次函数的最值: (1)求函数322 -+=x x y 的最值. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?

浅谈二次函数在实际生活中的应用

龙源期刊网 https://www.wendangku.net/doc/f94156731.html, 浅谈二次函数在实际生活中的应用 作者:刘昌义 来源:《学习与科普》2019年第11期 摘要:随着社会的快速发展,人们的生活水平不断提升,生活质量的要求也不断提高, 这样一来,对各种资源的需求量也不断增大。而资源的总数是有限的,如何将优先的资源通过合理的运用来满足更多人的实际需要,这就需要用到数学中所学到的二次函数知识。二次函数在实际生活中的应用,是利用所学知识解决实际生活问题的体现。二次函数的实际应用过程,也是数学思想在生活实际中得到合理运用的过程。 关键词:二次函数;实际生活;实际应用 二次函数不管是作为一种数学计算工具还是作为初中数学学习过程中的知识组成部分,都具有非常重要的作用。二次函数贯穿了初中数学的整体学习过程,从最简单的图像方程画图计算再到复杂的二次函数实际应用,无一不体现出了它的重要性。同时二次函数也作为中考的重要考察内容,其难度相对其他数学知识更高,连贯性也更强,如果初中阶段的二次函数没有学好,势必会影响到后续的函数学习。除此之外,通过教学研究,笔者发现很多学生在二次函数的学习中暴漏出来一个问题:当题目与现实生活综合到一起时,很多学生往往后无从下手,这体现出学生对其所学知识的实际应用能力较差。所以我们需要通过对二次函数在实际生活中应用方向的研究,来找到培养学生利用二次函数解决生活实际问题能力的方法。 一、二次函数在桥梁建筑方面的应用 在日常生活中所见到的桥类建筑大多为拱形,拱形的桥梁结构相对于直桥更加稳固,且可以给桥下的水面提供较大的通行空间,以供船只通过。从拱形桥的形状看上去跟抛物线类似,其在设计之中就应用了二次函数的相关性质。除此之外,在很多公共建筑的设计上也应用了二次函数的原理,如花坛、喷泉和国家体育馆鸟巢的设计。通过这类实际应用体现出二次函数已经融入了我们的生活之中。 二、二次函数在经济生活中的实际应用 二次函數作为一种数学工具被广泛的应用到统计之中,其在经济生活之中的作用往往集中在投资调查、销售定价、销售情况统计、市场调查、消费住宿等方面。在这些经济活动中,无论其表现形式如何,最终的目的都是为了做到利益最大化。在这些项目中二次函数都是作为统计工具,根据实际经济情况建立相应的函数关系式,使用函数关系式对市场进行调查、统计和预测,从而保证拿到最大利润。 (1)投资调查

二次函数应用题题型归纳

二次函数应用题 题型一 面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗 圃药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. O 2 O 1 围墙 D A B C O 2 O 1 围墙D A B C E F H I J

题型二 利润问题 1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当 m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是 多少? 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出1y 和2y 的函数解析式; (2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

二次函数实际应用问题

二次函数应用问题 二次函数在各方面的应用比较广泛,本节中通过几个例题及几个练习题,举例说明它在一些问题中的应用. 例1 某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价(元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润与每件的销售价之间的函数关系式(每天的销售利润 是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定 为多少最为合适;最大销售利润为多少? 分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。 在这个问题中,每件服装的利润为(),而销售的件数是(+204),那么就能得到一个与 之间的函数关系,这个函数是二次函数. 要求销售的最大利润,就是要求这个二次函数的最大值. 解:(1)由题意,销售利润与每件的销售价之间的函数关系为 =(-42)(-3+204),即=-32+8568 (2)配方,得=-3(-55)2+507 ∴当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元. 例2 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在 空中的运动路线是(1)中的抛物线, 且运动员在空中调整好入水姿势时,距 池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由. 分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0), 入水点(2,-10),最高点的纵点标为. (2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米., 时,该运动员是不是距水面高度为5米. 解:(1)在给定的直角坐标系下,设最高点为A,入水点为 B,抛物线的解析式为. 由题意,知O(0,0),B(2,-10),且顶点A的纵坐标为.

知识点20 二次函数在实际生活中应用

知识点20 二次函数在实际生活中应用 一、选择题 9.(2019·山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米,(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( ) A.y = 26 675 x 2 B.y =26675 - x 2 C.y = 13 1350 x 2 D.y =13 1350 - x 2 第9题图 【答案】B 【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675- ,∴二次函数表达式为y =26675 -x 2 ,故选B. 三、解答题 22.(2019年浙江省绍兴市,第22题,12分 ).有一块形状如图的五边形余料ABCDE ,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积; (2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由. 【解题过程】

24.(2019·嘉兴)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p = t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣ (t ﹣h )2 +0.4刻画. (1)求h 的值. (2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系: 生长率p 0.2 0.25 0.3 0.35 提前上市的天数m (天) 5 10 15 ①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m . (3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用). 【解题过程】(1)把(25,0.3)的坐标代入21 ()0.4160 p t h =- -+,得h =29或h =21. ∵h >25,∴h =29. (2)①由表格可知m 是p 的一次函数,∴m=100p-20.

二次函数典型应用题

二次函数典型应用题Revised on November 25, 2020

新启点教育学科辅导讲义 年级:姓名:辅导科目: 授课内容 教学内容 二次函数应用题分类 二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类: 第一类、利用待定系数法 对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。 例1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表: x(十万 0 1 2 … 元) y 1 … (1)求y与x的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x (十万元)的函数关系式; (3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大 二、分析数量关系型 题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。 例2.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。 物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千 克。在销售过程中,每天还要支出其它费用500元(天数不足一天 时,按整天计算)。设销售单价为x元,日均获利为y元。 (1)求y关于x的二次函数关系式,并注明x的取值范围; (2)将(1)中所求出的二次函数配方成

相关文档