文档库 最新最全的文档下载
当前位置:文档库 › 高考复习专题:函数零点的求法及零点的个数

高考复习专题:函数零点的求法及零点的个数

高考复习专题:函数零点的求法及零点的个数
高考复习专题:函数零点的求法及零点的个数

函数零点的求法及零点的个数

题型1:求函数的零点。

[例1] 求函数

222

3+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程0222

3=+--x x x 的根 [解析]令 32

220x x x --+=,∴2

(2)(2)0x x x ---=

∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222

3

+--=x x x y 的零点为-1,1,2。

[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2] 求函数f(x)=lnx +2x -6的零点个数.

[解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数

[解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。

方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数

即求ln 62y x

y x =??

=-?的交点的个数。画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:

①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围

[例3] (2007·广东)已知a 是实数,函数

()a x ax x f --+=3222

,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关

于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论

[解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠.

()2

48382440

a a a a ?=++=++=, 解得

37

2a -±=

①当

37

2a --=

时, ()y f x =恰有一个零点在[]1,1-上;

②当()()()()05111<--=?-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。 ③当

()

y f x =在[

]

1,1-上有两个零点时, 则

()()20824401

1121010a a a a f f >?

??=++>??-<-

?

≥?

?

-≥?

()()20824401

1121010a a a a f f

??=++>??-<-

?

≤?

?

-≤?

解得5a ≥或

352a --<

综上所求实数a 的取值范围是 1a > 或 35

2a --≤

[反思归纳]①二次函数、一元二次方程和一元二次不等式是一个有机的整体,也是高

考热点,要深刻理解它们相互之间的关系,能用函数思想来研究方程和不等式,便是抓住了关键.

②二次函数2()f x ax bx c =++的图像形状、对称轴、顶点坐标、开口方向等是处理二次函数问题的重要依据。 考点3 根的分布问题

[例5] 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围

[解题思路]由于二次函数的图象可能与x 轴有两个不同的交点,应分情况讨论

[解析](1)若m=0,则f (x )=-3x+1,显然满足要求. (2)若m ≠0,有两种情况:

原点的两侧各有一个,则????

??<=>--=01

04)3(2

12m x x m m Δm <0;

都在原点右侧,则???

??

?

???

>=>-=+≥--=,01,023,04)3(21212m x x m m x x m m Δ解得0<m ≤1,综上可得m ∈(-∞,1]。

[反思归纳]二次方程根的分布是高考的重点和热点,需要熟练掌握有关二次方程

ax2+bx+c=0(a ≠0)的根的分布有关的结论:

①方程f (x )=0的两根中一根比r 大,另一根比r 小?a ·f (r )<0.

②二次方程f (x )=0的两根都大于r ???????>?>->-=?.

0)(,2,

042r f a r a

b a

c b Δ

③二次方程f (x )=0在区间(p ,q )内有两根???????

??>?>?<-

<>-=?.

0)(,0)(,2,

042p f a q f a q a b p ac b Δ

④二次方程f (x )=0在区间(p ,q )内只有一根?f (p )·f (q )<0,或f (p )=0,另一根在(p ,q )内或f (q )=0,另一根在(p ,q )内.

⑤方程f (x )=0的两根中一根大于p ,另一根小于q (p <q )??

?>?

A .(

],1-∞;B .(

]

{},01-∞;C .()(],00,1-∞;D .(),1-∞

[解析] B ;依题意得(1)

??

???<>--=?>0)0(04)2(0

2

f m m 或(2)

??

???>>--=?<0)0(04)2(02

f m m 或

(3)

???=--=?≠04)2(0

2m m 显然(1)无解;解(2)得0

2、方程

223x x -+=的实数解的个数为 _______ 。 [解析] 2;在同一个坐标系中作函数x y )21

(=及

32

+-=x y 的图象,发现它们有两个交点

故方程2

23x x -+=的实数解的个数为2。

3、已知二次函数22()42(2)21f x x p x p p =----+,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p 的取值范围是_________。

[解析] (-3,23

) 只需2(1)2290f p p =--+>或2(1)210f p p -=-++> 即-3<p <23或-21<p <1.∴p ∈(-3, 23

)。

4、设函数321

()2

x y x y -==与的图象的交点为00(,)x y ,则0x 所在的区间是( )。

A.(0,1)

B.(1,2)

C.(2,3)

D.(3,4) 答案B 。

5、若方程2(2)210x k x k +-+-=的两根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围。

[解析] 12

23k <<;令

12)2()(2

-+-+=k x k x x f ,则依题意得 ??

?

??><>0)2(0)1(0

)0(f f f ,即

??

?

??>-+-+<-+-+>-01242401221012k k k k k ,解得122

3k <<

(三)、小结反思:本课主要注意以下几个问题:1.利用函数的图象求方程的解的个数;2.一元二次方程的根的分布;3.利用函数的最值解决不等式恒成立问题 。 补充题:1、定义域和值域均为[-a,a] (常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中:

(1) 方程f[g(x)]=0有且仅有三个解; (2) 方程g[f(x)]=0有且仅有三个解; (3) 方程f[f(x)]=0有且仅有九个解; (4)方程g[g(x)]=0有且仅有一个解。 那么,其中正确命题的个数是( )。 A . 1; B. 2; C. 3; D. 4。

[解析] B ;由图可知,][)(a a x f ,-∈,][)(a a x g ,-∈,由左图及f[g(x)]=0得

]2[)(1a a x x g --∈=,,]02[)(2,a x x g -∈=,2)(a

x g =

,由右知方程f[g(x)]=0有且仅有三个解,即(1)正确;由右图及g[f(x)]=0得)

2()(0a a

x x f ,∈=,由左图知方程g[f(x)]=0有且仅有一个解,故(2)错误;由左图及f[f(x)]=0得

]

2[)(1a a x x f --∈=,,]02[)(2,a x x f -∈=,2)(a

x f =

,又由左图得到方程f[f(x)]=0最多有三个解,故(3)错误;由右图及g[g(x)]=0得)

2()(0a a

x x g ,∈=,由右图知方程g[g(x)]=0有且仅有一

个解,即(4)正确,所以应选择B

2、已知关于x 的二次方程22210x mx m +++=。

(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围。

(2)若方程两根均在区间(0,1)内,求m 的范围。

[解析](1)条件说明抛物线2()221f x x mx m =+++与x 轴的交点分别在区间(-1,0)和

(1,2)内,画出示意图,得

????????

???

->-<∈-

???

?>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴21

65-<<-m .

(2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组

??????

?<-<≥?>>10,

0,0)1(,0)0(m f f ??????

???

<<--≤+≥->->?.01,2121,

21,21m m m m m 或(这里0<-m<1是因为对称轴x=-m 应在区间(0,1)内通

过) 即解得1122m -

<≤-.∴ 1,122m ??∈-- ???

. -a a x y y =f (x ) O

a

-a -

a a x y y =g (x ) O a -a

高考复习专题:函数零点的求法及零点的个数()

函数零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数 222 3+--=x x x y 的零点就是求方程 0222 3=+--x x x 的根 [解析]令 32 220x x x --+=,∴ 2(2) (2) x x x --- = ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222 3 +--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数 ()y f x =的图像与x 轴交点的横坐标,即零点是 一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222,如果函数()x f y =在区 间[]1,1-上有零点,求a 的取值范围。 [解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数 a 的不等式(组),但由于涉及到a 作为2 x 的系 数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在 []1,1-上没有零点, 所以 0a ≠. 令 ()248382440 a a a a ?=++=++=, 解得 37 2a -±= ①当 37 2a --= 时, ()y f x =恰有一个零 点在[ ] 1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时, () y f x =在[ ] 1,1-上也恰有一个零点。 ③当()y f x =在[ ] 1,1-上有两个零点时, 则 ()()20824401 1121010a a a a f f >? ??=++>??-<-??-<-

求函数零点的几种方法

求函数零点的几种方法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

函数零点 一、知识点回顾 1、函数零点的定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。 注意:(1)零点不是点; (2)方程根与函数零点的关系:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 2、零点存在性定理:如果函数)(x f y =在闭区间[a, b]上的图象是连续曲线,并且有0)()(++c bx ax 的解集是 例2 若函数2()2f x x x a =-+有两个零点,且一个在(-2,0)内,另一个在(1,3)内,求a 的取值范围. 变式 1、已知关于x 的方程2350x x a -+=的两根12x x ,满足1(20)x ∈-, ,2(13)x ∈,,求实数a 的取值范围.

求函数零点的几种方法

函数零点 一、知识点回顾 1、函数零点的定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。 注意:(1)零点不是点; (2)方程根与函数零点的关系:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 2、零点存在性定理:如果函数)(x f y =在闭区间[a, b]上的图象是连续曲线,并且有0)()(++c bx ax 的解集是 例2若函数2()2f x x x a =-+有两个零点,且一个在(-2,0)内,另一个在(1,3)内,求a 的取值范围. 变式 1、已知关于x 的方程2350x x a -+=的两根12x x ,满足1(20)x ∈-,,2(13)x ∈,,求实数a 的取值范围. 2、已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ) A .a b αβ<<< B .a b αβ<<< C .a b αβ<<< D .a b αβ<<<

函数的零点及判断零点个数提高题

函数的零点及判断零点个数提高题 1.已知函数()22,52,x x a f x x x x a +>?=?++≤?,函数()()2g x f x x =-恰有三个不同的零点,则实数a 的取值范围是( ) A .[)1,1- B .[]0,2 C .[)2,2- D .[)1,2- 【答案】D . 【解析】 22()()232x x a g x f x x x x x a -+>?=-=?++≤?,而方程20x -+=的解为2,方程 2320x x ++=的解为1-或2-,所以?? ???≤-≤-->,当1x ≤-?1x -≥,又f (x )为奇函数, ∴0x <时, ()(] 12log (1),1,0()()13,,1x x f x f x x x ?--+∈-?=--=??-+--∈-∞-?,(也可以不求解析式,依 据奇函数的图象关于原点对称,画出y 轴左侧的图象),画出y =f (x ),y =a (01a <<)的图象,如图 共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则45123,322 x x x x ++=-=

考点1零点的求法及零点的个数

考点1 零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数 222 3+--=x x x y 的零点就是求方程02223=+--x x x 的根 [解析]令 32220x x x --+=,∴2(2)(2)0x x x ---= ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数 222 3+--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222 ,如果函数

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数的零点问题

函数零点问题的求解 【教学目标】 知识与技能: 1.理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数 零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 过程与方法: 1.函数零点反映了函数和方程的联系,函数零点与方程的根能相互转化,能把方程问题合理 转化为函数问题进行解决. 2.函数的零点问题的解决涉及到分类讨论,数形结合,化归转化等数学思想方法,有效提升了 学生的数学思想方法的应用. 情感、态度与价值观: 1.培养学生认真、耐心、严谨的数学品质; 2.让学生在自我解决问题的过程中,体验成功的喜悦. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理问题的意识. 【教学难点】 根据函数零点所在的区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 【教学过程】 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2. 零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有

函数的零点的求法

函数的零点的求法 复习内容:1.知识点(1)函数零点的概念:对于函数))((D x x f y ∈= , 把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.(2)函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 2.方法(1)代数法求函数零点:直接求方程0)(=x f 的实数根;(2)几何法求函 数零点:对于不能直接求解的超越方程,可以将)()(0)(x h x g x f =?=再分别设 )(x g y =,)(x h y =转化为它们的图象交点问题,即:函数)(x g y =与)(x h y =的图象 有几个交点,那么方程0)(=x f 就有几个实根,函数)(x f y =就有几个有零点。 1.函数2()cos f x x x =在区间[0,4]上的零点个数为 ( ) A .4 B .5 C .6 D .7 2.函数1 2 1()()2 x f x x =-的零点个数为 ( ) A .0 B .1 C .2 D .3 3 .函数3 ()=2+2x f x x -在区间(0,1)内的零点个数是 ( ) A .0 B .1 C .2 D .3 4.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 [答]( ) (A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2) 解析:04 147lg )47 ()75.1(,2lg )(<-==-+=f f x x x f 由构造函数 02lg )2(>=f 知0x 属于区间(1.75,2) 5.0x 是函数f(x)=2x + 1 1x -的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则 (A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0

函数零点个数问题赏析

函数零点个数问题赏析

————————————————————————————————作者:————————————————————————————————日期:

近年高考试卷中的N 型函数零点个数问题赏析 近些年来,有不少的N 型函数零点个数问题出现在不同年份、不同省区与全国的高考试卷中,这不能不成为高考的热门话题和需要我们研究并指导高三学生进行科学备考的一个重点内容。什么是N 型函数零点个数问题呢,就是含参函数()y f x =在其定义域内连续可导,有两个极值点1x 、2x 并将其定义域分成三个单调区间,通常是“增减增”或“减增减”,在此条件的基础上,方程()0f x =或()f x m =的根的个数与参数取值范围相关的问题。这里注意:函数()y f x =在其靠近定义域两端点时,函数值会很大或很小(即一端足够大,大于极大值;一端足够小,小于极小值)。 N 型函数有哪些呢?一可能是三次函数3 2 ()f x ax bx cx d =+++(0)a ≠,二可能是函数 2()ln()f x ax bx x t =+++(0)a ≠,它们在定义域内都必须有两个极值点。 例1、(2006年福建高考卷)已知函数2 ()8f x x x =-+,()6ln g x x m =+。 (Ⅰ)求f (x )在区间[,1]t t +上的最大值()h t ; (Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。 解析:(Ⅰ)略;(Ⅱ)构作函数2 ()()()86ln x f x g x x x x m ?=-=-++,0x >; 求导得:22862(1)(3) '()x x x x x x x ?-+--==,0x >,函数单调性与极值列表如下: x (0,1) 1 (1,3) 3 (3,)+∞ '()x ? + - + ()x ? 7m ?=- 极大 6ln 315m ?=+-极小 依题意,转化为函数()x ?图象与x 轴的交点为3时情形,当x 充分接近0时,()0x ?<,当x 充分大时,()0x ?>,为此有:707156ln 36ln 3150m m m ??=->? ?<<-? =+-

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

高中数学题型解法归纳《函数的零点个数问题》

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

复合函数的零点个数问题

复合函数、分段函数零点个数问题 1.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判 断不正确... 的是【 】 A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】 A .13 B .16 C .18 D .22 6 已知函数31+,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 6 7. 已知函数f(x)=????? ax +1,x ≤0,log 2x , x >0。则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】 (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点 (C )无论a 为何值,均有2个零点 (D )无论a 为何值,均有4个零点 8、设R 上的函数2lg (>0) ()-2(0)x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2 +=x f x f 的零点的个数为【 】. A 2 B 3 C 5 D 7

高考复习专题:函数零点的求法及零点的个数

高考复习专题:函数零点的求法及零点的个数 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 函数零点的求法及零点的个数 题型1:求函数的零点。 [例1] 求函数 222 3+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根 [解析]令 32220x x x --+=,∴2(2)(2)0x x x ---= ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数222 3+--=x x x y 的零点为-1,1,2。 [反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。 题型2:确定函数零点的个数。 [例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ?<,所以函数f(x)= lnx +2x -6只有一个零点。 方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数 即求ln 62y x y x =?? =-?的交点的个数。画图可知只有一个。 [反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法: ①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。 题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数 ()a x ax x f --+=3222 ,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。 [解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2 x 的系数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠. 令 ()2 48382440 a a a a ?=++=++=, 解得 a = ①当 a = 时, ()y f x =恰有一个零点在[]1,1-上; ②当()()()()05111<--=?-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。 ③当 () y f x =在[ ] 1,1-上有两个零点时, 则 ()()20824401 1121010a a a a f f >? ??=++>??-<-??-<- 或 a ≤ 。

函数零点经典习题

函数零点经典习题 一.选择题 1.函数f(x)=-x2+4x-4在区间[1,3]上的零点情况是: A 没有零点 B 有一个零点 C 有两个零点 D 有无数个零点 2函数f(x)=(x2-4)/(x-2)的零点是 A -2,2 B 2 C -2 D 不存在 3.函数f(x)=x2+27/x的零点是 A -3 B -1/3 C 3 D 1/3 4.如果方程2ax2+x-3=0在区间(0,1)内有一个解,则a的取值范围是 A a<-1 B a>1 C -1-1/4 C a≥-1/4 D a≤-1/4 6.二次函数y=ax2+bx+c,若ac>0则函数的零点的个数是 A 0 B 1 C 2 D 无法确定 7.已知二次函数y=ax2+bx+c,x∈R的部分对应值如下表: x-3-2-101234 y104d-2-2e410 不求a、b、c的值,可以判断方程的两根所在的区间分别是 A(-3,-2)(2,4)B(-2,0)(1,3)C(-3,-1)(-1,1)D(-∞,-3),(4,∞) 8.函数y=lnx+2x-6的零点一定在下列哪个区间 A (1,2) B (2,3) C (3,4) D (5,6)

9.函数f(x)=x 2-ax-b 的两个零点是3,5 则函数g(x)=bx 2-ax-1的零点是 A -3,-5 B 3,5 C -1/3,-1/5 D 1/3,1/5 1.函数12log )(2-+=x x x f 的零点必落在区间( ) A.?? ? ??41,81 B.?? ? ??21,41 C.?? ? ??1,2 1 D.(1,2) 2.若0x 是方程31 )2 1 (x x =的解,则0x 属于区间( ) A . ?? ? ??1,3 2 . B .?? ? ??32,21 . C .?? ? ??21,31 D .?? ? ? ?31,0 3.函数x x x f 2ln )(-=的零点所在的大致区间是( ) A .)2,1( B .)3,2( C .)1 ,1(e 和)4,3( D .),(+∞e 二.填空题 10.已知函数f9x)=x 2-1则函数f(x+2)的零点是------------ 11.方程x 2-2x-5=0在区间(2,3)内有实数根,取区间的中点x 0=2.5,下一个有根区间是------------- 12.若函数f(x)=ax+b 的零点是-3则函数g(x)=bx 2-ax 的零点是-------- 10.若函数 a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围 是

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m 函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m , 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+',当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

函数的零点的求法

函数的零点的求法 知识点1.(1)函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.(2)函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点. 2.方法(1)代数法求函数零点:直接求方程0)(=x f 的实数根;(2)几何法求函数零点:对于不能直接求解的超越方程,可以将)()(0)(x h x g x f =?=再分别设)(x g y =,)(x h y =转化为它们的图象交点问题,即:函数)(x g y =与)(x h y =的图象有几个交点,那么方程0)(=x f 就有几个实根,函数)(x f y =就有几个有零点。 1.函数2()cos f x x x =在区间[0,4]上的零点个数为 ( ) A .4 B .5 C .6 D .7 2.函数1 21()()2 x f x x =-的零点个数为 ( ) A .0 B .1 C .2 D .3 3 .函数3()=2+2x f x x -在区间(0,1)内的零点个数是 ( ) A .0 B .1 C .2 D .3 4.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 [答]( ) (A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2) 解析:04147lg )47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数 02lg )2(>=f 知0x 属于区间(1.75,2) 5.0x 是函数f(x)=2x + 11x -的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞) ,则 (A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0 6. f (x )=2x e x +-的零点所在的一个区间是

零点个数问题

微专题函数零点个数的判定 活动一:预习◆反馈◆导学 1.函数f (x )=x e x -a 有两个零点,则实数a 的取值范围是________. 2.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是 ________. 3.【2017山东,理10】已知当[]0,1x ∈时,函数()21y mx =-的图象与y m 的图 象有且只有一个交点,则正实数m 的取值范围是 4. 【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = 活动二. 合作◆提炼◆探究 例1.设f(x)=e x ·sin x +ax(a 为常数),x ∈[0,2π]. (1))若f(x)在区间(0,2π)的极大值、极小值各有一个,求实数a 的取值范围. 例2. 已知函数()1x x f x ax e =-+. (2)试求()f x 的零点个数,并证明你的结论.

例3.设函数21()()ln 2 f x x a b x ab x = -++(其中e 为自然对数的底数,,a e b R ≠∈),曲线()y f x =在点(,())e f e 处的切线方程为212y e =-. (1)求b ; (2)若对任意1[,)x e ∈+∞,()f x 有且只有两个零点,求a 的取值范围. 例4.已知()21ln 2 f x x a x =-, a R ∈. (1)求函数()f x 的增区间; (2)若函数()f x 有两个零点,求实数a 的取值范围,并说明理由; 例5.已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.

高考数学专题函数零点的个数问题

第 10 炼函数零点的个数问题 一、知识点讲解与分析: 1、零点的定义:一般地,对于函数y f x x D ,我们把方程f x 0的实数根x 称 为函数y f x x D 的零点 2、函数零点存在性定理:设函数f x 在闭区间a,b 上连续,且f a f b 0 , 那么在开区间a,b 内至少有函数f x 的一个零点,即至少有一点x0a,b ,使得 f x 0 。 (1)f x 在a,b 上连续是使用零点存在性定理判定零点的前提 ( 2)零点存在性定理中的几个“不一定” (假设f x 连续) ① 若f a f b 0 ,则f x 的零点不一定只有一个,可以有多个 ② 若f a f b 0 ,那么f x 在a,b 不一定有零点 ③ 若f x 在a,b 有零点,则 f a f b 不一定必须异号 3、若f x 在a,b 上是单调函数且连续,则f a f b 0 f x 在a,b 的零点唯一 4、函数的零点,方程的根,两图像交点之间的联系 设函数为y f x ,则f x 的零点即为满足方程f x 0的根,若f x g x h x , 则方程可转变为g x h x ,即方程的根在坐标系中为g x ,h x 交点的横坐标,其范围和个数可从图像中得到。 由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵 活转化。(详见方法技巧) 二、方法与技巧: 1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构 造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。例如:对

高考数学专题 函数零点的个数问题

第10炼 函数零点的个数问题 一、知识点讲解与分析: 1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点 2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。 (1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号 3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x < ??? 即可判定

相关文档
相关文档 最新文档