文档库 最新最全的文档下载
当前位置:文档库 › 运放电压电流转换电路

运放电压电流转换电路

运放电压电流转换电路
运放电压电流转换电路

运放电压电流转换电路

1、 0-5V/0-10mA的V/I变换电路

图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。

2、 0-10V/0-10mA的V/I变换电路

图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:

若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,

得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf =200Ω时,此电路能实现0-10v/0-10mA的V/I变换。

3、 1-5V/4-20mA的V/I变换电路

在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

由式①②③可推出:

若Rf=62.5Ω,k=0.25,Vi=1-5V,则I1=4-20mA,而实际变换电流IL比I1小,相差I2(IL=I1-I2),I2是一个随输入电压Vi 变化的变量,输入电压最小时(Vi=1V),误差最大,在实际应用中,为了使误差降到最小,一般R1,R2,Rf的阻值分别选取40.25kΩ,40kΩ,62.5Ω。

4、 0-10mA/0-5V的I/V变换电路

在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,如图4,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。

对于存在共模干扰的电流输入信号,可采用隔离变压器耦合方式,实现0-10mA/0-5V的I/V变换,一般变压器输出端的负载能力较低,在实际应用中还应在输出端接一个电压跟随器作为缓冲器,以提高驱动能力。

5、由运放组成的0-10mA/0-5V的I/V变换电路

在图5中,运放A1的放大倍数为A=(R1+Rf)/R1,若R1=100kΩ,Rf=150kΩ,则A=2.5;若R4=200Ω,对于0-10mA 的电流输入信号,将在R4上产生0-2V的电压信号,由A=2.5可知,0-10mA的输入电流对应0-5V的输出电压信号。

图中电流输入信号Ii是从运放A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。

6、 4-20mA/0-5V的I/V变换电路

经对图6电路分析,可知流过反馈电阻Rf的电流为(Vo-VN)/Rf与VN/R1+(VN-Vf)/R5相等,由此,可推出输出电压Vo的表达式:

Vo=(1+Rf/R1+Rf/R5)×VN-(R4/R5)×Vf。由于VN≈Vp=Ii×R4,上式中的VN即可用Ii×R4替换,若R4=200Ω,R1=18kΩ,Rf=7.14kΩ,R5=43kΩ,并调整Vf≈7.53V,输出电压Vo的表达式可写成如下的形式:

当输入4-20mA电流信号时,对应输出0-5V的电压信号。

运放场效应管AGC.

推荐给朋友打印 一种性能优良结构简单的AGC 电路 文/王剑锐常世昌 许多应用类电子装置中都需要自动增益控制电路。自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为AGC 电路。 AGC 电路的基本原理是随着输入信号幅度的变化产生一个相应变化的直流电压(AGC 电压) ,利用这一电压去控制一种可变增益放大器的放大倍数( 或者控制一种可变衰减电路的衰减量) :当输入信号幅度较大时AGC 电压控制可变增益放大器的放大倍数减小( 或者增大可变衰减电路衰减量) ,当输入信号幅度较小时AGC 电压控制可变增益放大器的放大倍数增加( 或者减小可变衰减电路衰减量) 。显然,这种自动增益控制可以达到输出信号幅度基本稳定的目的。 增益可调的运算放大器( 如AD603) 常被用在AGC 电路中,但是这一类器件不仅价格高,而且市面上难以买到。经过多次试验,笔者使用普通元件设计出了一种成本低廉、性能优良、结构简单的AGC 电路。原理见图 1 。 图 1 中,输入信号经电阻R1 、R2 分压后送往运放F1 的同相输入端,二极管VD 对运放F1 的输出信号整流后,经过一个π形滤波电路得到一个负向的AGC 电压,这一电压经运放F2 放大后送往场效应管3DJ6 的栅极。 当输入信号的幅值较大时,相应地得到了较大的AGC 电压,运放F2 输出较大的负压至场效应管 3DJ6 的栅极,增大了场效应管3DJ6 的源漏极间的电阻,从而减小了运放F1 的放大倍数{ 输入信号的幅度进一步加大时,场效应管3DJ6 的源漏极间的电阻也会进一步加大,使运放F1 的放大倍数进一步减小……直至场效应管3DJ6 的源漏极被完全夹断,这时运放F1 失去放大能力成了电

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

详解电平种类与电平转换

详解电平种类与电平转换 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作3.3V→5V电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现5V→3.3V电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

自动增益控制放大器

摘要 自动增益控制电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。 本课题主要研究应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。 本课题介绍了自动增益控制的概念原理以及对自动增益控制放大器各部分的工作原理,最后对系统的测试结果以及设计与实现中应该注意的问题也做了详细分析。 关键词:放大器;自动增益控制;电压跟随器;滤波器 目录 摘要 (1) 第1章引言 (4) 第2章自动增益控制 (4) 2. 1自动增益控制 (4) 2.1.1自动增益控制基本概念 (4) 2.1.2自动增益控制的原理 (5) 2. 2自动增益控制放大器 (5) 2. 3本课题的研究内容 (5) 第3章自动增益控制放大器的电路设计 (6) 3. 1方案选择 (6) 3. 2压随器工作原理 (8) 3. 3整流电路工作原理 (8) 3. 4滤波 (9) 3. 5增益控制工作原理 (9) 3. 6电路元器件选择 (10) 3.6.1运算放大器 (10) 3.6.2场效应管的选择 (11) 3.6.3其他元器件的选择 (11)

第4章放大器电路的调试及实验结果 (12) 4. 1放大器电路的调试 (12) 4. 2实验结果及存在问题 (12) 第5章总结 (14) 参考文献 (15) 附录 (15) 致谢 (16) 第1章引言 随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益 控制电路越来越被人们熟知并且广泛的应用到各个领域当中。自动增益控制线路,简称AGC线路,A是AUTO(自动),G是GAIN(增益),C是CONTROL(控制)。它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进 行调整。当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输 入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对 输入信号进行衰减的需要。也就是说,AGC功能可以通过改变输入输出压缩比例自 动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大 的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信 号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。目前,实 现自动增益控制的手段有很多,在本文中,主要研究的是如何以放大器来实现自 动增益控制的目的,也就是自动增益控制放大器。 第2章自动增益控制 2. 1自动增益控制 2. 1. 1自动增益控制的基本概念 接收机的输出电平取决于输入信号电平和接收机的增益。由于各种原因,接 收机的输入信号变化范围往往很大,信号弱时可以是一微伏或几十微伏,信号强 时可达几百毫伏,最强信号和最弱信号相差可达几十分贝。这个变化范围称为接 收机的动态范围。 影响接收机输入信号的因素很多,例如:发射台功率的大小、接收机离发射 台距离的远近、信号在传播过程中传播条件的变化(如电离层和对流层的骚动、天

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs 类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)

类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V 类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差

若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管 图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

电平转换方法

5V-3.3V电平转换方法 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换 首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图: CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。缺点:对输入信号的频率有一定的限制。 方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图: 其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。 优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。 缺点:输出波形不是很良好。 方案三:电阻分压 这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平的区别。 TTL电平:输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。 CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平

自动增益控制(AGC)放大器..

自动增益控制放大器(AGC)设计 摘要:本设计以程控增益调整放大器AD603为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。系统由5个模块组成:前级缓冲模块,电压增益调整模块,峰值检测模块,后级输出缓冲模块,控制与显示模块。将输入信号经前级缓冲电路输入给程控增益调整放大器AD603,将信号放大输出,通过峰值检测电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。整个设计使用负反馈原理,实现了自动增益的控制。 关键字:AD603 MSP430 峰值检测自动增益控制 一、方案设计与论证 1.1整体方案 方案一:采用纯硬件电路实现,由AD603和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AD603的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。 优点:该方案理论简单,制作起来也相对容易,只有硬件电路。 缺点:理论低端,精度不够,没有创新,通用性不好。 方案二:采用AD603和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制电压,通过DA转化,对程控增益放大器AD603的放大倍数惊醒调整,从而实现输出电压的恒定。 优点:该方案控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。 缺点:需要软硬件配合,系统稍复杂。 通过对两个方案的综合对比,我们选用方案二。 1.2控制模块 方案一:采用MCS-51。Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础,应用比较广泛,各种技术都比较成熟。 MCS-51优点是控制简单,二缺点也明显因为资源有限,功能实现有困难,而

MAX232芯片可以完成TTL与EIA双向电平转换

TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V... MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14 13----12为一组. 10-----7 8----9为一组... 51单片机要与PC机进行串口通信,通常使用MAX232芯片来作电平转换。下面把MAX232与51单片机的接口电路贴出来供大家参考。(此电路图已经过实际验证) MAX232芯片可以完成TTL与EIA双向电平转换,MAX232提供两路串口电平转换,现在只用一路串口,所以另一路悬空不使用,MAX232与51单片机接口电路如下图所示。(单击图片可放大)

图中DB9为串口的插头(母接头),插座共有9个引线. MAX232的12脚接单片机的P3.0(RXD) MAX232的12脚接单片机的P3.1(TXD) MAX232还带有4个电容,都是容量都是104,为了减少电路板体积,可以用无极电容代替极性电容。 VCC 是5V DC 提示:串口插座有公母两种类型其中 公的串口插座是带有插针的(有针) 母的串口插座是不带有插针的(有洞) 如下图所示 由以上分析可知,DB9为母接头,而电脑PC的串口接头一般是分接头。 所以此电路与PC相连时,所用的串口线应该是一公一母的串口线。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL 电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。这是由于可靠性和成本两面的原因。因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。

MAX3232电平转换原理图

RS232TO TTL 通讯模块

实现RS232到TTL数据转换。芯片采用MAX3232适用电压3V-5.5V,具有ESD保护功能、支持流控制、零延时自动收发转换和波特率自适应特点,即插即用,稳定可靠。 主要资源: 一、DB9母头RS232接口带流控功能可直接接电脑 二、2.54排针RS232接口带流控功能可替代DB9接头 三、3个指示灯分别是电源指示灯、数据收指示灯、数据发指示灯 四、2.54排针TTL接口带流控功能可直接接TTL设备 淘宝网站 https://https://www.wendangku.net/doc/fa17551035.html,/?spm=2013.1.1000126.d21.lOnOC1

以MCU单片机TTL到PC台式机RS232数据通信为例 1、PC台式机接DB9接口 2、MCU通过杜邦线接排针P1接口 P1接口说明 1GND接GND信号流向:GND 2VCC接3V-5V信号流向:VCC<--MCU_5V/MCU_3.3V 3RX接MCU_TX信号流向:PC_RX<--MAX3232<--RX 4TX接MCU_RX信号流向:PC_TX-->MAX3232-->TX 5CTS接MCU_RTS信号流向:PC_CTS<--MAX3232<--MCU_RTS 6RTS接MCU_CTS信号流向:PC_RTS-->MAX3232-->MCU_CTS 产品附件 1、RS232-TTL小板一个 2、杜邦线十根十种颜色 3、防静电自封袋一个 4、原理图

淘宝 https://https://www.wendangku.net/doc/fa17551035.html,/?spm=2013.1.1000126.d21.lOnOC1产品图片

自动增益控制放大器

自动增益控制放大器 --设计文档 一、设计要求 设计一个根据输入信号及环境噪声幅度自动调节音量的自动增益控制音响放大器。 (1)放大器输入端从mp3或信号源输入音频(100Hz~10kHz)信号,输出端带600Ω负载或驱动8Ω喇叭(2~5W)。 (2)当输入信号幅度在10mV~5V间变化时,放大器输出默认值保持在2V±0.2V内,波动越小越好。 (3)能够显示输入信号幅度大小及频率高低。 (4)能够在1V~3V范围内步进式调节放大器输出幅度,步距0.2V。 (5)能够根据环境噪声调整自动调节放大器输出幅度。 二、系统框图

三、设计说明 1)系统说明 本系统以AD603为核心芯片,2片AD603级联,控制器采用32位的STM32作为主控芯片。因为AD603的输入电压不超过2V,所以先对输入信号进行5倍的衰减,然后送入AD603的输入端。同时,对输入信号进行幅值与频率的采样,将输入信号通过峰值检波电路得出幅值送入ADC采样,显示出幅值。因为信号含有负电压,所以利用加法器将输入信号提高,送入ADC采样得出频率,通过频谱显示出来。输出信号的采集也与输入信号相同。 AD603的增益与控制电压关系满足G(dB)=80Vg+20,同时它的输出电压最大不超过2V,我们设定AD603最大增益时输出1.5V,后级加一个固定放大倍数为2的功放,同时可实现功率的放大。通过上面的公式可求出稳定在2V或者1~3V内步进可调时的控制电压,进而求出增益。同时,我们加入闭环反馈系统,通过检测实际输出电压与预设值的比较,来自动调整增益,达到稳定输出电压的作用。 后级功率放大采用集成功放,同时可放大电压。运用集成运放电路简单同时带负载能力强。在AD603的前级与功放前级加入电压跟随器,一是用作输入缓冲,二是起到前后级隔离,减小干扰。 2)模块说明 分压电路 分压电路由一个4k与一个1k精密电阻构成,将输入信号衰减5倍,输入信号幅值变为2mV~1V,这样输入信号小于AD603的最大输入电压,可以将输入信号送入AD603。 检波电路 检波电路采用精密整流,运用TL062运放搭建,通过电容的充放电以及二极管反向截止的特点达到输出一直为峰值的目的。 加法器电路 因为输入信号有正有负,当处于负半轴时,ADC无法进行频率采样,所以将信号整体抬高,使得完全处于正半轴,从而可以测量。 自动增益电路 自动增益控制放大器采用AD603作为程控增益芯片,由2片AD603级联。总增益控制范围为84 .28dB ( 4 .2 1 4 x 2)。在级联应用中, 有两种增益控制连接方式, 即顺序控制方式和并联控制方式。我们采取并联控制方式。 两片AD603 级联的并联控制方式是将两级的正增益控制输入端(GPOS)以并联形式由一个正电压Vc驱动, 而两级的负增益控制输人端(GNEG) 以并联形式加一个稳定的电压, 即VG1=VG2, 于是两级的增益同步变化,并联控制方式在线性范围内的控制能力为80dB/v, 即在较小的控制电压下便可获得较高的增益, 其总增益是单片AD603的两倍。其增益计算公式

运放中恒流源电路分析方法

运放电路中的恒流源电路分析方法 普通镜像恒流源、多集电极恒流源、高精度镜像恒流源、高内阻恒流源和镜像微恒流源电路,以及恒流源电路输出电阻的计算等。 分析恒流源电路的方法是: (1)确定恒流源电路中的基准晶体管或场效应管; (2)计算或确定基准电流; &nbbsp; (4)绘制恒流部分的交流通路,确定恒流源的内阻。 由于恒流源的内阻较大,计算恒流源内阻时不能忽略三极管集电极与发射极之间,或场效应管漏极与源极之间的动态电阻。 1、基本镜像恒流源分析 已知基本镜像恒流源电路如图1所示,试计算输出电流的大小和恒流源内阻。 图1

晶体管是基准管,且,工作在放大状态。 当与特性参数完全一致时,由可推得 由基准输入回路得, 所以, 当时,。 恒流输出管的交流通路如图1(b)所示,将晶体管用微变等效模型替代后的电路模型如图1(c),显然,恒流源的内阻。 必须注意,应用管的恒流特性时,必须满足,保证始终工作在放大状态。 基本镜像恒流源电路的扩展电路有两种,如图2所示。 图2 图2(b)的管采用多集电极晶体管(图2(a)已将其分散画),以基准管的集电极面积为基准,可得到一组与集电极

面积成正比的多个恒流源。 图2(c)中增加管可以进一步减少恒流输出与基准电流之间的近似程度,此时, 所以, 当时,基本镜像恒流值,增加管后,更接近。 2.高内阻(Wilson)恒流源 图3是Wilson恒流源电路,试计算恒流输出值。 图3 管是基准管,,工作在放大状态。 当、、均工作在放大状态时,各电流之间关系为:

整理后可得: 按二极管形式连接的管是管发射极的等效电阻,Wilson恒流源的内阻要大于。 3.微恒流源(Widlar)电路 图4是Widlar微恒流源电路,试计算输出恒流值。 图4 晶体管是基准管,且,工作在放大状态,。 管发射极电流与发射极电压之间的关系为: 所以, (1) 同理,当工作在放大状态时, (2) 由基极回路方程得:

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信 一、电平转换电路 下面来分析一下电路的设计思路: https://www.wendangku.net/doc/fa17551035.html,/BLOG_ARTICLE_244240.HTM 首先声明一下:这个电路是从3V3的角度考虑的! 1、接收通道 我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。 我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。同理,高电平分析是一样的。 逻辑转换完成了,那么就是电平的问题了。这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK! 2、发送通道 分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。 3、结论 其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。 二、电平问题: 单片机手册————电气特性 常用逻辑电平:12V,5V,3.3V; 1.TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

自动增益控制放大器

吉首大学信息科学与工程学院 课程设计报告书 课程单片机课程设计 课题:自动增益控制放大器 姓名: 学号: 专业: 年级: 指导教师: 基地指导教师: 2014 年11 月

一、项目介绍与设计目的 (1)此为2014年湖南电子设计大赛C题的设计报告,要求为: 一、基础部分 1、输入一个电压为0.01-0.03V的直流电压(峰值),要求输出电压为10V(峰值) 2、输入一个电压为0.1V的直流电压(峰值),要求输出电压为10V(峰值) 3、输入一个电压为10V的直流电压(峰值),要求输出电压为10V(峰值) 二、提高部分 1、输入一个电压为0.01-0.03V的交流电压(峰值),要求输出电压为10V(峰值) 2、输入一个电压为0.1V的交流电压(峰值),要求输出电压为10V(峰值) 3、输入一个电压为10V的交流电压(峰值),要求输出电压为10V(峰值) (2)目的在于培养我们的实践创新意识与基本能力、团队协作的人文精神和理论联系实际的学风;有助于我们工程实践素质的培养、提高我们针对实际问题进行电子设计制作的能力。

二、设计方案 1.项目环境要求 基于MSP430单片机 2.项目功能模块 1、放大电路: 考虑到负载电阻为10Ω,输出值要等于10V,所以电压仍需放大,第1部分为输入缓冲和固定增益放大模块,运放搭建电压跟随器作为输入缓冲,同时提高输入阻抗,固定增益放大部分将输入的微弱信号放大到适合后级处理的电压范围,前级放大将小信号放大50倍。VCA810增益控制电路增益后达不到所需要求,所以在后又加了一个放大电路图一为前级放大电路,图二为后级放大电路 图一 图二 2、压控增益电路 可控增益调节部分我们使用压控增益放大器 VCA810,VCA810 在宽频带工作模式下,增益控制范围为-40dB~+40dB ,且控制电压与增益dB 数成线性关系,满足设计要求。其中 1 脚为了匹配输入阻抗并接了50?的电阻,8 脚接25?的偏置电阻,其中 5 脚接 500?的负载电阻.......如图所示。

CMOS电平转换电路详解

CMOS电平转换电路详解 COMS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。 COMS电路的供电电压VDD范围比较广在+5~+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0。CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc.当输入电压高于VDD-1.5V时为逻辑1,输入电压低于VSS+1.5V(VSS为数字地)为逻辑0。 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑1,0V 等价于逻辑0,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H》2V,输入L《0.8V;输出H 》2.4V(3.4V),输出L《0.4V(0.2V)。 CMOS电平是数字信号还是模拟信号?CMOS电平是数字信号,COMS电路的供电电压VDD范围比较广在+5--+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V 时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,一般数字信号才是0和1 。 cmos电平转换电路1、TTL电路和CMOS电路的逻辑电平 VOH:逻辑电平1 的输出电压 VOL:逻辑电平0 的输出电压 VIH :逻辑电平1 的输入电压 VIH :逻辑电平0 的输入电压 TTL电路临界值:

常见运放滤波电路1

3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器 典型的低通滤波器如图十三所示。 图十三 3.1.2 高通滤波器 典型的高通滤波器如图十四所示。

图十四 3.1.3 文氏滤波器 文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。 3.2 二阶滤波器 二阶滤波电路一般用他们的发明者命名。他们中的少数几个至今还在使用。有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。 图十五(见图十七上) 二阶滤波器有40dB 每倍频的幅频特性。 通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。 我们通常用的带通和带阻滤波器有非常高的Q 值。如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。

这里没有介绍反相 Chebyshev 和 Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。 不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。 3.2.1 Sallen-Key滤波器 Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。他的成本很低,仅需要一个运放和四个无源器件组成。但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。 这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。 图十六(见图十七中) 3.2.2 多反馈滤波器 多反馈滤波器是一种通用,低成本以及容易实现的滤波器。不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。请参看参考条目【1】中的对多反馈滤波器的细节介绍。如果需要的是一个单位增益的Butterworth 滤波器,那么这里的电路就可以给出一个近似的结果。

3.3V转5V的双向电平转换电路

3.3V转5V的双向电平转换电路 说说所有的电平转换方法,你自己参考~ (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母 T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种5V 逻辑器件,其输入是3.3V 电平,只要在选择器件时选择输入为TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法 算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。 那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~ 3.3V转5V 电平转换方法参考 电平转换

电平转换电路

3.1 应用举例-应用SN74LVC2G07实行电平转换 图6显示了SN74LVC2G07一个Buffer作1.8V到5V的转换,另一Buffer 作3.3V到1.8V的转换。 器件的电源电压为1.8V。它可以保证器件将输入最低的VIH识别为有效的高电平。输出上拉电阻的最小值取决于器件开漏脚的最大灌电流能力(maximum current-sinking capability Iol max)。而最大灌电流能力是受限于输出信号的最大允许的上升时间的。 Rpu(min)=(Vpu-Vol)/ Iol(max) 对于图6中的SN74LVC2G07,假设Vpu1=5V±0.5V,Vpu2=1.8V±0.15V,而且电阻的精度为5% Rpu1(min)=((5.5V-0.45V)/4mA)×(1/0.95)=1.33kΩ 最接近的标称值为1.5kΩ。 Rpu2(min)=((1.8V-0.45V)/4mA)×(1/0.95)=394.73Ω 最接近的标称值为430Ω。 图7显示了在不同上拉电阻值的情况下具有10pF容性负载情况下的输出波形。当上拉电阻值增大后,输出信号的上升时间也增加了。

3.2 不要在CMOS 驱动的输出端加上拉电阻

在电平转换时,系统设计者不能在CMOS器件的输出端加上拉电阻。这种作法有很多弊端,应该避免使用。一个问题是在输出为低时增加了功耗。当CMOS 驱动输出为高是也会产生另一个危害。高电平的电源会通过上拉电阻对低电平电源灌电流。此时,下部的N沟道晶体管是关闭的,上部的P沟道晶体管是导通的。电流灌入低电平的电源会产生无法预料的后果。 4 FET开关 TI的CB3T,CBT,CBTD和TVC系列的总线开关可以用作Level-shifter。FET开关非常适用于不需要电流驱动并有很短传播时延的电平转换应用。 FET开关的好处: ●很短的传播时延 ●TVC器件(或者将CBT 器件配置为TVC)不用方向控制就可以实现双向电平转换 TI的CB3T系列器件可以用于5V到3.3V转换。图9显示了CB3T器件用作双向电平转换的一些应用。

几种简单的恒流源电路5

几种简单的恒流源电路 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极 性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测 输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V 类型5:

特征:使用JE FT,超低噪声 输出电流:由JE FT决定 检测电压:与JE FT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所 示, 图5 注:Is=IB+Iout=Iout(1+1/hFE)其中1/hFE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采 用FE T管

图6 Is=Iout-IG 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利 用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温 度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FE T的电路,改变Rgs 可使输出电流达到漏极饱和电流IDSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接RGS,则电流值变成IDSS,这样,J-FE T接成二极管形 式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐 出型电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vi n及环境温度的变化而变化,所以

自动增益控制放大器芯片引脚及功能

1.CD4051 1- A4 2- A6 3-Y 4-A7 5-A5 6-INH 7-VCC 8-VSS 9-C 10-B 11-A 12-A3 13-A0 14-A1 15-A2 16-VDD 用于:传输数字信号,或模拟信号从1路到8路或从8路到1路的开关切换. CD4051有A、B和C三个二进制控制输入端以及INH共4个输入,具有低导通阻抗和很低的截止漏电流。幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。这些开关电路在整个VDD-VSS和VDD-VEE 电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。当INH输入端=“1”时,所有的通道截止。只有当INH=0 时,三位二进制信号才可以选通8通道中的一个通道,连接该输入端至输出。其中VEE可以接负电压,也可以接地。当输入电压有负值时,VEE必须接负电压,其他时候可以接地。 CD4051引脚功能说明 引脚号符号功能 1 2 4 5 12 13 14 15 IN/OUT 输入/输出端 9 10 11 A B C 地址端 3 OUT/IN 公共输出/输入端 6 INH 禁止端 7 VEE 负电压端 8 Vss 数字信号接地端 16 VDD 电源+ 2真值表 输入状态接通通道 INH C B A 输出 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3” 0 1 0 0 “4”

0 1 0 1 “5” 0 1 1 0 “6” 0 1 1 1 “7” 1 x x x 均不接通 CD4051功能及使用概述: CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V 的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。使用十六进制代码就可以对CD4051进行操作了。比如说P1=0X07,这样CD4051就选择的是7号(二进制111)通道了。 如果在八个通道输入一模拟量,在输出端将输出什么,输入什么是自己设定。 例如,若模拟开关的供电电源VDD=+5V,VSS=0V,只要对此模拟开关施加0~5V的数字控制信号。这里,ABC数字控制信号就可以使用5V信号了,因为VDD是5v,里面控制部分就都是5V逻辑. 当VEE=-5V时,就可控制幅度范围为-5V~+5V的模拟信号。 当Vee=-8V时,就可以可控制幅度范围为-8V~+5V的模拟信号,Vee就是电子开关的8个输入端可以允许的信号范围下限,注意不要超过它的极限参数.峰-峰值达15V 。 2. DAC7811 参考资料 DAC7811为12位的DAC。使用一个有三线接口的双缓存器,合乎与SPI和大多数SDO接口标准。当运用复合器件时,通过接口SDO可以菊花链式连接;通过SDO口,用户可以回读DAC register的值。上电时,移位寄存器的值0,DAC 输出从0开始。外部输入参考电压决定电流的满额输出电流。当连接外部放大器后,反馈电阻可以提供温度跟踪和满额电压输出。 dac7811是10脚封装

相关文档
相关文档 最新文档