文档库 最新最全的文档下载
当前位置:文档库 › 材料成型CAE综合实验指导书

材料成型CAE综合实验指导书

材料成型CAE综合实验指导书
材料成型CAE综合实验指导书

武汉理工大学

“材料成型CAE综合实验”

上机实验指导书

使用班级:成型0803-05

2011年12月

为杜绝抄袭,实验报告存在以下现象者,将被认定为抄袭:

(1)在实验一、三、五中,实验结果和分析讨论的内容完全相同者;

(2)在实验二、四、六中,自主设计的结构、承载、约束完全相同,且实验结果、分析讨论也雷同者。

抄袭者和被抄袭者,都须重做实验,并参加答辩。否则,成绩为不及格。

实验报告按学校规定格式完成,尽量双面打印。在实验二、四、六的报告中,应对自主设计方案进行说明;在每个实验的报告中,分析讨论应包括:

(1)学习用ANSYS软件对该问题进行数值模拟分析的具体收获和总体体会。(2)对该模拟计算过程和计算结果的合理性等方面进行分析讨论。

目录

实验一:桁架的结构分析 (3)

实验二:自主设计构件的结构分析 (4)

实验三:圆管的温度场和热应力分析 (5)

实验四:自主设计构件的温度场和热应力分析 (7)

实验五:环形焊接接头冷却温度场和应力场分析 (7)

实验六:自主设计焊接接头的ANSYS 命令流 (11)

实验一:桁架的结构分析

一)实验目的

掌握用ANSYS进行有限元结构分析的基本过程。

二)基本原理和方法

结构分析是有限元分析的基础内容,也是材料成型过程模拟的主要内容。

有限元法是一种离散化的数值计算方法。离散后的单元和单元之间只通过节点相联系,所有场变量(位移、应力、温度等)都通过节点进行计算。对于每个单元,选取适当的插值函数,使得在子域内部、子域分界面上以及子域与外界分界面上都满足一定的条件。然后把所有单元的方程都组装起来,就得到整个结构的方程组。求解方程组,就可以得到方程的近似解。

有限元刚度分析法的步骤:1)建立几何模型;2)对几何模型进行离散化处理;3)将单元节点位移作为基本未知量;4)选择位移模式;5)确定单元应变与位移、应力与应变的关系;6)根据虚功原理建立单元中节点力与节点位移的关系;7)根据作用力等效原则将每个单元所受的载荷移置到该单元的节点上;8)将各单元的刚度方程叠加,组装成整体刚度方程;9)根据边界条件修改刚度方程,消除刚体位移;10)求解整体刚度方程,得到节点位移;11)根据相应方程求解应力和应变;12)利用计算机图形方式,将计算结果以变形网格、等值线、彩色云图、动画等方式进行显示与分析。

从应用角度看(如用ANSYS分析软件),整个过程可分为:

●前处理:步骤1)、2)

●加载求解:步骤7)、9)、10)、11)

●后处理:步骤12)

其余为软件自动进行。

三)实验内容

桁架结构如图所示,各节点等距离分布,1、2节点间距1m,集中力P=10KN,确定桁架各杆件内力。

本实验要求对分析结果进行讨论。

四)上机实验步骤(GUI法,参考)

建立文件:

Utility Menu>File>Change Directory>into yours>OK

Utility Menu>J File>obname>truss>OK

定义单元类型:

Main menu>Preference>Strucrtural>OK

Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Add>Link 2D Spar 1>OK >Close

Main Menu>Preprocessor>Real Constants> Add/Edit/Delete>Add>LINK 1>OK>AREA: 0.1>OK >Close

定义材料属性:

Main Menu>Preprocessor>Material Props>Material Models>Strucrural>Linear>Elastic >Isotropic>EX: 30E6, PRXY: 0.3>OK

生成节点:

Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS>Node 1: 0,0,0>Apply >Node 2: 1,0,0>Apply 同理:Node 3: 2,0,0>Node 4: 3,0,0>Node 5: 4,0,0>Node 6: 3,1,0>Node 7: 2,1,0>Node 8: 1,1,0>OK

Utility Menu>PlotCtrls>Numbering>NODE Node Numbers On>OK

生成单元:

Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes>Pick 1,2>Apply>Pick 2,3>Apply>同理:3,4>4,5>5,6>4,6>3,6>3,7>2,8>1,8>7,8>6,7>OK 施加位移约束和载荷:

Main Menu>Solution>Defined Loads>Apply>Structural>Displacement>On Nodes>Pick 1,3>Lab 2: UY>Apply>Pick 5>Lab 2: UX, UY>OK

Main Menu>Solution>Defined Loads>Apply>Structural>Force/Moment>On Nodes>Pick 2,4,7>Lab: FY, V ALUE: -10000>OK

求解:

Main Menu>Solution>Solve>Current LS>OK>Close

后处理:

绘制变形图:

Main Menu>General Postprocessor>Plot Results>Deformed Shape>Def Shape only>OK (对显示结果进行存储:Utility Menu>Plot Ctrls>Capture Image>File>Save as)

显示节点位移:

Main Menu>General Postprocessor>List Results>Nodal Solution>DOF Solution >Displacement Vector sun>OK

显示节点受力:

Main Menu>General Postprocessor>List Results>Nodal Loads>All stru forc F>OK

(或根据讨论的需要进行显示)

实验二:自主设计构件的结构分析

一)实验目的

通过自主设计的构件,熟悉用ANSYS进行有限元结构分析的过程。

二)基本原理和方法

同实验一

三)实验内容

1)参照实验一,自主设计一个构件的结构及其受力和约束状况。

2)用ANSYS进行有限元结构分析。

3)对分析结果进行讨论。

实验三:圆管的温度场和热应力分析

一)实验目的

掌握用ANSYS进行温度场分析和热应力分析的基本过程。

二)基本原理和方法

温度场分析和热应力分析是材料成型过程分析的重要内容,对材料成型CAE起着至关重要的作用。

有限元法是一种离散化的数值计算方法。离散后的单元和单元之间只通过节点相联系,所有场变量(位移、应力、温度等)都通过节点进行计算。对于每个单元,选取适当的插值函数,使得在子域内部、子域分界面上以及子域与外界分界面上都满足一定的条件。然后把所有单元的方程都组装起来,就得到整个结构的方程组。求解方程组,就可以得到方程的近似解。

用ANSYS软件进行有限元分析,整个过程可分为:

●前处理:建立几何模型;对几何模型进行离散化处理等。

●加载求解:根据作用力等效原则将每个单元所受的载荷移置到该单元的节点上;根

据边界条件修改刚度方程,消除刚体位移;求解整体刚度方程,得到节点位移;根

据相应方程求解应力和应变等。

●后处理:利用计算机图形方式,将计算结果以变形网格、等值线、彩色云图、动画

等方式进行显示与分析等。

本实验主要进行热分析和热力耦合分析,将温度场作为载荷施加给所分析的构件。

三)实验内容

有一截面为圆环形的输暖管道,内外半径分别为200mm、800mm,管道内水的温度为80℃,管道外表层温度为10℃,求管道内的应力分布。(假设管道内充满水)该问题为轴对称问题,沿管道横截面取宽为50mm的矩形截面(如图)为计算模型。

本实验要求对分析结果进行讨论。

四)上机实验步骤(GUI法,参考)

建立文件:

Utility Menu> File>Change Directory>into yours>OK

Utility Menu> File>Jobname>thermalstress>OK

建模:

Main menu>Preference>Strucrtural and Thermal>OK

Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Add>Thermal Solid>Quad 4 node 55>OK Element Type>Options>K3: Axisymmetric>OK

Main Menu>Preprocessor>Material Props>Temperature Unit>Celsuis>OK

Main Menu>Preprocessor>Material Props>Material Models>Thermal>Conductivity> Isotropic>KXX: 1.2>OK

Main Menu>Preprocessor>Modeling>Create Areas>Rectangle>By Dimensions>X1, X2: 0.2, 0.8. Y1, Y2: 0, 0.05>OK

划分网格:

Main Menu>Preprocessor>Meshing>MeshingTool>Size Controls: Lines Sets>Pick 1,3>OK>NDIV: 10>OK Back to “MeshTool Windows”> Size Controls: Lines Sets>Pick 2,4>OK>NDIV: 2>OK Back to “MeshTool Windows”>Shape: Quad Free>Mesh>Pick all>OK>Close “MeshTool Windows”

热分析:

Main Menu>Solution>Analysis Type>New Analysis>Steady State>OK

Utility Menu>Select>Entities>Lines, By Num/Pick, From Full>Apply>Pick 4>OK

Utility Menu>Select>Entities>Nodes, Attached to, Lines,all>OK

Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Nodes>Pick all>OK>Lab 2: TEMP, V ALUE: 80>OK

Utility Menu>Select>Entities>Lines, By Num/Pick, From Full>Apply>Pick 2>OK

Utility Menu>Select>Entities>Nodes, Attached to, Lines,all>OK

Main Menu>Solution>Define Loads>Apply>Thermal>Temperature>On Nodes>Pick all>OK>Lab 2: TEMP, V ALUE: 10>OK

Utility Menu>Select>Everything

Main Menu>Solution>Load Step Opts>Output Ctrls>DB/Results File>Basic quantities, Last substep, Value of N: 1>OK

Main Menu>Solution>Solve>Current LS>OK>Close

Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu>Nodal Solution>DOF Solution>Nodal Temperature>Deformed Shape only>OK (或根据讨论的需要进行显示,对显示结果进行存储:Utility Menu>Plot Ctrls>Capture Image>File>Save as)热应力耦合分析:

Main Menu>Preprocessor>Element Type>Switch Elem Type>thermal to Struc>OK

Main Menu>Preprocessor>Element Type>Add/Edit/Delet>Add> Options>K3: Axisymmetric >OK

Main Menu>Preprocessor>Material Props>Material Models>Structural>Linear>Elastic >Isotropic>EX: 1.2E11, PRXY: 0.3 Back to “Define Mareial Model Behavior”Windows: Structural>Thermal Expansion>Secant Coefficient>Isotropic>ALPX: 1.3E-6>OK

Utility Menu>Select>Entities>Lines, By Num/Pick, From Full>Apply>Pick 3>OK

Utility Menu>Select>Entities>Nodes, Attached to, Lines,all>OK

Main Menu>Preprocessor>Coupling/Ceqn>Couple DOFs>Pick all>OK>NSET: 7, LAB:

UY >OK

Utility Menu>Select>Everything

Main Menu>Preprocessor>Coupling/Ceqn>Couple DOFs>Pick 1, 14, 24>OK>NSET: 8, LAB: UX>OK

Main Menu>Preprocessor>Coupling/Ceqn>Couple DOFs>Pick 2, 12, 13>OK>NSET: 9, LAB: UX>OK

Main Menu>Solution>Analysis Type>New Analysis>Static>OK

Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Nodes>Pick 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11>Lab2: UY, V ALUE: 0>OK

Main Menu>Solution>Define Loads>Apply>Structural>Temperaure>From Thermal Analysis>Fname Name of results file: thermalstress.rth>OK

Main Menu>Solution>Solve>Current LS>OK>Close

Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu>Nodal Solution> Stress>X-Component of Stress>Deformed Shape only>OK

(或根据讨论的需要进行显示,对显示结果进行存储:Utility Menu>Plot Ctrls>Capture Image>File>Save as)

实验四:自主设计构件的温度场和热应力分析

一)实验目的

通过自主设计的构件,熟悉用ANSYS进行有限元温度场和热应力分析的过程。

二)基本原理和方法

同实验三

三)实验内容

1)参照实验三,自主设计一个构件的结构及其受热和约束状况。

2)用ANSYS进行有限元温度场和热应力分析。

3)对分析结果进行讨论。

实验五:环形焊接接头冷却温度场和应力场分析

一)实验目的

通过对焊接接头温度场和应力场的有限元模拟,学习用ANSYS对实际工程问题进行数值分析的过程。

二)基本原理和方法

对焊接接头应力及温度场分析是材料成型CAE中较为复杂的问题。它涉及到热与结构耦合等问题。

有限元法是一种离散化的数值计算方法。离散后的单元和单元之间只通过节点相联系,所有场变量(位移、应力、温度等)都通过节点进行计算。对于每个单元,选取适当的插值函数,使得在子域内部、子域分界面上以及子域与外界分界面上都满足一定的条件。然后把所有单元的方程都组装起来,就得到整个结构的方程组。求解方程组,就可以得到方程的近似解。

用ANSYS软件进行有限元分析,整个过程可分为:

●前处理:建立几何模型;对几何模型进行离散化处理等。

●加载求解:根据作用力等效原则将每个单元所受的载荷移置到该单元的节点上;根

据边界条件修改刚度方程,消除刚体位移;求解整体刚度方程,得到节点位移;根

据相应方程求解应力和应变等。

●后处理:利用计算机图形方式,将计算结果以变形网格、等值线、彩色云图、动画

等方式进行显示与分析等。

三)实验内容

某一圆环由环形钢板和铁板焊接而成,焊接材料为铜,如图为其纵截面的1/2。圆盘初始温度为800℃,将圆环放置于空气中进行冷却,周围空气为30℃,对流系数为120W/(m2℃)。求5min后圆环内部的温度场和应力场分布。(材料参数见表)

四)上机实验步骤(GUI法,参考)

建立文件:

Utility Menu> File>Change Directory>into yours>OK

Utility Menu> File>Jobname>weld>OK

定义单元类型:

Main Menu>Preprocessor>Element Type>Add/Edit/Delete>Add>Couple field>Vector Quad 13>OK Element Type>Options>K1: UX UY TEMP AZ, K3:Axisymmetric>OK>Close

设置钢的弹性模量:

Main Menu>Preprocessor>Material Props>Material Models>Strucrural>Linear>Elastic >Isotropic> 单击4次Add Temperature>Temperature: 30,200,400,600,800, EX: 依次钢的弹性模量(单位Pa):2.06e11, 1.92e11, 1.75e11, 1.53e11, 1.25e11,PRXY: 依次0.3>OK

设置钢的线膨胀系数:

In ”Define Material Model Behavior”Windows>Structural>Thermal Expansion>Secand Coefficient>Isotropic> ALPX: 1.10e-5>OK

设置钢的密度:

In ”Define Material Model Behavior” Windows>Structural>Density> DEN: 依次7840>OK 设置钢的双线性材料属性:

In ”Define Material Model Behavior”Windows>Structural>Nonlinear>Inelastic>Rate Independent>Isotropic Hardening Plasticity>Mises Plasticity>Bilinear>单击4次Add Temperature>Temperature: 30,200,400,600,800, Yield Stss: 依次钢的屈服强度(单位Pa), Tang Mod: 依次钢的切变模量(单位Pa)>OK

设置钢的热传导率:

In ”Define Material Model Behavior” Windows>Thermal>Conductivity>Isotropic>单击4次Add Temperature>Temperature: 30,200,400,600,800, KXX: 依次钢的导热系数>OK 设置钢的比热容:

In ”Define Material Model Behavior” Windows>Thermal>Specific Heat> C: 465>OK

设置第2种和第3种材料的属性:

In ”Define Material Model Behavior” Windows>New Model>Defined Material ID: 2>OK 按设置第1种材料(钢)属性的方法定义第2种材料(铜)的属性。

同理:设置第3种材料(铁)的属性。

生成有限元模型:

Main Menu>Preprocessor>Modeling>Create> Keypoints >In Active CS>输入关键点:1(1, 0, 0);2(1.8, 0, 0);3(2.6, 0, 0);4(1, 0.2, 0);5(1.7, 0.2, 0);6(1.9, 0.2, 0);7(2.6, 0.2, 0),每次输入一组数据后必须单击Apply按钮确认。

Main Menu>Preprocessor>Modeling>Create>Area>Arbitrary>Through KPs>Pick 1, 2, 5, 4>Apply>2, 3, 7, 6>OK

Main Menu>Preprocessor>Modeling>Create>Lines>Arc>By End KPs & Rad>Pick 5, 6>OK>2>OK>RAD Radius of the arc: 0.2>OK

Main Menu>Preprocessor>Modeling>Create>Area>Arbitrary>By Lines>2, 8, 9>OK

Utility Menu>Plot>Area (按SA VE_DB按钮保存或Save as)

Main Menu>Preprocessor>Meshing>SizeCntrl>ManuaSize>Lines>Picked ines>1, 3, 5, 7>OK> NDIV: 16>OK

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attibs>[MAT]: 1>OK

Main Menu>Preprocessor>Meshing>Mesh>Area>Free>1>OK

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attibs>[MAT]: 2>OK

Main Menu>Preprocessor>Meshing>Mesh>Area>Free>3>OK

Main Menu>Preprocessor>Meshing>Mesh Attributes>Default Attibs>[MAT]: 3>OK

Main Menu>Preprocessor>Meshing>Mesh>Area>Free>2>OK

Utility Menu>Plot>Element

Main Menu>Preprocessor>Numbering Ctrls>Merge Items>Label Item to be Merge: All>OK (作用:合并同位置的节点和单元)

Main Menu>Preprocessor>Numbering Ctrls>Compress Numbers>Label Item to be compress: All>OK (作用:压缩实体编号)

Utility Menu>Select >Everything (按SA VE_DB按钮保存或Save as)

加载求解:

Main Menu>Solution>Analysis Type>New Analysis>Transient Analysis>OK>OK

Main Menu>Solution>Load Step Opts>Time/Frequence>Time Integration>Amlititude Decay>On; On; Off; 0.005; -1; 0.5; 0.2>OK

Main Menu>Solution>Analysis Type>Sol’n Controls>Basic标签>Analysis Options: Small Displacement Transient/ Time Control: 300; On; 选Time Increment ;30;15;60/ Write Items to Result File: 选All solution items; Frequence: Write every substep>Transient标签>Time Integration: 选Amplititude decay; GAMMA: 0.005>OK

Main Menu>Solution>Define Loads>Apply >Structural>Temperature>Uniform Temp> [TUNF]: 800>OK

Utility Menu>Select >Entities>Lines; By Num/Pick; Reselect>Pick 1, 3, 4, 5, 6, 7, 9>OK Utility Menu>Select >Entities>Nodes; Attached to; Lines,all; From Full>OK

Main Menu>Solution>Define Loads>Apply >Thermal>Convection>On Nodes>单击Pick All>V ALI Film coeffient: 120; V AL2I Bulk temperature: 30>OK

Utility Menu>Select >Entities>Lines; By Num/Pick; Reselect>Pick 1, 5, >OK

Utility Menu>Select >Entities>Nodes; Attached to; Lines,all; From Full>OK

Main Menu>Solution>Define Loads>Apply >Structural>Displacement>on Nodes>单击Pick All>Lab2 DOFs to be constrained: UY; V ALUE Displacement value: 0>OK

Utility Menu>Select >Everything (按SA VE_DB按钮保存或Save as)

Main Menu>Solution>Solve>Current LS>OK>Close (按SA VE_DB按钮保存或Save as)查看求解结果:

Main Menu>General Postproc>Read Results>Last Set

Main Menu>General Postproc>Plot Results >Contour Plot>Nodal Solu>Nodal Solution>DOF Solution>Displacement vector sum>OK

Main Menu>General Postproc>Plot Results >Contour Plot>Nodal Solu>Nodal Solution>DOF Solution>Stress>von Mises stress>OK

Utility Menu>File>Exit>Quit-No Save!>OK

实验六:自主设计焊接接头的ANSYS 命令流

一)实验目的

1)初步学习ANSYS命令流法,认识其与GUI法不同的特点。

2)通过对实验五的命令流文件进行自主修改,并上机实践,了解用ANSYS命令流进

行有限元分析的方法。

二)基本原理和方法

基本原理同实验五。

采用ANSYS命令流法进行有限元分析。

在ANSYS软件中,命令流的执行通常可采用如下方法:

1)命令流文件整体读入:将命令流文件存为文本文件“Filename.txt”。在GUI方式下:选择Utility Menu> File>Read Input from…读入。

2)从输入框中读入:将“Filename.txt”中的命令采用复制的方式,粘贴到输入框中,按“Enter”键即可执行。一次可复制一条、多条直至整个命令流文件。

三)实验内容

1)学习实验五的命令流文件(见附件),各命令的含义查阅ANSYS软件的帮助文件。

2)将实验五的命令流文件进行上机实践。

3)对实验五的命令流文件进行自主修改,并上机实践。

4)对分析结果进行讨论。

附件:实验五的命令流文件

/PREP7 !进入前处理器

ET,1,PLANE13 !定义单元关键字

KEYOPT,1,1,4

KEYOPT,1,3,1

MP,ALPX,1,1.1E-5 !输入钢的线膨胀系数

MP,DENS,1,7840 !输入钢的密度

MP,C,1,465 !输入钢的比热

MPTEMP,,30,200,400,600,800 !定义钢的温度

MPDATA,EX,1,,2.06E11,1.92E11,1.75E11,1.53E11,1.25E11 !输入不同温度的E MPDATA,PRXY,1,,0.3,0.3,0.3,0.3,0.3 !输入不同温度的泊松比MPDATA,KXX,1,,49.8,44.8,39.4,34.0,29.0 !输入不同温度的导热系数TB,BKIN,1,5 !指定材料模型

TBTEMP,30 !设定温度点

TBDATA,1,1.40E9,2.06E10 !输入钢的屈服强度和切变模量TBTEMP,200

TBDATA,1,1.33E9,1.98E10

TBTEMP,400

TBDATA,1,1.15E9,1.83E10

TBTEMP,600

TBDATA,1,0.92E9,1.56E10

TBTEMP,800

TBDATA,1,0.68E9,1.12E10

MP,ALPX,2,1.66E-5 !输入铜的线膨胀系数(以下同理输入铜的其它性质)MP,DENS,2,8930

MP,C,2,386

MPDATA,EX,2,,1.03E11,0.99E11,0.90E11,0.79E11,0.58E11

MPDATA,PRXY,2,,0.3,0.3,0.3,0.3,0.3

MPDATA,KXX,2,,399,389,379,366,352

TB,BKIN,2,5

TBTEMP,30

TBDATA,1,0.90E9,1.03E10

TBTEMP,200

TBDATA,1,0.85E9,0.98E10

TBTEMP,400

TBDATA,1,0.75E9,0.89E10

TBTEMP,600

TBDATA,1,0.62E9,0.75E10

TBTEMP,800

TBDATA,1,0.45E9,0.52E10

MP,ALPX,3,1.18E-5 !输入铁的线膨胀系数(以下同理输入铁的其它性质)MP,DENS,3,7870

MP,C,3,455

MPDATA,EX,3,,1.18E11,1.09E11,0.93E11,0.75E11,0.52E11

MPDATA,PRXY,3,,0.3,0.3,0.3,0.3,0.3

MPDATA,KXX,3,,80.5,63.5,50.3,39.4,29.6

TB,BKIN,3,5

TBTEMP,30

TBDATA,1,1.04E9,1.18E10

TBTEMP,200

TBDATA,1,1.01E9,1.02E10

TBTEMP,400

TBDATA,1,0.91E9,0.86E10

TBTEMP,600

TBDATA,1,0.76E9,0.69E10

TBTEMP,800

TBDATA,1,0.56E9,0.51E10

K,1,1 !创建关键点

K,2,1.8

K,3,2.6

K,4,1,0.2

K,5,1.7,0.2

K,6,1.9,0.2

K,7,2.6,0.2

A,1,2,5,4

A,2,3,7,6

LARC,5,6,2,0.2 !生成圆弧线

AL,2,8,9

LSEL,S,,,2,8,2

LSEL,A,,,9

LESIZE,ALL,,,10

LSEL,S,,,1,7,2

LESIZE,ALL,,,16

MAT,1

AMESH,1

MAT,2

AMESH,3

MAT,3

AMESH,2

NUMMRG,ALL !合并同位置或等效实体NUMCMP,ALL !压缩实体编号

ALLSEL

FINISH

/SOLU !进入求解器

ANTYPE,TRANS

TRNOPT,FULL !指定分析类型

TIMINT,1,STRUCT !打开结构分析时间积分选项TIMINT,1,THERM !打开热分析时间积分选项TINTP,0.005,,,-1,0.5,0.2

TIME,300 !定义计算终止时间DELTIM,30,15,60 !指定最大、最小时间步长AUTOTS,ON !打开自动时间步长KBC,1 !设置加载方式OUTRES,,ALL

BFUNIF,TEMP,800 !施加温度载荷

LSEL,S,,,1,9,2

LSEL,A,,,4,6,2

NSLL,S,1

SF,ALL,CONV,120,30 !施加对流载荷

LSEL,S,,,1,5,4

NSLL,S,1

D,ALL,UY !施加位移载荷

ALLSEL

SOLVE !开始计算

FINISH

/POST1 !进入后处理器

SET,LAST !读取最终求解结果PLNSOL,TEMP !绘制温度场等值线图PLNSOL,U,SUM !绘制合位移场等值线图

PLNSOL,S,EQV !绘制等效应力场等值线图FINISH

焊接技术及自动化实验指导书

焊接技术及自动化专业 实验指导书

材料成型及控制教研室主编 《CBE模式下焊接技术及自动化专业学生实践能力培养体系的改革研究》课题组参编 目录 一、《金属学及热处理》实验指导书 1.实验一金相显微镜的使用及金相试样的制备 (1) 2.实验二铁碳合金平衡组织的显微分析 (7) 3.实验三碳钢的热处理 (9)

二、《焊接冶金与金属焊接性》实验指导书 1.实验一焊缝金属中扩散氢的测定 (13) 2.实验二斜Y型坡口焊缝裂纹实验 (17) 3.实验三插销实验 (19) 三、《焊接结构》实验指导书 1.实验一不同焊接参数下平板变形量测量与分析 (23) 2.实验二不同焊接方法下平板变形量测量与分析 (25) 3.实验三不同焊接位置下平板变形量的分析 (26) 4.实验四焊接变形的矫正 (27)

四、《焊接方法与设备》实验指导书 1.实验一不同的酸碱度焊条的焊接工艺性 (29) 2.实验二埋弧自动焊焊接 (32) 3.实验三 CO2保护焊焊接参数对焊缝成形的影响 (36) 4.实验四钨极氩弧焊焊接方法 (41) 5.实验五焊条电弧焊实训项目 (43) 五、《弧焊电源》实验指导书 1.实验一弧焊电源外特性和调节性能的测定 (45) 2.实验二弧焊电源的结构认识与观察 (48)

3.实验三弧焊整流器的结构认识与观察 (50) 六、《Pro/E造型及模具设计》实验指导书 1.实验一基于Pro/E Wirdfire设计软件初步练习 (52) 2.实验二Pro/E截面草绘功能练习 (53) 3.实验三Pro/E基本成型特征功能练习 (57) 4.实验四Pro/E基准特征建模功能练习 (61) 5.实验五 Pro/E零件建模工程特征功能练习 (63) 6.实验六Pro/E实体特征编辑功能练习 (65) 7.实验七Pro/E曲面造型功能练

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

通信工程专业综合实验指导书

通信工程专业综合实验指导书 XX建筑大学 信息与电气工程学院 通信工程教研室 2009年3月

实验一、学习数字通信系统的SystemView仿真软件 一、实验目的 1.了解SystemView软件,学习数字通信系统SystemView仿真软件的使用方法,为实际的仿真应用打下良好的基础。 2.掌握软件设计和仿真的方法。 二、实验说明 SystemView是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。 利用SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。 SystemView的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案论证。还可进行CDMA通信系统和数字电视业务的分析;用户还可以自己用C语言编写自己的用户自定义库。 SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。 在系统设计和仿真方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形,也可完成对仿真运行结果的各种运算、频谱分析、滤波。 三、实验设备 四、实验内容 1.安装SystemView,对该软件有一个感性认识

根据SystemView安装软件说明,在电脑上安装SystemView软件。 2.了解SystemView设计窗口 启动SystemView后就会出现如图1所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。 3.了解SystemView图符库 SystemView的图标库可分为3种,即基本库、专业库以及用户扩展库。分别了解相关图库的功能,便于后续设计使用。 4.了解SystemView分析窗口

逆向工程实验指导书

实验一:逆向工程技术实验三维测量操作 一、实验目的 了解逆向工程的基本原理和工作流程,初步掌握使用柔性关节臂式三坐标扫描仪系统对样件进行测量的方法,并了解利用测量所得的数据进行三维重构的过程。 二、实验的主要内容 样件外形测量与三维重构。 三、实验设备和工具 柔性关节臂式三坐标扫描系统 装有IMAGEWARE软件的计算机 四、实验原理 1、三维测量的方法简介 不同的测量对象和测量目的,决定了测量过程和测量方法的不同。 2、非接触式测量的三角测量原理 激光探头的测量原理目前均以三角法为主。如下图所示,激光由激光二氧化碳激光发生器产生,经聚光透镜(F1)投射到工件表面,由于光束反射作用,部份光源经固定透镜(F2)聚焦后投射在光传感器(D)上。当物体沿y方向上下运动或者探头沿y方向移动,其散射光投射在光传感器的位置(X)亦将改变。 2、柔性关节臂式三坐标扫描仪系统简介 柔性关节臂式三坐标扫描仪系统由柔性关节臂式(FARO)三坐标测量机和Kreon激光扫描系统构成。 Kreon激光扫描系统是基于激光截面三角测量的原理,对工件表面进行非接触式的扫描,在激光线条上采集非常密集的数字化(坐标)点,通过与电子控制器(ECU)的连接,记录激光线与工件相交的位置。摄像机摄取激光线位置获得立体影像,ECU电子控制器对每条激光线条上所记录的600个坐标点在Z轴方向的位置,以初始校正时所记录的绝对零位为依据作重复计算。 3、三坐标测量技术在逆向工程上的应用 测量数据的三维实体重构是目前逆向工程领域研究的“瓶颈”,实际应用中,因原始数据的获取方式、三维重构支撑环境、三维重构方法和目标不同,其理论依据、技术路线、算法和工作内容有较大差异。 数据压缩、曲线曲面的光顺处理噪声去除、数据匀化数据预处理曲面重构特征提取与数据分块 五、实验方法和步骤 1、Kreon激光扫描系统数据处理”-->“SELECT MACHINE”,在对话框中选“FARO Arm.par”,按OK,跟着会出现一个读取ECU的进程。 “Services”-->“Positioning” 将工件放在台面上使扫描头能扫到所有要扫的面。被扫工件应先喷上显像剂 Digitization --> Add digitization:Name(Path) 按Run digitization定义步距、频率等 按Record开始扫描,一个方向扫完后,可用Face检查,未扫到部分再换方向局部补扫。将已扫的结果点云过滤。 将结果输出,保存为逆向工程软件所用的格式文件。 2、在逆向工程软件中处理测量所得的数据,并进行曲面重构,得到计算机三维模型,最后在三维CAD软件中完成样件的三维造型设计。

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

WDT-IIIC综合实验指导书

第三章一机—无穷大系统稳态运行方式实验一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验

3D打印实验指导书

3D打印实验指导书 一实验目的 1、理解快速成型制造工艺原理与特点; 2、了解快速成型制造过程与传统的材料去除加工工艺过程的区别; 3、推广该项技术的普及与应用。 二实验要求 1、利用计算机对原形件进行切片,生成STL文件,并将STL文件送入FDM快速成型系统;对模型制作分层切片;生成数据文件; 2、快速成型机按计算机提供的数据逐层堆积,直至原形件制作完成; 3、观察快速成型机的工作过程,分析产生加工误差的原因。 三实验主要仪器设备 FDM快速成型系统 四实验原理 实验原理: 该工艺以ABS材料为原材料,在其熔融温度下靠自身的粘接性逐层堆积成形。在该工艺中,材料连续地从喷嘴挤出,零件就是由丝状材料的受控积聚逐步堆积成形。该工艺示意图如下: 图1 快速成型原理 这样就将一个物理实体复杂的三维加工转变成一系列二维层片的加工,因此大大降低

了加工难度。由于不需要专用的刀具与夹具,使得成形过程的难度与待成形的物理实体的复杂程度无关,而且越复杂的零件越能体现此工艺的优势。 主要技术指标: 最大成品尺寸:254×254×406mm 精确度:±0.127mm 原料:ABS 阔度0、254 —2.54mm 厚度0、05 —0.762mm 快速原型技术的基本工作过程 快速成形技术就是由CAD模型直接驱动的快速制造复杂形状三维物理实体技术的总称。其基本过程就是: 1、首先设计出所需零件的计算机三维模型,并按照通用的格式存储(STL文件); 2、跟据工艺要求选择成形方向(Z方向),然后按照一定的规则将该模型离散为一系列有序的单元,通常将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片(CLI文件); 3、再根据每个层片的轮廓信息,输入加工参数,自动生成控制代码; 4、最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体; 5、后处理,小心取出原型,去除支撑,避免破坏零件。用砂纸打磨台阶效应比较明显处。如需要可进行原型表面上光。 这样就将一个物理实体复杂的三维加工转变成一系列二维层片的加工,因此大大降低了加工难度。由于不需要专用的刀具与夹具,使得成形过程的难度与待成形的物理实体的复杂程度无关,而且越复杂的零件越能体现此工艺的优势。 快速原型技术的特点 1、由CAD模型直接驱动; 2、可以制造具有复杂形状的三维实体; 3、成形设备就是无需专用夹具或工具的成形机; 4、成形过程中无人干预或较少干预; 5、精度较低;分层制造必然产生台阶误差,堆积成形的相变与凝固过程产生的内应力也会引起翘曲变形,这从根本上决定了RP造型的精度极限; 6、设备刚性好,运行平稳,可靠性高;

金工实训钳工实验报告.doc

金工实训钳工实验报告 金工实习是一门非常注重实践的技术性实习,学习参加实习有助于提高在学校所学的知识。今天我为大家准备了金工实训钳工实验报告,欢迎阅读! 金工实训钳工实验报告【1】 为期五周的金工实习结束了,在实习期间虽然很累,但我们很快乐,因为我们在学到了很多很有用的东西的同时还锻炼了自己的动手能力。虽然实习期只有短短的五周,在我们的大学生活中它只是小小的一部分,却是非常重要的一部分,对我们来说,它是很难忘记的,毕竟是一次真正的体验社会、体验生活。 通过这次金工实习,我了解了钳工、车工、铣工、磨工和数控车、铣、火花机、线切割机等的基本知识、基本操作方法。主要学习了以下几方面的知识:钳工、车工、铣工、磨工等的操作。 第一项:辛苦的钳工 在钳工实习中,我们知道了钳工的主要内容为刮研、钻孔、锯割、锉削、装配、划线;了解了锉刀的构造、分类、选用、锉削姿势、锉削方法和质量的检测。我们实训的项目是做一个小榔头,说来容易做来难,我们的任务是把一根为30的115cm长的圆棒手工挫成20×20长1cm的小榔头,在此过程中稍有不慎就会导致整个作品报废。首先要正确的握锉刀,锉削平面时保持锉刀的平直运动是锉削的关键,锉削力有水平推力和垂直压力两种。锉刀推进时,前手压力逐渐减小后手压力大则后小,锉刀推到

中间位置时,两手压力相同,继续推进锉刀时,前手压力逐渐减小后压力加大。锉刀返回时不施加压力。这样我们锉削也就比较简单了。同时我也知道了钳工的安全技术为: 1,钳台要放在便于工作和光线适宜的地方;钻床和砂轮一般应放在场地的边缘,以保证安全。2,使用机床、工具(如钻床、砂轮等),要经常检查,发现损坏不得使用,需要修好再用。3,台虎钳夹持工具时,不得用锤子锤击台虎手柄或钢管施加夹紧力。 接着便是刮削、研磨、钻孔、扩孔等。虽然不是很标准,但却是我们汗水的结晶,是我们几天来奋斗的结果。 钳工的实习说实话是很枯燥的,可能干一个下午却都是在反反复复着一个动作,还要有力气,还要做到位,那就是手握锉刀在工件上来来回回的锉,锉到晚上时,整个人的手都酸疼酸疼的,腿也站的有一些僵直了,然而每每累时,却能看见老师在一旁指导,并且亲自示范,和我们一样,看到这每每给我以动力。几天之后,看着自己的加工成果,我们最想说的就是感谢指导我们的老师了。 第二项:轻松的车工、铣工 车工、铣工不是由数控来完成的,它要求较高的手工操作能力。首先老师叫我们边听边看车床熟悉车床的各个组成部分,车床主要由变速箱、主轴箱、挂轮箱、进给箱、溜板箱、刀架、尾座、床身、丝杠、光杠和操纵杆组成。铣床主要由主轴箱、主轴、立柱、电气柜、工作台、冷却液箱、床身。车床、铣床是通过各个手柄来进行操作的,老师又向我们讲解了各个手柄的作用,然后就让我们熟悉随便练习加工零件。老师先初步示范了一下操作方法,并加工了一部分,然后就让我们开始加工。车床加

乐高实验指导书1

创新综合实验

目录 第一部分课程总览 (3) 第二部分综合实验 (6) Lab1 光电传感器自动跟踪小车 (6) Lab2 光电传感器测距功能测试 (8) Lab3 光电传感器位移传感应用 (12) Lab4 超声波传感器测试 (13) Lab5 超声波传感器位移传感应用 (17) 第三部分创新实验 a)双轮自平衡机器人; b)碰触传感机器人设计(基于Microsoft Robotics Studio平台); c)寻线机器人的仿真和建模及实例(基于Lejos-Osek 设计一个机器人的实例); d)自己提出一个合理的项目

第一部分 课程总览 1.目的与意义 提倡“素质教育”、全面培养和提高学生的创新以及综合设计能力是当前高等工科院校实验教学改革的主要目标之一。为适应素质教育的要求,高等工科院校的实验课程正经历着从“单一型”“验证型”向“设计型”“开放型”的变革过程。我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程涵盖了机械设备及加工过程测试控制相关的电子电路、传感器、信号处理、接口、控制原理、测控计算机软件等理论及技术,具有综合性、实践性强的特点,但目前各课程的实验教学存在着孤立、分散、缺乏系统性的问题。为促进机械工程学科学生对于计算机测控技术的工程创新设计能力、促进相关理论知识的理解和灵活应用,本机电一体化创新综合实验以丹麦乐高(LEGO)公司教育部开发的积木式教学组件-智力风暴( MINDSTORMS)为基础进行。 采用LEGO MINDSTORMS 为基础建立开放型创新实验室,并根据我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程设计多层次的综合创新实验设计项目,具有技术综合性和趣味性以及挑战性,能有效激发学生的学习兴趣,使学生在实践项目的过程中激发和强化他们的创造力、动手能力、协作能力、综合能力和进取精神;可使学生在实施项目的过程中对材料、机械、电子、计算机硬件、软件均有直观的认知并掌握机械工程测试与控制的综合分析设计能力。 2.实验基础 2.1 LEGO MINDSTORMS 控制器硬件 要求认识和理解RCX、NXT的基本结构,输入输出设备及接口,DCP传感器及接口,并熟练进行连接与操作。 2.2根据具体的实验要求选择适合的软件 ?Microsoft Robotics Studio基础 ?VPL编程 ?Microsoft Robotics Studio软件 ?Robolab软件 ?NXT软件 ?Matlab等等 2.3授课方式: 课堂讲授,编程以自学为主 参考书: a)LEGO快速入门 b)乐高组件和ROBOLAB软件在工程学中的应用 c)ROBOLAB2.9编程指南 d)ROBOLAB研究者指南

先进制造技术实验报告

题目:先进制造技术实验 学院:工学部_____ 学号:__ 姓名:_____ 班级: 13机工__ 指导教师:李庆梅_____ 日期: 2016年5月28日

实验一 三坐标机测量 一、实验目的 通过三坐标测量机的演示性实验,了解三坐标测量机在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解三坐标测量机的组成; (2)了解三坐标测量机的测量原理; (3)了解反求工程的概念。 三、实验原理及设备 图1为Discovery Ⅱ D-8 型桥式三坐标测量机外形图,三坐标测量机的三组导轨相互垂直,形成了 X,Y,Z 三个运动轴,各方向的行程分别由高分辨率精密光栅尺测量,从而组成了机器的空间直角坐标系统,原点位于测量机左前上方。测量工件时,探头(测头)相对坐标系运动,用它来探测处于坐标系内的任 何待测工件表面,即可确定该测点的空间坐标值, 经计算机采集 得到测点数据,按程序规定的要求探测若干点后, 计算机即可对采样数据进行处理,从中计算出被测几何要素的尺寸、形状误差和 在坐标系中的位置, 在对若干要素探测后, 计算机可根据不同的测量要求计算出这些几何要素间的位置尺寸和位置误差。 Discovery Ⅱ D-8 型三坐标测量机配有MeasureMax+(Version 6.4)测量软件,该软件功能强大,内容丰富,整个测量操作过程可由计算机控制自动完成,也可以由操纵杆(见图2.)配合计算机完成部分手动操作。

图2 操作杆四、实验步骤 图3 测量操作流程

实验二快速原型制造 一、实验目的 目前快速原形制造技术已成为各国制造科学研究的前沿学科和研究焦点。通过快速成型机演示性实验,了解快速原型制造在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解快速成型机的组成; (2)了解快速成型机的实体成型原理; (3)通过参观实验室现有快速成型零件,了解快速原型制造的应用。 三、实验原理及设备 快速成形制造工艺采用离散/堆积成型原理成型,首先利用高性能的CAD软件设计出零件的三维曲面或实体模型;再根据工艺要求,按照一定的厚度在Z 向(或其它方向)对生成的CAD模型进行切面分层,将三维电子模型变成二维平面信息(离散过程),然后对层面信息进行工艺处理,选择加工参数,系统自动生成刀具移动轨迹和数控加工代码;并对加工过程进行仿真,确认数控代码的正确性;再利用数控装置精确控制激光束或其它工具的运动,在当前工作层(三维)上采用轮廓扫描,加工出适当的截面形状;将各分层加工的每个薄层自动粘接,最后直至整个零件加工完毕。可以看出,快速成形技术是个由三维转换成二维(软件离散化),再由二维到三维(材料堆积)的工作过程。 快速原形制造技术的主要工艺方法有光敏液相固化法LSA( Stero Lithography Apparatus),选区片层粘接法LOM(Laminated Object Manufacturing),选区激光烧结法SLS(Selective Laser Sintering)和熔丝沉积成型FDM(Fused Deposition Modeling)。本实验采用熔丝沉积成型FDM工艺方法进行快速原形制造,该方法使用ABA丝为原料,利用电加热方式将ABA丝熔化,由喷嘴喷到指定的位置固化。一层层地加工出零件,该方法设备简单,零件精度较高,污染小。 图1为结构图,它由喷头、喷咀、导杆、Z轴丝杆、Z工作台、成型材料盒、支撑材料盒、废料桶、显示面板(Prodigy Plus型机的控制面板在材料盒

综合实验试验指导书(一)

综合实验实验指导书 福建工程学院土木工程学院 2013年12月

学生实验守则 1、实验前应认真按教师布置进行预习,明确实验目的、要求,掌握实验内容、方法和步骤。 2、实验前的准备工作,经指导教师或实验技术人员检查,合格后方可进行实验。实验过程中认真观察各种现象,记录实验数据,不能马虎的抄袭。实验完毕必须整理好本组实验仪器,并经指导教师或实验技术人员验收后,方可离开。实验后,认真分析实验结果,正确处理数据,细心制作图表,做好实验报告。不符合要求者,应重做。 3、实验室内必须保持安静,不准高声喧哗打闹,不准抽烟,随地吐痰,乱抛纸屑杂物,不准做与实验无关的事。不准穿背心、裤衩、拖鞋(除规定须换专业拖鞋外)或赤脚进入实验室。 4、必须严格遵守实验制订的各项规章制度,认真执行操作规程。注意人身和设备安全。 5、爱护国家财物。节约水电和药品器材,不得动用他组的仪器、工具材料。凡损坏仪器、工具者应检查原因,填写报损单,并依照管理办法赔偿损失。 前言

为了达到预期目的,试验课必须注意以下几方面问题: 1、试验前认真预习指导书和课本有关内容,同时应复习其它已学有关课程的有关章节,充分了解各个试验的目的要求、试验原理、方法和步骤,并进行一些必要的理论计算。一些控制值的计算工作,试验前必须做好。 2、较大的小组试验,应选出一名小组长,负责组织和指挥整个试验过程,直至全组试验报告都上交后卸任,小组各成员必须服从小组长和指导教师的指挥,要明确分工,协调工作,不得擅离各自的岗位。 3、试验开始前。必须仔细检查试件和各种仪器仪表是否安装稳妥,荷载是否为零,安全措施是否有效,各项准备工作是否完成,要经指导教师检查通过后,试验才能开始。 4、试验时应严肃认真,密切注意观察试验现象,及时加以分析和记录,要以严谨的科学态度对待试验的每一步骤和每一个数据。 5、严格遵守实验室的规章制度,非试验用仪器设备不要乱动;试验用仪器、仪表、设备,要严格按规程进行操作,遇有问题及时向指导教师报告。 6、试验中要小心谨慎,不要碰撞仪器、仪表、试件和仪表架等。 7、试验结束后,要及时卸下荷载,使仪器、设备恢复原始状态,以后小心卸下仪器、仪表,擦净、放妥、清点归还,经教师认可并把试验记录交教师签字后离开。 8、试验资料应及时整理,按时独立完成试验报告,除小组分工由别人记录的原始数据外,严禁抄袭。 9、试验报告要求原始记录齐全、计算分析正确、数据图表清楚。 10、经教师认可,试验也允许采用另外方案进行。 试验一量测仪器的参观与操作练习

光固化快速成型实验指导书

光固化快速成型实验指导书 1.实验目的 快速成型(Rapid Prototyping)技术是20世纪80年代后期发展起来的一种新型制造技术,是近20年制造技术领域的一次重大突破。通过实验使学生对快速成型技术的成型过程有较生动的理解,以及了解快速成型技术的应用。 2.实验仪器与设备 (1)UG、3DMAX、CATIA、SOLIDWORKS等三维造型软件。 (2)数据处理部分主要使用光固化快速成形系统数据准备软件Rp Data对三维模型进行加支架、分层; (3)采用的SLA成型设备是西交大SLA(XJRP)激光快速成型机,型号为SPS450B,如图2-2;它采用高精密聚焦系统,在整个工作面上光斑直径<0.15mm,采用伺服电机、精密丝杠组成闭环控制系统,使Z向升降台重复定位精度达到±0.05mm;采用超高速扫描器,激光扫描速度可达到8m/s,制作速度可达到60g/h,特别适合于企业及激光快速成型服务中心。SPS系列激光快速成型机成型效率高,适宜汽车等大型物件成型。其技术参数如下表3-1。 表3-1 SLA技术参数

图3-2 激光快速成型机 3.实验原理 光敏树脂液相固化成型(SLA—Stereolithography Apparatus) 光敏树脂液相固化成形又称光固化立体造型或立体光刻。其工作原理如下图所示。由激光器发出的紫外光,经光学系统汇集成一支细光束,该光束在计算机控制下,有选择的扫描液态光敏树脂表面,利用光敏树脂遇紫外光凝固的机理,一层一层固化光敏树脂,每固化一层后,工作台下降一段精确距离,并按新一层表面几何信息使激光扫描器对液面进行扫描,使新一层树脂固化并紧紧粘在前一层已固化的树脂上,如此反复,直至制作生成一个零件实体模型。 激光立体造型制造精度目前可达±0.1mm,主要用作为产品提供样品和实验模型。 图3-3 光固化原理

2014春《文献检索》实验指导书-机械类六个专业-(需要发送电子稿给学课件

《文献检索》实验指导书 刘军安编写 适用专业:机械类各专业 总学时:24~32学时 实验学时:6~14 机械设计与制造教研室 2014. 3

一、课程总实验目的与任务 《文献检索》课程实验是机械学院机械类专业的选修课的实验。通过实验内容与过程,主要培养学生在信息数字化、网络化存储环境下信息组织与检索的原理、技术和方法,以及在数字图书馆系统和数字信息服务系统中检索专业知识的能力,辅助提高21世纪大学生人文素质。通过实验,使学生对信息检索的概念及发展、检索语言、检索策略、检索方法、检索算法、信息检索技术、网络信息检索原理、搜索引擎、信息检索系统的结构、信息检索系统的使用、信息检索系统评价以及所检索信息的分析等技术有一个全面熟悉和掌握。本实验主要培养和考核学生对信息检索基本原理、方法、技术的掌握和知识创新过程中对知识的检索与融合能力。实验主要侧重于培养学生对本专业技术原理和前言知识的信息检索能力,引导学生应理论联系实际,同时要了解本专业科技信息的最新进展和研究动态与走向。 二、实验内容 通过课程的学习,结合老师给出的检索主题,学生应该完成以下内容的实验: 实验一:图书馆专业图书检索(印刷版图书) 实验二:中文科技期刊信息检索 实验三:科技文献数据库信息检索 实验四:网络科技信息检索(含报纸和网络) 文献检索参考主题: 1.工业工程方向: 工业工程;工业工程师的素质、精神、修养、气质与能力;工业工程的本质;企业文化与工业工程;战略工程管理;工程哲学;创新管理;生产管理;品质管理;优化管理或管理的优化;零库存;敏捷制造;敏捷管理;(优秀的、现代的、或未来的)管理哲学;生产管理七大工具;质量管理;设备管理;基础管理;现场管理;六西格玛管理;生产线平衡;工程经济;系统哲学;系统管理;柔性制造;看板管理;工程心理学;管理心理学;激励管理;管理中的真、善、美(或假、恶、丑);工程哲学;工业工程中的责任;安全管理;优化调度;系统工程;系统管理与过程控制;设计哲学;智能管理;工业工程中的数学;智能工业工程,或工业工程的智能化;生态工程管理;绿色工业工程,或绿色管理;协同学与协同管理;工业工程中的协同;概念工程与概念管理;工业工程与蝴蝶效应;管理中的蝴蝶效应,等等…… 2.机械电子工程方向: CAD;CAM;CAE;CAPP;PDM;EPR;CIMS;VD;VM;FMS;PLC;协同设计;协同制造;概念设计;自底向上;自顶向下;智能设计;智能制造;智能材料;特种加工(线切割、电火花、激光加工、电化学加工、超声波加工、光刻技术、快速成型、反求工程);微机械;精密加工;精密制造;机电一体化;自动化;控制论;线性控制;非线性控制;混沌控制;模糊控制;人工智能;神经网络;纳米技术;纳米制造;机器人;智能机器人;传感器;智能传感器;自动化生产线;机械手;智能机械手;自动检测;数据采集;信号处理;信息识别、模式识别等等……

快速成型技术个人实验报告

开放性实验 快速成型制造技术 实 验 报 告 班级: 学号: 姓名: 指导教师:

一:快速成型介绍 快速原理制造技术,又叫快速成型技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM 技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有UV、SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下:SLA(光固化成型法)快速成形系统的原理

快速成型实习报告

快速成型实习报告一、模型的选择 组成员各设计出一个模型,通过组成员的讨 论、分析后从中挑选出一个最适合这次实习 的一个模型“贴墙的挂钩”(如右图所示) 选择这个模型的原因有以下两点: 1、生活中随处可见,有了它方便了我们的生活 2、这个模型看似简单,但设计其分型面,及 脱模方式的确定却需要用心去构思,有点难度。 二、模型的制造 将pro-e三维造型造出的模型转为STL文件 ,再通过快速成型机(如右图所示)成型模 型做母件 三、制作硅胶模 1、用橡皮泥在挂钩处做一个梯形的镶件,是为 了最后更容易分出那个钩,这样更方便脱模。 2、将模种定位,分模,以及设计好水口,灌注口,再用纸板围框。

3、选择合适的硅橡胶和固化剂按重量比搅拌均匀,然后放入真空机(如右图所示)抽真空 排尽气泡8-10分钟,完成第一次浇注。把 排完气泡的硅胶流动体从一个位置慢慢倾 入模框内直到覆盖整个模种为止。放置于平 整处,室温静待4-6小时,表面不发粘即可。 4、将第一次浇注好的硅胶模取出去掉 挂钩出的梯形橡皮泥。 5然后用相同的硅胶,放入真空机 抽真空排尽气泡8-10分钟,完成第 二次浇注。 6、第二次浇注完成后取出硅胶模, 用分模的刀具进行第一次分模(如 图所示) 上下模(如下图所示)

7、取出梯形镶件,进行第二次分 模,结果(如右图所示)成型挂钩 的钩处。 四、浇注成型 1、硅胶模开好之后,将需要的树脂 搅拌均匀,倒入硅胶膜。树脂A与 树脂B以1:2的比例混合。用电子 秤(如右图所示)来量取。 2、将量取好的树脂和硅胶模放入真空机中抽真空排尽气泡8-10分钟,按倒树脂A倒入树脂B搅拌混合(如右图所示),

《微控制器应用综合实验》实验指导书

《微控制器应用综合实验》实验指导书 实验一 Altium Designer软件的基本操作 一、实验目的 1、熟悉软件的设计编辑界面。 2、熟悉原理图的菜单栏、工具栏及工作面板 3、熟悉PCB编辑器的菜单栏、工具栏及工作面板 4、学会并掌握原理图库文件中原理图符号的绘制方法。 5、学会创建PCB新元件。 二、实验内容 本实验学习软件自带的参考设计 4 Port Serial Interface.PRJPCB,打开其中的原理图文件、PCB版图文件,原理图库文件和PCB库文件,了解相应的工作面板和工具栏,以及元器件属性的设置方法。通过原理图符号以及PCB新元件的绘制,进一步掌握工具栏和菜单栏的使用。 三、实验设备和仪器 1、PC机一台 2、正版Altium Designer软件一套 四、实验步骤 参考实验指导书附录部分。 五、实验报告 1、叙述实验步骤中图纸平移、缩放,对象的连线拖动和不连线拖动等操作的实现方法。 2、详述查找元器件TL16C554的具体步骤,和加载包含此元器件的集成库的方法。 3、详述在库面板中查找电阻、电容、二极管的具体步骤 4、详述布线宽度的设置方法和电气设计中安全间距规则的设置方法 4、详述绘制元器件1488_1的具体步骤。 5、详述绘制PCB元件DIP8的具体步骤。 附录:实验步骤 1.打开PCB工程文件4 Port Serial Interface.PRJPCB, 该工程文件在\Altium Designer\ Examples\Reference Designs\4 Port Serial Interface 文件夹中 2. 打开此工程中的原理图文件ISA Bus and Address Decoding.SchDoc 3. 尝试使用视图菜单(View 菜单)的快捷键和工具栏来实现图纸显示区域的设置。 4. 使用鼠标进行图纸的平移和缩放。 5. 分别进行单个对象和多个对象的选择 6. 分别实现所中对象的连线拖动和不连线拖动 7. 双击其中一个元器件。器件属性对话框会显示,你可以编辑器件的任何属性。 8. 实现元器件的复制和粘贴 9. 选中网络标签+12V_U/P,将其删除;然后执行菜单Place ?Net Label添加一个+12V_U/P 的网络标签。 10. 删除原理图中的任一总线,然后执行菜单Place ?Bus重新添加一条总线。 11. 删除原理图中的任一导线,然后执行菜单Place ?Wire重新添加一条导线。 12. 删除原理图中的任一总线入口,然后执行菜单Place ?Bus Entry重新添加一条导线。

快速成型实验报告

实验一:零件的快速成型技术 一、实验目的 了解和掌握快速成型制造技术,了解FDM(融熔堆积固化成型)的原理,培养学生综合分析问题的能力,提高学生动手实验和实践的能力。 二、实验的主要内容 样件的FDM快速成型制造 三、实验设备和工具 本实验采用奥尔克特科技Allcct印客(200)FDM快速成型机(3D打印机)。该设备生产厂商为武汉奥尔克特科技有限公司,打印耗材为PLA、ABS 或复合PLA。 四、实验原理 一、FDM原理 FDM是“Fused Deposition Modeling”的简写形式,即为熔融沉积成型。 FDM通俗来讲就是利用高温将材料融化成液态,通过打印头挤出后固化,最后在立体空间上排列形成立体实物。FDM机械系统主要包括喷头、送丝机构、运动机构、加热工作室、工作台5个部分。将低熔点丝状材料通过加热器的挤压头熔化成液体,使熔化的热塑材料丝通过喷头挤出,挤压头沿零件的每一截面的轮廓准确运动,挤出半流动的热塑材料沉积固化成精确的实际部件薄层,覆盖于已建造的零件之上,并在0.1s内迅速凝固,每完成一层成型,工作台便下降一层高度,喷头再进行下一层截面的扫描喷丝,如此反复逐层沉积,直到最后一层,这样逐层由底到顶地堆积成一个实体模型或零件。FDM成形中,每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,以保证成形过程的顺利实现。 FDM的优缺点 FDM快速成型工艺的优点: (1)成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低; 另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。 (2)采用水溶性支撑材料,使得去除支架结构简单易行,可快速构建复杂的内腔、中空零件以?及一次成型的装配结构件。 (3)原材料以卷轴丝的形式提供,易于搬运和快速更换。 (4)可选用多种材料,如各种色彩的工程塑料ABS、PC、PPS以及医用ABS等。 (5)原材料在成型过程中无化学变化,制件的翘曲变形小。 (6)用蜡成型的原型零件,可以直接用于熔模铸造。 (7)FDM系统无毒性且不产生异味、粉尘、噪音等污染。不用花钱建立

快速成型制造实训报告

快速成型制造实训报告 1.实习目的 1).通过快速成型制造实训了解怎么利用快速成型设备制作模型,学会怎么操作快速成型机,然后根据模型做出硅胶模具,让我们对塑料模具的基本结构有了更深的理解,再用硅胶模具浇注出工件。 2.实习要求 1).自己用PRO-E软件设计模型,用快速成型机器制造出模型,模型做好后,用硅胶做出硅胶模具。等模具固化后,用AB胶浇注出一个工件。 3.模型的设计与选择 1)用PRO-E设计出一个猪仔的模型,尺寸自定,模型有明显的分型面,所以比较容易做分模。(模型如图所示)

4.原型的制作 1).用PRO-E造型的模型用stl格式保存好后,拿到FDM 200快速成型机上,开始做模型。 (制作过程如图所示)

5.硅胶模方案与结构的设计 1)制作硅胶模,我们用上下分模的结构,对角做了两个突起作为导柱。我们没有用油泥,而是直接在浇硅胶时控制好只浇到分型面处。 硅胶与固化剂搅拌均匀. 模具硅胶外观是流动的液体,A

组份是硅胶,B组份是固化剂。取

250克硅胶,加入25 克固化剂(注:硅胶与固 化剂一定要搅拌均匀,如 果没有搅拌均匀,模具会 出现一块已经固化,一块 没有固化,硅胶会出现干 燥固化不均匀的状况就会影响硅胶模具的使用寿命及翻模次数,甚至造成模具报废状况。 6.硅胶模的制作流程 1).先用纸板围成一个能包住模型的框,模型要距离纸板10到15MM,用铅笔尖的一头连接模型,作为浇注工件时的胶口。在框里面喷上脱模剂,方便做好后的处理。然后把配好的硅胶浇到框中,浇完后拿到真空机中做抽真空处理。 抽真空排气泡处理: 硅胶与固化剂搅拌均匀后,进行抽 真空排气泡环节,抽真空的时间不 宜太久,正常情况下,不要超过十 分钟,抽真空时间太久,硅胶马上 固化,产生了交联反映,使硅胶变 成一块一块的,无法进行涂刷或灌 注,这样就浪费了硅胶,只能把硅 胶倒入垃圾桶,重新再取硅胶来

相关文档
相关文档 最新文档