文档库 最新最全的文档下载
当前位置:文档库 › 对讲机电路原理分析--贴

对讲机电路原理分析--贴

对讲机电路原理分析--贴
对讲机电路原理分析--贴

电路简单图解

1.当天线接收到信号后,由于信号非常微弱,需要将信号放大,这就需要LNA(低噪声放大器)。然后通过一个射频段的带通滤波器,这里标注为Image Filter(镜像频率抑制滤波器),镜像频率指以载频为中心,与有用信号对称的频率,该频率上的噪声通过混频后会进到中频频率中。

2.通过Image Filter后,信号进入MIXER(混频器)中与LO(本地振荡器)进行混频,并通过一个SAW(表面声波滤波器),只保留中频点的信号,其他频率点的进行衰减。IFAMP(中频放大器)将中频信号恢复并放大后,再次通过第二个混频器将频率降至450K低频,这时信号就容易被基带部分处理。

3.基带部分:FMDET,鉴频器,将调制信号恢复出音频信号,但这时的信号效果很差,需要送到音频处理部分处理一下才能得到较好的音效。这部分包括De-emphasis(去加重),Audio Filter(音频滤波器),Adder(暂时没搞清楚),Volume(调节音量),SP AMP(扬声器放大器,提供大功率,推动大负载),SPEAKER(扬声器)。

4.发送部分,人的话音被MIC(麦克风)转成电信号,通过Pre-emphasis(预加重)和MIC AMP后送到Audio Filter中滤波,在通过Limiter(限幅器)整形,之后通过Splatter Filter(泼溅滤波器)滤掉Limiter产生的谐波。注意,这时是低频信号,信号通过VCO(压控振荡器)后将信号调制到高频,再经过TX Amp(发射机放大器)和PA(功率放大器)后就有足够的能量被发射出去了。

这个结构是传统的超外差(Superheterodyne)结构,该结构特点是有两个中间频率,抑制干扰能力较强,不足之处是由于需要两组中频器件,使得成本较高。

5.MCU(微控制器)控制部分:主要有三个部分,CTCSS信令处理,Call Tone信号(呼叫对方),Key Touch Tone信号(按键)。

CTCSS介绍

CTCSS是Continuous Tone Control Squelch System(连续语音控制静噪系统)的缩写,频率范围是67Hz - 254Hz,俗称亚音频。它由Motorola发明,注册商标为PL(Private Line, 私人话路的缩写), 目的在于能够让多个人在同一频率上使用Land Mobile(陆基移动终端,如手机,对讲机等)。民用对讲机制造商用Tone代表编码,用Tone Squelch表示编码/解码。

CTCSS以频率作为编码,这种编码被加到音频信号上一同发射。接收端在接收音频信号以前先解码,送到MCU中,只有收发双方的Tone码相同,又在一个频道上才可以通信,否则静音。这样就可以和指定的人通信而不用受到不相干呼叫的干扰。

由于CTCSS信号的高频端与音频的地频端接近,因此如果没有专门的Tone Filter的话,人还是可以听的出来,不过大部分人都把它误当作电源噪声了。

从电路实现方面看,它从MCU出来后先经过一级Tone Filter滤掉高频噪音,之后与音频信号一起进入发送电路。在接收端,解调出的信号通过Tone Filter后经过比较器,将模拟信号转成数字信号,送到MCU中检查是否为同一编码,相同则允许信号进入扬声器,否则静音。

有的对讲机会采用CDCSS(连续数字控制静噪系统),它的功能与CTCSS一样,只是它以数字方式实现编码,允许用户使用38/35个Private Code。

VOX介绍

与手机不同的是,对讲机发送话音一般需要按键发射,这个键叫做PTT(Push to Hold,一键通),。如果该键被按下,则Splatter Filter与VCO接通,否则话音无法到达发射端。为了避免长时间按键的烦恼,对讲机现在都具有了VOX(Voice Operation,声控)功能,通过VOX, 人的话音可以控制Splatter Filter 与VCO的连通。

VOX具有灵敏度等级,等级越高越灵敏。如果长时间不通话则会自动中断通话。

对讲机的几种工作模式

1.发送模式:话音被MIC(麦克风)收集,如果VOX功能开启,则信号一路被送到MCU进行判别,另一路在MCU应答后则会送到Splatter Filter, 在那与CTCSS信号会合,一起送到发射电路部分。否则,信号直接和CTCSS信号一起发射出去。

2.接收模式:在此模式下,发射通路将会关闭,解调出的信号兵分三路,一路通过Tone Filter和比较器送到MCU,检查是否为同一编码;一路被送到语音处理部分,如果CTCSS编码相同,则通过扬声器发出信号,否则静音;还有一路信号被送到噪声检测电路中,该电路由Noise Amp(噪声放大器), SQ(Squelch Detecter, 静噪检测器)和比较器组成。

该电路控制着Squelch Level(静噪等级),如果用户选择较高的静噪等级,则对讲机的抗干扰能力会很强,不过通信距离将会缩短,反之亦然。

另一方面,SQ还控制着Monitor(监听)功能。通常信号很弱时是不会送到扬声器中(反正听不清),监听就是要听到这种微弱的信号,让SQ关掉,信号直接送到扬声器,用耳朵从噪音中辨别话音。不过监听要消耗很大的能量,一般地,正常收听状态只需要0.18uV/2.5秒的能量注入,监听状态则需要至少0.4uV。

3.Call Tone Mode(呼叫模式):该功能较简单,只是与对方建立联系。一般对讲机都有一个呼叫键,按下该键后将响起振铃声。从电路方面看,MCU接到按键信息后发出Call Tone 信号给扬声器,人们就会听到振铃声。同时, MCU送出CTCSS编码给对方。

4.Key Touch Mode(按键模式):这种模式下,发射通路关闭,如果VoX功能开启,则MIC部分电路保持开启状态,否则也关闭。Noise Detect部分开启,收集噪声信息。按键后,信号将送到扬声器,发出按键音。

3.第二级中频放大器IFAMP2与RSSI

这部分电路同时实现了频率解调和幅度解调两种功能,从电路上看作为一个整体。IFAMP2实际上是一个限幅器(LIMITER),目的是消除幅度调制可能引起的频率调制的影响。经过限幅器放大后的信号将会被整形为方波(相当于信号被拦腰截断),这样就消除了幅度信息,只保留了频率和相位信息,在经过FM DET 后FM信息将会被恢复,不过这种方法同时引进了高次谐波。

RSSI(Received Signal Strength Indication, 接收信号强度指示器)功能与限幅器互补,RSSI电路可以检测出信号的幅度信息,并反馈到MCU中调整前级增益,特殊情况下,当没有信号时,可以关掉接收电路以节约功耗。因为接收信号的动态范围非常宽,因此RSSI采用对数放大器,该电路的特点是输出信号(单位伏特)与输入信号的对数(单位dBm)呈线性关系。也就是说,当输入信号变化几倍或者十几倍的时候,输出信号只变化了几百个毫伏。

对数放大器一般可分为“真”对数放大器和分段线性对数放大器(Piece-wise-linear Log Amp)两类,前者大家都比较熟悉,利用三极管的Ic与Vbe间的指数关系实现,功能也只是实现对数运算,很多书上都会有介绍,这里就不细说了,主要谈谈后一种放大器。

分段线性对数放大器有两种不同的组成,一种是由A/1模块级联而成,另一种是由A/0模块级联而成;前者应用于视频/基带,后者用于解调。本文主要介绍后者,如果大家对视频/基带对数放大器感兴趣,可以访问我的共享空间:https://www.wendangku.net/doc/fa978492.html, 。

解调型对数放大器电路由限幅器和Rectifier(整流器)共同组成,限幅器提供限幅输出,将频率和相位信息送

到FM解调器;Rectifier则将各级限幅器的输出转化为电流,在通过片外的RC滤波器得到对数输出Vlog。

限幅器自身由多个A/0 GainCell级联构成,A/0 GainCell本身是一个放大器,其特性曲线为一段折线,当输入电压小于Vk(early voltage)时,输出与输入呈线性;超过Vk后输出恒定C扛鯣ainCell可提供十几dB的增益,一般限幅器由五至六级GainCell组成,一般可达到70~80dB的动态范围。

Rectifier(本质是一个跨导放大器,记作gm)可以将从各级GainCell中提取交变的电压信号,将其转变为单向的电流信号并求和,在通过一个RC滤波电路就可以得到对数输出Vlog,其原理如下:

首先请大家注意,小信号条件下跨导放大器的电流与输入电压成正比,但随着信号不断增大,等效跨导(输入电压-输出电流曲线的斜率)也不断见小,直至为零,输出电流逐渐饱和,记作Is。

设C为小信号电流,则C=Gn*Vmin=Gn-1*A*Vmin=Gn-2*A^2*Vmin=...=G1*A^n-1*Vmin,其中Vmin为最小输入电压(再小就被噪声淹没了),A为单级Gaincell的小信号增益,Gn=A*Gn-1=...=A^n-1*G1。设G1=gm,则希望G2=A*gm,...,Gn=A^n-1*gm。利用递推关系得

G1=gm, G2=gm+gm*(A-1)=gm*A, G3=gm+gm*(A-1)+gm*(A-1)*A=gm*A^2,...,Gn=gm+...+gm*(A-1)*A^n-2=gm*A^n-1 。只要令第一级Gaincell的增益为A-1,其余的为A就可以得到对数输出。

为了方便设计,将所有的Gaincell的增益都取为A,则需要令第一级Rectifier的跨导为gm*A/(A-1),其余为gm即可。

如果说预加重和去加重电路是由技术决定的,那么限幅器和泼溅滤波器则是人为的原因而诞生的。

对于FM信号,幅度的变化可以影响频偏,X(f)=F(f,A),其中的A就代表幅度。在美国,FCC(Federal Communication Commission,联邦通信委员会)控制着频谱的分配。它将商用对讲机的频率限制在462.2625M ~ 467.7125M(正是这个频段决定了Image Filter的中心频率为465M,取了个中间值),而且要求非常严格,不能超出这个范围。

公司为了对付这个规定,就想出了个限幅器这种电路,将FM波形拦腰截断,变成方波,也就不存在AM (调幅)了,不过也带出了个BUG,输出信号的高次谐波变得严重了。为了补这个窟窿,人们又发明了泼溅滤波器(Splatter本来是个象声词,个人觉得“泼溅”这个词用的有些牵强)。

图中,滤波器左半部分画的是预加重的曲线,FCC要求泼溅滤波器在3KHz至少要能提供-12dB/十倍频的衰减,事实上,由预加重抬起来的曲线在2.5KHz时就被展平了,得到的频率曲线大致就图中这个样子。

顺便提一下,FCC对民用对讲机的要求没那么严格(当官的怕老百姓?),因此很多的火腿族(民用对讲机用户,英文是HAM,也有火腿的意思)会发现他用的对讲机反而比商用的音效要好,殊不知他用的频率跑到哪里去了。

1.Pre-emphasis & De-emphasis, 预加重和去加重

这两部分连同Splatter Filter一起,对音效的好坏起着非常大的作用。他俩的诞生是由FM特性决

定的。

频率调制有一个很重要的性质,就是调制后的信号,高频部分会有衰减,也就是频率越高的部分衰减的越厉害。为了补偿这部分衰减,FM解调器就要设计的能为高频部分提供大的增益,但引出了一个问题,高频噪声也被放大了,严重影响了音效。(图见Diagram1)为了解决这个问题,人们使用了预加重和去加重电路。主要思想是先人为的放大信号的高频分量,再在解调后将这部分连同噪声一起消除掉。(见Diagram2)

将音频信号在调制前先通过预加重电路提高高频部分,预加重电路由一个电阻电容串联电路组成,它可以视为一个微分器,将FM转成PM(相位调制),后者与FM不同之处在于它的响应曲线随频率的升高而升高,一般6dB/十倍频。这也是为什么早期人们用PM而不是FM的一个原因。

信号在解调以后需要通过一个低通滤波器将解调器放大的那部分噪声衰减掉,而这个低通滤波器就叫去加重,它就是一个典型的无源RC滤波器,它可以提供6dB/十倍频的衰减,令信号幅度相应曲线

平滑。

电路原理讲解分析

电源电路 一、电源电路的功能和组成: 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把 220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

( 2 )全波整流 全波整流要用两个二极管,而且要求变压器有带中心抽头的两个圈数相同的次级线圈,见图 2 ( b )。负载 R L 上得到的是脉动的全波整流电流,输出电压比半波整流电路高。 ( 3 )全波桥式整流 用 4 个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器,见图2 ( c )。负载上的电流波形和输出电压值与全波整流电路相同。 ( 4 )倍压整流 用多个二极管和电容器可以获得较高的直流电压。图 2 ( d )是一个二倍压整流电路。当 U2 为负半周时 VD1 导通, C1 被充电, C1 上最高电压可接近1.4U2 ;当 U2 正半周时 VD2 导通, C1 上的电压和 U2 叠加在一起对 C2 充电,使 C2 上电压接近 2.8U2 ,是 C1 上电压的 2 倍,所以叫倍压整流电路。 三、滤波电路 整流后得到的是脉动直流电,如果加上滤波电路滤除脉动直流电中的交流成分,就可得到平滑的直流电。 ( 1 )电容滤波

收音机的电路原理

一、收音机的电路原理 将所要收听的电台在调频电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率,然后在进行放大和检波。调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的的音频信号。经过混频,输出载波的波形变得稀疏且频率降低了,但音频信号的形状没有变。通常将这个过程叫变频。变频仅仅是载波频率变低了,并且无论输入信号频率如何变化,最终频率都变为465KHZ,而音频信号没变。混频器输出的携音频包络的中频信号由中频放大电路进行一级二级中频放大,从而使得到达二极管检波器的中频信号振幅足够大。二极管将中频信号振幅的包络检波出来,这个包络就是我们所需要的音频线号。音频信号最后交给低放级放大到我们需要的电平强度,然后推动扬声器发出足够的音量。 HX108-2型7管半导体收音机频率范围:525~1605KHZ;输出功率:100mW(最大);扬声器:φ57mm,8Ω;电源:5号电池二节。由图知,整机中含7只三极管,因此称为7管收音机。其中,三极管V1为变频管,V2、V3为中放管,V4为检波管,V5为低频前置放大管,V6、V7为低频功放管。 天线回路选出所需电台信号,经变压器B1耦合到变频管V1基极。与此同时,由变频管V1、振荡线圈B2、双联同轴可变电容C1B等元器件组成的共基调射型变压器反馈式本机振荡器,其本振信号经电容C3注入到变频管V1发射极。电台信号与本振信号在变频管V1中进行混频,混频后,V1管集电极电流中将含有一系列组合频率分量,其中包含本振信号与电台信号的差频(465KHZ)分量,经过中周B3(内含谐振电容),选出所需中频(465KHZ)分量,并耦合到中放管V2基极。图中电阻R3是用来进一步提高抗干扰性的,二极管VD3是用以限制混频后中频信号振幅(即二次AGC)。 中放由V2、V3等元器件组成的两级小信号谐振放大器。通过两级中放将混频后所获得的中频信号放大后,送入下一级检波器。检波器由三极管V4(相当

PFC电路原理与分析

引言 追求高品质的电力供需,一直是全球各国所想要达到的目标,然而,大量的兴建电厂,并非解决问题的唯一途径,一方面提高电力供给的能量,一方面提高电气产品的功率因数(Power factor)或效率,才能有效解决问题。有很多电气产品,因其内部阻抗的特性,使得其功率因数非常低,为提高电气产品的功率因数,必须在电源输入端加装功率因数修正电路(Power factor correction circuit),但是加装电路势必增加制造成本,这些费用到最后一定会转嫁给消费者,因此厂商在节省成本的考量之下,通常会以低价为重而不愿意让客户多花这些环保金,大多数的消费者,也因为不了解功率因数修正电路的重要性,只以为兴建电厂才是解决电力不足问题的唯一方案,这是大多数发展中国家电力供应的一大问题所在。 功率因数的意义 电力公司经由输配电系统送至用户端的电力(市电)是电压100-110V/60Hz或200-240V/50Hz的交流电,而电气产品的负载阻抗有三种状况,包括电阻性、电容性、和电感性等,其中只有电阻性负载会消耗功率而产生光或热等能源转换,而容性或感性负载只会储存能量,并不会造成能量的消耗。在纯阻性负载状况下,其电压和电流是同相位的,而在电容性负载下,电流的相位是超前电压的,在电感性负载下电压又是超前电流相位的。这超前或滞后的相位角度直接影响了负载对能量的消耗和储存状况,因此定义了实功功率的计算公式: P=VICosθ θ为V和I和夹角,Cosθ的值介于0-1之间,此值直接影响了电流对负载作实功的状况,称之为功率因数(Power Factor,简称PF)。 为了满足消费者的需要,电力公司必须提供S=VI的功率,而消费者实际上只使用了P的功率值,有一部分能量做了虚功,消耗在无功功率上。PF值越大,则消耗的无功功率越小,电力公司需要提供的S值也越小,将可以少建很多电厂。 功率因数修正器的结构 功率因数修正器的主要作用是让电压与电流的相位相同且使负载近似于电阻性,因此在电路设计上有很多种方法。其中依使用元件来分类,可分为被动式和主动式功因修正器两种。被动式功因修正器在最好状况下PF值也只能达到70%,在严格的功因要求规范下并不适用。若要在全电压范围内(90V~265Vac)且轻重载情况下都能达到80%以上PF值,则主动式功因修正器是必要的选择。主动式功因修正器多为升压式电路结构(Boost Topology), 如图一所示,图二为电感作用波形,输入电压要求为90V~265Vac,在Vd点则为127V~375V直流电压,由升压电路把输出电压V o升到400V的直流,其工作过程如下:

最简单的调幅对讲机电路图

现在的年轻人一上车就是拿起手机,跟远方的好友通话,还真是有天涯若比邻的感觉。在四十年前那个没有手机的年代,所有无线电通讯器都是属于管制品,只有一种玩具型的低功率调幅对讲机,虽然只有两三百公尺的有限通话距离,却也是当时美国小孩子最喜欢的玩具,更曾经是销美电子产品的热门。最近很难得我在网络上找到类似电路,虽然只是简单的四石电路(四个三极管),电路的功能却是很复杂,希望在解析其动作之后,能给读者有若干启发性。 电路中的Q1在发射状态时,担任射频振荡以及音频信号调变功能,在接收状态则是Reflexive回复式起振及检波音频输出功能。回复式电路时利用天线接收的射频信号,予以放大后利用二极管特性检波出音频信号。Q2的功能为音频信号放大,Q3与Q4功能为音频信号功率放大。这个电路由9伏特电池供电,有四组开关同步切换发射T与接收R的功能。图中的喇叭是动圈式磁铁,接收时为喇叭功能,在发射状况则是由音压压缩纸盆,使喇叭线圈产生感应电流,相当于麦克风的功能。 天线接收射频信号,经由天线匹配电感器到15pF与2turns线圈谐振,过滤出27MHz 信号,并经由线圈耦合至次级9turns线圈,再经由基极接地的Q1射频放大至射级输出,并利用射级与基极间的二极管检波特性,解调出音频信号。射级的音频信号电流再经由Q1集电极(原文为集级)输出。经过9turns线圈,开关R点,0.47uF电容,音量控制VR,39n 电容,到Q2音频放大,再经Q3、Q4音频放大,再经过变压器阻抗转换以推动喇叭负载。 在发射状况下,Q1基极(原文为集级)至射级经由33pF电容的正回授,产生振荡而以基极的27MHz振荡水晶为谐振网络。喇叭作为麦克风使用的声音信号,同样经过Q2、Q3、Q4的放大电路,此时Q1极的电源是由电池经过声音变压器提供,也因而产生音频对Q1射频的调幅调变。调幅射频经由射频变压器转换低阻以匹配天线输出。 Q1射级电路的390电阻与10nF电容,提供射频旁路以及检波音频的射级负载。另外一个电源路径上的10nF电容,提供Q1电源射频旁路以及音频开路使4K7电阻成为检波音频的集级负载,产生10倍的检波音频放大。天线端的串接电感器用来补偿天线效率,由于使用一般FM伸缩天线,27MHz频率较低无法匹配天线长度。

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

全双工无线对讲机课程设计

学号:专业:通信工程姓名:宋腾 非线性电子线路实验设计 实验名称:双工调频无线对讲机 一、实验目的 1、在模块实验的基础上掌握调频发射机、接收机,整机组成原理,建立调频系 统概念。 2、掌握系统联调的方法,培养解决实际问题的能力。 二、实验内容 1、完成调频发射机整机联调。 2、完成调频接收机整机联调。 3、进行调频发送与接收系统联调。 三、实验仪器 1、高频实验箱 2台 2、双踪示波器 1台 四、实验原理 图 19-1 无线对讲机原理框图

半双工调频对讲机组成原理框图如上图所示,发射机由音源,音频放大,调频、上变频、高频功放等电路组成。接收机则由高放,下变频、中频放大、鉴频、音频功放、耳机等部分组成。 半双工是指接收与发送共用一个载波信道,但同一时刻只能发送或只能接收的传输方式,从上图中可以看到,发送与接收频率同为10.7MHz,公用一根天线。收发的切换依靠10号板的J1完成。J1在没有按下去的情况下为接收状态,按下去为发送。为了避免自身的发送对接收的干扰,所以加入了电源控制。电源控制的作用是当接收电路工作时,发送电路关闭,反之亦然。 五、实验步骤 1、准备两台实验箱,分别在关电状态下按下表连线: 发送部分:

2、将3号板S1拨为“01”,S2拨为“01”,2号板SW1拨置“4.5MHz”,SW2拨置“OFF”;5号板SW1拨置“4.5MHz”;10号板SW1拨到上方。 3、打开电源,将1号板信号源调到6.2MHz,RF幅度最大。 4、调整3号板的W2,使TP8频率接近4.5MHz。 5、将2号板的W3旋到1/2处,10号板的W1,W2旋到1/3处。 6、将拉杆天线接到10号板Q1接口。 6、按下10号板的J1,对方应能听到音乐声,然后微调各单元电路,使声音最清晰。 7、将话筒插入10号板“MIC1”,SW1拨到下方实现两台实验箱人声对讲。

对讲机电路

对讲机的工作原理如下: 1、发射部分:锁相环和压控振荡器(VCO产生发射的射频载波信号,经过缓冲放大、激励放大、功放, 产生额定的射频功率,经过天线开关及低通滤波器,抑制谐波成分,然后通过天线发射出去。 2、接收部分:接收部分一般为二次变频超外差方式。从天线输入的信号经过收发转换电路和带通滤波器后进行射频放大,再经过带通滤波器,进入第一混频,在第一混频器内,将来自射频的放大信号与来自锁相环频率合成器电路的第一本振信号混频并生成第一中频信号。第一中频信号通过晶体滤波器进一步消除邻道的杂波信号,滤波后的第一中频信号进入中频处理芯片,与第二本振信号再次混频生成第二中频信号,第二中频信号通过两个陶瓷滤波器滤除无用杂散信号后,被放大和鉴频,产生音频信号。音频信号通过放大、带通滤波器、去加重等电路,进入音量控制电路和音频功率放大器放大,驱动扬声器,得到人们所需的信息。 3、调制信号及调制电路:人的话音通过麦克风转换成音频的电信号,音频信号通过放大电路、预加重电路及带通滤波器进入压控振荡器直接进行调制。 4、信令处理:CPLT生的CTCSS/DTCS信号经过放大调整,进入压控振荡器进行调制。接收鉴频后得到的 低频信号,一部分经过放大和亚音频的带通滤波器进行滤波整形,进入CPU与预设值进行比较,将其结 果控制音频功放和扬声器的输出。即如果与预置值相同,则打开扬声器,若不同,则关闭扬声器。 5、电源控制:CPL控制在不同状态时,送出不同的电源 接收电源:正常处于间歇工作方式,以保证省电 发射电源:发射时才有电 CPU 电源:稳定的电源电路说明 1.电路构成 接收部采用二次变频超外差方式。第1中频为21.7MHz,第2中频为455kHz,第1本振频率由锁相环(PLL) 电路产生。发射部由PLL电路直接产生所需要的频率。 2.接收部 2- 1 前级(射频放大器)从天线输入的接收信号经过由二级管构成的收发转换电路,在射频放大器被放大。然后通过带通滤波器(BPF后进入混频器。 2- 2 第1 混频器 来自前级的信号在混频器与来自锁相环(PLL)电路的第1本振信号混频,产生第1中频信号(21.7MHz)。 该信号通过晶体滤波器滤除邻近的杂波信号,以确保邻道选择性等必要的技术指标。 2-3 中频放大器(IF AMP) 通过了晶体滤波器的信号被第1中频放大器放大后进入中频集成电路(MC3361。该IC是集第2本振、第 2混频器、第2 中频放大器、鉴频器、噪声放大器、噪声整流电路为一体的集成电路芯片。 进入集成电路的信号与第2本振信号混频,产生455kHz的第2中频信号,第二中频信号经过中频放大器放大之后再通过455KHz陶瓷滤波器滤波,以保证必要的选择性。 最后,通过滤波器的中频信号在集成电路内经鉴频产生音频信号输出。 2-4 音频放大器(AF AMP)从中频集成电路输出的音频信号经过去加重电路使音频信号恢复原来的频率特性。然后,音频信号通过音量控制电路(AF VOL),再由音频功率放大器(MC34119放大后驱动扬声器。 2-5 静噪从中频集成电路输出的音频信号的一部分再次进入调频集成电路,通过滤波器和放大器对其噪声分量进行整流,产生一个和噪声分量相对应的直流电压。送到微处理器(MCU 的模拟端口。输入的直流电压和一个预先设置的电压值比较大小,IC1 根据比较结果控制开放或关闭扬声器的输出。 当扬声器发出声音时,AFCG线被置为(HI)高电平,通过三极管反象打开功放,扬声器发出声音。 2-6接收CTCSS言令 (仅适用于T-260CT型) 中频集成电路输出的部分信号经过专用插头进入CTCSS编解码专用附件,在附件内部进行各种处理判断, 以分析接收到的亚音是否与被预先设定的值一致,其判断结果和静噪的判断结果一起控制AFCO以决定扬 声器是否发声。 3.锁相环(PLL)电路 PLL电路产生接收机的第1本振信号和发射机的射频载波信号。

通信原理课程设计对讲机

1任务书 设计并制作一个无线对讲机,要求采用调频方式工作,至少10米以上通话距离。2设计方案选择 方案一:发射试用调频无线送话器,接收采用集成电路KC538,具有中频放大、鉴频和音频功率放大等功能。KC538中频放大器采用三极管差分放大器,故有增益高和调配抑制比较好的特点。 方案二:采用集成电路D1800,它作为收音机接收专业集成电路,功放部分则用D2822电路具有体积小、外围元件少灵敏度极高、性能稳定等优点。 方案选择:综上电路,接收频率和工作电流都在要求范围之内,具有良好的抗干扰能力,经过比较,方案二更具有简洁性,电路布复杂。因此本系统采用方案二设计。 工作原理 该对讲收音机的原理框图如下图所示,分为接收部分和发射部分,发射部分电路采用本级振荡经调制差频后中频发射。接收部分采用相干解调方式放大输出。

接收部分原理:调频信号由TX接收,经C9耦合到IC1的19脚内的混频电路,IC1第1脚内部为本机振荡电路,1脚为本振信号输入端,L4、R6、C10、C11等元件构成本振的调谐回路。在IC1内部混频后的信号经低通滤波器后得到10.7MHz的中频信号,中频信号由IC1的7、8、9脚内电路进行中频放大、检波,7、8、9脚外接的电容为高频滤波电容,此时,中频信号频率仍然是变化的,经过鉴频后变成变化的电压。10脚外接电容为鉴频电路的滤波电容。这个变化的电压就是音频信号,经过静噪的音频信号从14脚输出耦合至12脚内的功放电路,第一次功率放大后的音频信号从11脚输出,经过R10、C25、RP,耦合至IC2进行第二次功率放大,推动扬声器发出声音。 对讲机接收结构框图如下图所示:

简易收音机的电路图

图3—30是简易收音机的电路图。 图3—30 简易收音机电路 L和C1组成调谐电路。改变可变电容器C1的容量,可选择到需要接收的电台信号。将选出的信号直接输入到集成电路7642的输入端第2脚。由7642对信号进行多级高频放大并检波后,由输出端第1脚输出音频信号,经三极管V1V2放大后,送至耳机放音。这个电路元件少、装调容易而且接收效果较好。 二、元件规格和检测方法 (一)LC调谐回路 L是磁棒线圈。磁棒采用长55mm的扁型中波磁棒。用?0.07×7多股纱包线绕制,共82圈。线圈的两端用胶纸带固定。如图3—31。C1采用270P小型单联可变电容器,检测方法见表3—12。 图3—31 磁棒线圈和7642集成电路 表3—12 元件检测 名称检测方法

可变电容器 用R×1K档测试,旋转转柄,万用表指针应始终指无限大。若有摆动说明电 容器内部碰片,不能使用 耳塞机 用R×1档测试,表笔碰触耳机插头时,耳机中应发出“喀喀”声 (二)集成电路7642外形跟晶体管9014相似。如图3-31。可用万用表R×1K档测输入端第2脚之间电阻, 正向电阻约为1千欧,反向电阻接近无限大。 (三)晶体管V1 V2采用9014,放大倍数大些较好。 (四)电阻器均采用1/8W碳膜电阻器。R4待调试后确定。 (五)电容器均采用小型瓷片电容器。C4为电解电容器。 (六)耳塞机采用8欧耳塞机。其测试方法见表3-12。耳机插孔采用?2.5毫米插孔,并按图3-32进行改造。改造后的插孔兼做电源开关。 插头插入后触点分离改为插头插入后触点接触 图3-32 插孔的改造 (七)电源采用1节1.5伏电池。 三、焊接电路 (一)简易收音机印刷电路板可参考图3-33。将各元件引脚镀锡后插入电路板。各引脚可尽量留短些。

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

调频无线对讲机原理、制作与调试[1]

30.275MHz 调频无线对讲机原理、制作与调试 一、主要技术指标: 1.频率:30.275MHz 2.调制方式:调频 3 频偏:5KHz 5.通信方式:同频单工 6.电源电压:9.6V 10%(镍镉充电电池8节,负极接地。有些机型是6节) 7.消耗电流: 静噪守候:10mA以下 接收:150mA以下 近程发射: 远程发射:0.7A以下 8.载频输出功率:2w 9.接收灵敏度:1.0uV以下(信噪比12dB以上) 1 0.静噪灵敏度:0.5uV 11.中频频率:455 KHz 12.音频不失真功率:大于200 nlw 1 3.体积:125 x 55 x 30 mm 14.重量: 二、工作原理 整机由接收和发射两部分组成,两部分除天线和阻抗匹配电路外,其它电路都是相互独立的。 1、接收机 由天线接收到的高频无线电信号经L1,L2,c1,c2,c4组成的低通滤波器滤除频带以外的干扰信号,经c6送至D1,D2和L3组成选频电路,这个选频电路谐振频率为30.275MHz,选出对讲机发来的载频信号,而滤除其它干扰电波.经c7送到N1和N2组成的联级高频信号放大电路进行高频放大,这种联级高频信号放大电路具有增益高,工作稳定,无须使用中和电容等优点,N1组成共射电路,N2接成共基电路,共射电路具有增益高的优点,而共基电路具有工作稳定的特点,经N1,N2放大后的高频信号由L4,c9,T1,c12组成双调谐回路再次选频后经c16送入ICl(MC3361)的16脚内部混频级进行混频. N3和CRY1,L5等元件组成本机振荡器,L5和相应的回路电容谐振于10.243MHz的三次谐波上,即10.24333x3=30.730MHz,它比发射频率30.275MHz(10.0917的三倍频,即10.0917MHzx3=30.275MHz)高出一个中频455kHz(即30.730—30.275=0.455MHz),本振信号也送到Icl的第1脚,在Icl内部进行混频。 Ic1(Mc3361)是窄带调频接收专用集成电路,其内部包含振荡器,混频器,高增益的限幅中频放大器,鉴频器和有源滤波器,静噪触发电路及音频放大电路。它的限幅灵敏度为2uV,它是整机的主要增益级,中放增益可达65dB。 在Ic1内部混频得到的455kHz中频信号由Icl的3脚输出,由陶瓷滤波器cRFl选出中频信号,而滤除其它谐波分量,选出的中频信号由Icl的5脚输入,在Icl内部进行高增益的中频放大,最后经鉴频器解调出音频信号,由Icl的9脚输出。 从第9脚输出的信号一路由c30,R1 3和c32组成去加重电路去加重和滤波后经电位器

超外差式收音机原理图及电路仿真

超外差式收音机原理及电路仿真 一、实习目的: 1、掌握收音机的原理与组成 2、识别各种电子元器件 3、掌握焊接技术 4、学会超外差收音机的安装与调试 二、原理 1、最简收音机原理 图1中LC谐振回路是收音机输入回路,改变电容C使谐振回路固有频率与无线电发射频率相同,从而引起电磁共振,谐振回路两端电压V AB最大,将该电波接收下来。经高频放大电路放大后,通过由二极管D和滤波电容C1构成的检波电路,将调幅信号包络解调下来,得到调制前的音频信号,再将音频信号进行低频放大,送到喇叭,就完全还原成可闻的声波信号。 图1 最简单的收音机组成框图 这就是最简AM收音机(也称高放式收音机)的工作原理,它简单,但可行性、可使用性太差,不适合日常使用。由于高放式收音机中高频放大器只能适应较窄频率范围的放大,要想在整个中波频段525kHZ—1605kHZ获得一致放大是很困难的。因此用超外差接收方式来代替高放式收音机。 2、超外差式收音机原理 所谓超外差式,就是通过输入回路先将电台高频调制波接收下来,和本地振荡回路产生的本地信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波。超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波。如图2所示。

在超外差的设计中,本振频率高于输入频率。用同轴双联可变电容器,使输入回路电容C1-A和本振回路电容C1-B同步变化,从而使频率差值始终保持近似一致,其差值即为中频465KHZ,即:如接收信号频率是600kHz,则本振频率是1055kHz;若接收信号频率是1000kHz,则本振频率是1465kHz;若接收信号频率是1500kHz,则本振频率是1965kHz; 图2 超外差收音机组成框图 由于谐振回路谐振频率,f 与C不成线性变化,因此必须有补偿电容对其特性进行修正,以获得在收听范围内f与C近似成线性变化,保证f本振-f信号=f 中频为一固定中频信号。超外差方式使接收的调制信号变为统一的中频调制信号,在作高频放大时,就可以得到稳定且倍数较高的放大,从而大大提高收音机的品质。 3、电路的工作原理(HX108-2七管半导体收音机) 图3 收音机原理图

简易对讲机制作

什么是对讲机?对讲机的英文名称是:two way radio,它是一种双向移动通信工具,在不需要任何网络支持的情况下,就可以通话,没有话费产生,适用于相对固定且频繁通话的场合。对讲机的种类繁多,本站为大家提供的是一种玩具性的对讲机套件,这既可以提高自己的动手能力,又可以学到一定的技术知识。 电路原理图: 工作原理: 如图,Q1高频管的集电集到发射极接有C4正反馈电容,这个正反馈信号会使用电路产生高频振荡,同时,由于天线会接收到空中的电磁波,

并通过L加到T1,使得Q1能根据空间电磁破的变化而振荡也发生变化,起到灵敏度极高的超再生检波作用。超再生检波出来的音频信号通过 R4C9传输到Q2进行前置放大,经过前置放大后的信号就可以再经Q3 推动、Q4、Q5功率放大去推动SP扬声器发出声音了,这就是对讲机的接收过程。通过调节T1的磁芯、C1、C3、C4还可以改变接收信号的频率,当接收频率刚好等于当地广播电台的频率时,还可以当收音机用。当需要讲话时,请接下“收”开关,这时,SP喇叭原本是接在输出发声的,现在变成了当作话筒来拾取音频信号了,SP的音圈随着声音的振动感应出微弱的电信号经过Q2放大,再经过经Q3推动、Q4、Q5功率放大后加到了Q1的集电集,Q1的集电极电压会随着声音的变化而变化,经过,导致了Q1的高频振荡信号幅射到空音的强弱也在随声音变化而变化,这时本机就相当于是一个小小的无线发射台了。 因此,本对讲机要保证发射的频率和接收的频率是一样,才能完成对讲,因此本元件包给大家配了多只电容,可以确保大家安装后都能可靠的对讲。说明:刚装好的电路板,随便接上一根天线一般就能在几米内对讲,这是本站能保证的。然后,请大家慢慢拉开距离,越调试得好,距商就越远,需要更远的距离,请配更好的天线和更高的电源电压,这还需要大家自己去控索

自制简易无线对讲机_自制无线电对讲机制作

自制简易无线对讲机_自制无线电对讲机制作 自制简易无线对讲机电路如附图所示,发射模块采用TXC2A型,该模块有5MHz的频率调节范围;接收模块用TXC2S型,标称灵敏度5V,接收频率和音量均可调节,最高工作电压为9V,而且具有静噪功能,待机接收时没有噪声。为了进一步提高灵敏度扩大使用范围,笔者在天线端增加了一级由PC1651组成的高放电路。由于PC1651工作电流不大,这里只用了一个5V稳压二极管供电,也可用78L05代换。安装PC1651时,要符合高频电路的原则,否则易发生自激。 电路平时S接通,处于待机状态,接收模块和高放级电路工作,发光管D2点亮(绿色)。接收模块具有静噪功能,既安静又省电,当收到呼叫而需回答时,按下K,电源加到TXC2A 上,发光管D3(红色)点亮,在TXC2A工作的同时接收部分电源已断开,此时对着MIC 讲话即可,整个工作过程为单工对讲。 该机虽未用晶振稳频,但其模块设计合理,频率还是比较稳定。电源可由电池9V或交流整流后的7809稳压供给。使用时,手不要触摸天线。本人组装使用一周有余都还正常工作。如果日久发生跑频,微调接收模块上的电容即可。该系统作用距离可达百米以上。 该机组装简单,购买模块时,厂家会给出模块的引脚功能,照图施工即可。收发开关可自制,也可用成品,天线用1/4波长的拉杆天线。用户只要照图连好后,微调两机收发频率能相互接收即可,最好将电路置入金属盒内,再将接收模块上的音量电位器用导线引到金属面板上,以便随时改变音量! 无线话筒原理分析篇下面的就是调频无线话筒的电路图,电路非常简洁,没有多余的器件。高频三极管V1和电容C3、C5、C6组成一个电容三点式的振荡器,对于初学者我们暂时不要去琢磨电容三点式的具体工作原理,我们只要知道这种电路结构就是一个高频振荡器就可以。三极管集电极的负载C4、L组成一个谐振器,谐振频率就是调频话筒的发射频率,根据图中元件的参数发射频率可以在88~108MHZ之间,正好覆盖调频收音机的接收频率,通过调整L的数值(拉伸或者压缩线圈L)可以方便地改变发射频率,避开调频电

无线电综测仪检测对讲机的方法

2955综测仪检测对讲机的方法 以马克尼仪器公司的2955A综合测试仪为例,介绍一下对讲机各项性能指标的测试方法。 仪器开启加电后,自动输入和显示如下设置状态: 一、发射机频率和功率的测量 1.按TX键,使2955仪器内部按照发射机测试要求连接。 2.按SELECT键,选择N型RF IN OUT射频输入插座。 3.将被测发射机的天线输出端与2955的N型RF输入插座相连。 4.选择发射机的信道开关,并接通电源。 5.按住对讲机左侧的发射机键控开关。 6.待屏上显示的数据稳定,按HOLD DISPLAY键,存储屏上的全部显示,然后释放发射机的键控开关,并关掉对讲机的电源。 7.读取并记录屏上所显示的发射机频率和功率值。 二、发射机频偏和失真度的测量 1.按屏上右下角HOLD OFF箭头所指的按键,解除屏上的存贮状态。 2.按AF GEN和FREQ键,设置1KHz音频振荡器频率。 3.按DIST N ON——OFF键,使屏上显示出测试失真度的DIST N 条形图。 4.将对讲机电源开关置接通位置。 5.将2955的AF GEN OUTPUT音频信号输出插座与发射机的调制信号输入端麦克风插孔相连。 6.按AF GEN LEVEL键,旋动2955的VARIABLE细调旋钮,调节AF信号电平,使屏上显示的FM 读数为发射机的最大频偏5KHz。 7.按HOLD DISPLAY键,存贮屏上全部显示读数,拔掉插入发射机麦克风插孔的连线插头,即自动切断发射机工作开关,再关掉整个对讲机的电源。 8.读数并记录发射机的频偏和失真度读数。 9.为了取消屏上显示的存贮状态,按HOLD OFF箭头所指的键,即HOLD DISPLAY键。

ZX-921收音机电路原理分析

3.3电路原理工作分析 3.3.1电路原理图 ZX-921收音机电路图 ①输入电路:又称输入调谐回路或选择电路,其作用是从天线上接收到的各种高频 信号中选择出所需要的电台信号并送到变频级。输入电路是收音机的大门,它的灵敏度和选择性对整机的灵敏度和选择性都有重要影响。 ②变频电路:又称变频器,由本机振荡器和混频器组成,其作用是将输入电路选出的信号(载波频率为fs的高频信号)与本机振荡器产生的振荡信号(频率为fr)在混频器中进行混频,结果得到一个固定频率(465kHz)的中频信号。这个过程称为“变频”,它只是将信号的载波频率降低了,而信号的调制特性并没有改变,仍属于调幅波。由于混频管的非线性作用,fs与fr在混频过程中,产生的信号除原信号频率外,还有二次谐波及两个频率的和频和差频分量。其中差频分量(fr—fs)就是我们需要的中频信号,可以用谐振回路选择出来,而将其它不需要的信号滤除掉。因为465kHz中频信号的频率是固定的,所以本机振荡信号的频率始终比接收到的外来信号频率高出465kHz,这也是“超外差”得名的原因。 如图所示,L1从磁性天线(磁棒)上感应出的电台信号,经由L1和C1-A组成的输入调谐回路选择后,只剩下需要的电台信号,该信号耦合给L2,并由L2送BG1的基极和发射极。由于调谐回路阻抗高,约为100千欧,三极管输入阻抗低,约为1~2千欧。要使它们阻抗匹配,使信号输出最大,就必须适当选择L1和L2的圈数比,一般取L1为60~80圈,L2取L1的十分之一左右。以改变输入回路的高端谐振频率,使之始终低于本机振荡频率465kHz。所以微调电容C主要用于调整波段高端的接收灵敏度。相反,微调电容C对波段低端接收灵敏度的影响极小,这是因为在波段低端双连可变电容器Cl-A几乎全部旋进,这时Cl-A的电容量很大,约为200多微法,微调电容器C的电容量的变化对它来说便可忽略不计。来自L2经输入调谐回路选择的信号电压一端接BG1的基极,另一端经C2旁路到地,再由地经本振回路B2次级下半绕组,然后由C3耦合送BG1的发射极。与此同时,来自本机振

对讲机接收电路的设计方案

对讲机接收电路的设计方案 第一章绪论 1.1对讲机的发明与发展 1936年,摩托罗拉公司研制出了第一台无线电通讯产品,“巡警牌”调幅车用无线电接收机,此后该产品被广泛应用于警车当中,大大提高了警方的反应速度。在第二次世界大战期间无线电对讲机技术得到了快速发展和运用。由于战争需求对无线电对讲机的移动性和可靠性提出了更高的要求,摩托罗拉又研制出一种背负式,重量近16千克,通信距离达16千米的产品--SCR300,成为二战中美军的重要通讯工具。止战后,无线电对讲机逐步转向民用领域,警车、送货车、出租车、救火车、甚至医院部都将对讲机作为缩短反应时间的重要工具。伴随着着民用频段的不断开放,对讲机的商业用户也逐渐扩大到交通运输、工业、公用事业、建筑业以及制造业的各个领域。 表1.1对讲机的发展 随着技术的发展,对讲机的体积变得越来越小,功能却越来越强大。同时,随着用户面的不断扩大,对讲机的种类越来越多,用以满足不同客户的需求。例如,普通的物业管理部门对点对点通信、近距离的普通对讲机就已经满足,而一个城市的警察就需要覆盖围、大功能复杂的对讲机。 1.2我国对讲机现状 在1 9 8 5年以前对讲机通信是我国主要的专用无线通信系统,如今伴随着公众移动通信产业的发展对讲机产业也已经成为重要的通信市场。目前,人们对对讲机有了空前认识,对讲机已经充分的在国民经济各部门和人们生活各个领域得到应用,已成为国防安全、公安部门、交通管理、石油化工企业、建筑施工、机械制造、酒店宾馆等部门重要的无线通信装备。

一、对讲机在国民经济中的地位与作用 不论是专业对讲机还是公众低功率民用对讲机,在公众移动通信中占比是很小的,相对于整个移动通信市场来说也是微乎其微的。对讲机市场虽然只占公众移动通信市场很小的份额,但由于目前我国国民经济中,各个行业已广泛而大量地使用对讲机通信,因此,对讲机实际上已成为各个行业重要的无线通信装备,从而显示出对讲机在国民经济中的重要地位。 二、对讲机是一个有很强增长力的行业 由近十年来世界经济的发展可以看到,即使世界经历了金融危机,在此时期世界经济的各大重要领域,都承受了巨大的震动,但是同一时期包含专业无线通信和公众低功率民用对讲机在的移动通信仍保持强劲的增长率。这说明了移动通信增长势头强劲,可以说,新世纪是移动通信的世纪,新世纪的世界是移动通信世界。中国是世界上最大的移动通信市场,同时也是世界上最具发展前途的对讲机市场之一。 三、我国对讲机产业的基本情况 对讲机产业是我国信息通信产业相对重要的组成部分,大部分生产制造基地都位于,,等东南沿海地区,产业分布区域性很明显。近年来,在高速发展的移动通信产业和信息产业的影响下,我国的对讲机产业出现了出乎寻常的迅速发展,仅一个城市而言就有相关的企业超过两百家,手机和对讲机等移动通信设备制造方面其总产值位居全国前列,是中国同时也是世界上最重要的无线电通信设备生产基地,包括对外销售在的以生产对讲机为主的企业就有四十多家。在这四十多家企业当中就有十余家对讲机品牌企业创造了国产量最大、技术和生产都位列世界前五名、服务全球用户的对讲机品牌,可以和外国企业相抗衡。一些高端产品已经远销国外各大对讲机市场,在世界超过八十个国家和地区出口,出口贸易呈现了上升趋势。 虽然我国已经成为第三大对讲机生产国,仅次于美国、日本。但我国品牌机市场份额过低,“小企业太多了,而且多数小企业生产技术水平低,产品质量差, 浪费了资源。”根本没法和发达国家的对讲机企业相比,基本上处于自由市场经济初期的无序发展阶段。由于对讲机行业的重复建设现象严重,因而大量设备制造厂家靠仿制为主、争产热门对讲机的现象也不断出现,这些经常导致了产业过剩的局面,且市场竞争方式往往以恶性价格这种低水平状态,这与我国对讲机产于的需求相去甚远,因此每年还要花大量的外汇进口专业无线通信设备。 四、市场前景及今后的发展趋势对讲机家庭拥有量可以反映一个国家的公众无线通信 水平,同时也反映了国家国民经济和科学技术发展水平。对讲机在美、欧、、新加坡、、等地深受消费者的欢迎。美国从1 9 9 8年放松民用对讲机权限后,在超市里都能销售对讲机,销售量每年都翻一番,2 0 0 0年销量就达到1 0 0 0万台,销售量和手机在一个层

超外差式收音机电路分析

超外差式收音机 超外差式收音机,就是通过输入回路先将电台高频调制波接收下来,然后和本地振荡回路产生的本地信号一并送入混频器,再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz、调频载波为10.7MHz)调制波。 中夏牌S 6 6D型收音机,采用典型六管超外差式电路,具有安装调试方便、工作稳定、灵敏度高、选择性好等特点,功放级采用无输出变压器的功率放大器,(OTL电路),有效率高、频率特性好、声音宏亮、耗电省等特色。是一款值得青少年无线电爱好者动手制作的套件。 一、电路的工作原理 图1是中夏S 66D型收音机的原理电路图,图2为为框图。 1、输入调谐电路 输入调谐电路由双连可变电容器的CA和T1的初级线圈Lab组成,是一并联谐振电路,Tl是磁性天线线圈,从天线接收进来的高频信号,通过输入调谐电路的谐振选出需要的电台信号,电台信号频率是f=l/2πLabCA,当改变CA时,就能收到不同频率的电台信号。 2、变频电路 本机振荡和混频合起来称为变频电路。变频电路是以VTl为中心,它的作用是把

通过输入调谐电路收到的不同频率电台信号(高频信号)变换成固定的465KHz的中频信号。 VTl、T2、CB等元件组成本机振荡电路,它的任务是产生一个比输入信号频率高465KHz的等幅高频振荡信号。由于Cl对高频信号相当短路,Tl的次级Lcd的电感量又很小,对高频信号提供了通路,所以本机振荡电路是共基极电路,振荡频率由T2、cB控制,CB是双连电容器的另一连,调节它以改变本机振荡频率。T2是振荡线圈,其初次绕在同一磁芯上,它们把VT 1的等电极输出的放大了的振荡信号以正反馈的形式耦合到振荡回路,本机振荡的电压由T2的初级的抽头引出,通过C2耦合到VT 1的发射极上。 混频电路由VT l、T3的初级线圈等组成,是共发射极电路。其工作过程是:(磁性天线接收的电台信号)通过输入调谐电路接收到的电台信号,通过Tl的次级线圈Lcd送到VT l的基极,本机振荡信号又通过C2送到VT l和发射极,两种频率的信号在T 1中进行混频,由于晶体三极管的非线性作用,混合的结果产生各种频率的信号,其中有一种是本机振荡频率和电台频率的差等于465KHz的信号,这就是中频信号。混频电路的负载是中频变压器,T3的初级线圈和内部电容组成的并联谐振电路,它的谐振频率是465KHz,可以把465KHz的中频信号从多种频率的信号中选择出来,并通过T3的次级线圈耦合到下一级去,而其它信号几乎被滤掉。 3、中频放大电路 它主要由VT2、VT3组成的两级中频放大器。第一中放电路中的VT2负载是中频变压器T4和内部电容组成,它们构成并联谐振电路,谐振频率是465KHz,与前面介绍的直放式收音机相比,超外差式收音机灵敏度和选择性都提高了许多,主要原因是有了中频放大电 路,它比高频信号更容易调谐和放大。 4、检波和自动增益控制电路 中频信号经一级中频放大器充分放大后由T4耦合到检波管VT3,VT3既起放大作用,又是检波管,VT3构成的三极管检波电路,这种电路检波效率高,有较强的自动增益控制 (AGC)作用。 AGC控制电压通过R3加到VT2的基极,其控制过程是: 外信号电压↑→Vb3↑—Ib3↑→Ic3↑→Vc3↓通过R3 Vb2↓→Ib2↓→Ic2↓→外信号电压↓ 检波级的主要任务是把中频调幅信号还原成音频信号,C4、C5起滤去残余的中频成分 的作用。 5、前置低放电路 检波滤波后的音频信号由电位器RP送到前置低放管VT4,经过低放可将音频信号电压放大几十到几百倍,但是音频信号经过放大后带负载能力还很差,不能直接推动扬声器工作,还需进行功率放大。旋转电位器RP可以改变VT4的基极对地的信号电压的大小,可达到控制音量的目的。 6、功率放大器(OTL电路) 功率放大器的任务是不仅要输出较大的电压,而且能够输出较大的电流。本电

相关文档
相关文档 最新文档