文档库 最新最全的文档下载
当前位置:文档库 › 基于matlab的码型转换

基于matlab的码型转换

基于matlab的码型转换
基于matlab的码型转换

基于MATLAB的七参数坐标系统转换问题分析(精)

基于 MATLAB 的七参数法坐标系统转换问题分析 1 张鲜妮 21, ,王磊 21, 1、中国矿业大学环境与测绘学院,江苏徐州 (221008 2、江苏省资源环境信息工程重点实验室,江苏徐州 (221008 E-mail: 摘要:GPS 测量的坐标是基于 WGS-84坐标系下的,而我国实用的测量成果大多都是基于北京 54坐标系下的。随着 GPS 测量技术的广泛使用,由 WGS-84坐标向北京 54坐标系下坐标的转换问题一直是一个可探讨的问题, 坐标系统转换的现有模型很多, 但常用的还是经典的七参数转换模型。随着不断的实践研究, 发现七参数在进行坐标系统转换时有一定的局限性。本文采用 MATLAB 语言编写了七参数法坐标系统转换程序,并对七参数坐标系统转换的若干问题进行了分析讨论。分析结果表明, 小区域范围内用正常高代替大地高对坐标转换精度影响很小; 公共点分布情况对坐标转换精度影响显著; 合适的公共点密度有利于提高坐标转换精度。 关键词:七参数法;坐标系统; MATLAB ;转换问题 1. 引言 随着 GPS 空间定位技术的发展, GPS 技术以其快速、精确、全天候在测量中的应用变的越来越广泛, GPS 成为建立基础控制网的首选手段 ]1[,由于 GPS 系统采用的是 WGS-84坐标系, 是一种地心坐标系, 而我国目前常用的两个坐标系 1954年北京坐标系 (以下称 BJ54 和 1980年国家大地坐标系,是一种参心坐标系,采用克拉所夫斯基椭球为参考椭球,并采用高斯克吕格投影方式进行投影, 我国的国土测量成果和在进行工程施工时大都是基于这两个坐标系下的。所以在利用 GPS 技术进行测量过程中必然存在由 WGS-84坐标向北京 54坐标系下的转换问题。现有的转换模型已经成熟,归纳起来主要有布尔莎 -沃尔夫模型(七参数法、莫洛登斯基 -巴代卡

Matlab图像颜色空间转换

Matlab图像颜色空间转换 实验内容 用matlab软件编程实现下述任务: 读入彩色图像,提取其中得R、G、B颜色分量,并展示出来。 我们学习了多种表示图像得颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。 颜色空间得转化关系参考以下公式: 原始图片 三个色调分量 YUV与RGB之间得转换 Y=0、229R+0、587G+0、114B U=-0、147R-0、289G+0、436B V=0、615R-0、515G-0、100B

YIQ与RGB之间得转换 Y=0、299R+0、587G+0、114B I=0、596R-0、275G-0、321B Q=0、212R-0、523G+0、311B YCrCb与RGB之间得转换 Y = 0、2990R + 0、5870G + 0、1140B? Cr = 0、5000R 0、4187G 0、0813B + 128 Cb = 0、1687R 0、3313G + 0、5000B + 128

HSI与RGB之间得转换 I=(R+G+B)/3 H=arccos{ 0、5*((RG)+(RB)) / ((RG)^2 + (RB)(GB))^0、5} S=1[min(R,G,B)/ I ] CMY与RGB之间得转换

心得体会 查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换得过程。不同得颜色空间在描述图像得颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色得方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC规定得电视系统格式,YUV(亮度、色差、色差)就是用于PAL规定得电视系统格式,YCbCr(亮度单一要素、蓝色与参考值得差值、红色与参考值得差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度得分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。 通过这次实验,实现了五种颜色空间得转换,瞧到了不同得绚丽结果,掌握了一些基本得知识。 程序 clear rgb=imread('G:\Learning\MultiMedia\666、jpg'); rgb2hsi(rgb); rgb_r=rgb(:,:,1);

matlab数据类型及转换

Matlab中有15种基本数据类型,主要是整型、浮点、逻辑、字符、日期和时间、结构数组、单元格数组以及函数句柄等。 1、整型:(int8;uint8;int16;uint16;int32;uint32;int64;uint64)通过intmax(class)和intmin(class) 函数返回该类整型的最大值和最小值,例如intmax(‘int8’)=127; 2、浮点:(single;double) 浮点数:REALMAX('double')和REALMAX('single')分别返回双精度浮点和单精度浮点的最大值,REALMIN('double')和REALMIN ('single')分别返回双精度浮点和单精度浮点的最小值。 3、逻辑:(logical) Logical:下例是逻辑索引在矩阵操作中的应用,将5*5矩阵中大于0.5的元素设定为0: A = rand(5); A(A>0.5)=0; 4、字符:(char) Matlab中的输入字符需使用单引号。字符串存储为字符数组,每个元素占用一个ASCII字符。如日期字符:DateString=’9/16/2001’ 实际上是一个1行9列向量。构成矩阵或向量的行字符串长度必须相同。可以使用char函数构建字符数组,使用strcat函数连接字符。 例如,命令name = ['abc' ; 'abcd'] 将触发错误警告,因为两个字符串的长度不等,此时可以通过空字符凑齐如:name = ['abc ' ; 'abcd'],更简单的办法是使用char函数:char(‘abc’,’abcd’),Matlab自动填充空字符以使长度相等,因此字符串矩阵的列纬总是等于最长字符串的字符数. 例如size(char(‘abc’,’abcd’))返回结果[2,4],即字符串’abc’实际存在的是’abc ’,此时如需提取矩阵中的某一字符元素,需要使用deblank函数移除空格如name =char(‘abc’,’abcd’); deblank(name(1,:))。 此外,Matlab同时提供一种更灵活的单元格数组方法,使用函数cellstr可以将字符串数组转换为单元格数组: data= char(‘abc’,’abcd’) length(data(1,:)) ->? 4 cdata=cellstr(data) length(cdata{1}) ->?3 常用的字符操作函数 blanks(n) 返回n个空字符 deblank(s) 移除字符串尾部包含的空字符 (string) 将字符串作为命令执行 findstr(s1,s2) 搜索字符串 ischar(s) 判断是否字符串 isletter(s) 判断是否字母 lower(s) 转换小写 upper(s) 转换大写 strcmp(s1,s2) 比较字符串是否相同 strncmp(s1,s2,n) 比较字符串中的前n个字符是否相同 strrep(s1,s2,s3) 将s1中的字符s2替换为s3 5、日期和时间 Matlab提供三种日期格式:日期字符串如’1996-10-02’,日期序列数如729300(0000年1月1日为1)以及日期向量如1996 10 2 0 0 0,依次为年月日时分秒。 常用的日期操作函数

MATLAB中的abc dq相坐标变换

坐标变换总结 姓名: 日期:2011.11.4

坐标变换的总结 一.由三项坐标系变换到两相旋转坐标系 1.三相到两相静止坐标系的变换首先,确定三相电压的相序: cos() 2cos()34cos()3A m B m c m u U wt u U wt u U wt ππ==- =- 在坐标图上表示三相到两相静止坐标系上的变换,如图所示: 图13-2s 变换 由上图,我们可以将A u 、B u 、c u 转化到两相静止坐标系上,具体等式如下: 211()3222()322A B C B C u u u u u αβ?=--????=-?? 插入系数2、 3是为了保证两相坐标系中合成矢量的模与各相电压的模相同。后面会推导为什么可以保证模不变。 整理成状态方程的形式,如下: 1112223022A B C u u u u u αβ????-- ???????=?????????-??????2.两相静止坐标系到两相旋转坐标系的变换 我们知道,在两相静止坐标系中,合成矢量是旋转的,我们令旋转坐标系的d 轴与旋转矢量重合,则可将其转换到旋转坐标系中。坐标变换如图所示:

图22s-2r 变换 此时,我们可以得到,两相静止坐标系到两相旋转坐标系的公式,其中θ一般取为A 相的相角。 cos sin sin cos d q u u u u αβθθθθ??????=??????-???? ??二.反向变换 1.若需要将旋转坐标系转化到静止坐标系上,只需相应的将d-q 向αβ-投影即 可,根据图二,我们可以得到: cos sin sin cos d q u u u u αβθθθθ????-??=???????????? 2.同理,根据图1,我们可以将αβ-分别投影到A 、B 、C 上,获得其逆变换: 102133221322A B C u u u u u αβ??????????????=-???????????????--???? 三.关于乘以2/3保持模不变的问题首先,我们已经能够确定了电压相序 cos() 2cos()34cos()3A m B m c m u U wt u U wt u U wt ππ==- =-经过变换后: 211()322 A B c u u u u α=--

matlab图像数据类型转换

uint 8:无符号的8位(8bit)整型数据(unit 都是存储型) int :整型数据 1、在MATLAB中,数值一般都采用double型(64位)存储和运算. 2、为了节省存储空间,MATLAB为图像提供了特殊的数据类型uint8(8位无符号整数),以此方式存储的图像称为8位型像。 3、函数image能够直接显示8位图像,但8位型数据和double型数据在image中意义不一样, 4、对于索引图像,数据矩阵中的值指定该像素的颜色种类在色图矩阵中的行数。当数据矩阵中的值为0时,表示用色图矩阵中第一行表示的颜色绘制;当数据矩阵中的值为1时,表示用色图矩阵中的第二行表示的颜色绘制该像素,数据与色图矩阵中的行数总是相差1。所以,索引图像double型和uint8型在显示方法上没有什么不同,只是8位数据矩阵的值和颜色种类之间有一个偏差1。调用格式均为image(x); colormap(map); 5、对于灰度图像,uint8表示范围[0,255],double型表示范围[0,1]。可见,double型和uint8型灰度图像不一样,二者转换格式为: I8=uint8 (round (I64*255)); !!double转换成uint 8 I64=double (I8)/255; !!!uint转换成double 反之,imread根据文件中的图像种类作不同的处理。当文件中的图像为灰度图像时,imread 把图像存入一个8位矩阵中,把色图矩阵转换为双精度矩阵,矩阵中每个元素值在[0,1]内;当为RGB图像时,imread把数据存入到一个8位RGB矩阵中。!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! MATLAB中读入图像的数据类型是uint8,而在矩阵中使用的数据类型是double 因此 I2=im2double(I1) :把图像数组I1转换成double精度类型; 如果不转换,在对uint8进行加减时会产生溢出 图像数据类型转换函数 默认情况下,matlab将图象中的数据存储为double型,即64位浮点数;matlab还支持无符号整型(uint8和uint16);uint型的优势在于节省空间,涉及运算时要转换成double型。 im2double():将图象数组转换成double精度类型 im2uint8():将图象数组转换成unit8类型 im2uint16():将图象数组转换成unit16类型 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 默认情况下,matlab将图像中的数据存储为double型,即64位浮点数;matlab还支持无符号整型(uint8和uint16);uint型的优势在于节省空间,涉及运算时要转换成double型。 但是,问题的真正的解释其实应该是这样的。首先是在数据类型转换时候uint8和im2uint8的区别,uint的操作仅仅是将一个double类型的小数点后面的部分去掉;但是im2uint8是将输入中所有小于0的数设置为0,而将输入中所有大于1的数值设置为255,再将所有其他值乘以255。 图像数据在进行计算前要转化为double类型的,这样可以保证图像数据运算的精

彩色空间转换

实验五彩色空间转换一、 实验目的 掌握MATLAB 中彩色空间的转换 二、实验步骤 1、由RGB 空间转换到YIQ: 读入5.jpg 图像; clc;clear; f = imread('5.jpg') yiq_image=rgb2ntsc(f); imshow(yiq_image) 显示结果如下: 2、由YIQ 彩色空间转换到RGB 空间下: rgb_image=ntsc2rgb(yiq_image); figure,imshow(rgb_image) 转换结果如图:

2、YCbCr 和RGB 彩色空间的相互转换 ycbcr_image=rgb2ycbcr(f); figure,imshow(ycbcr_image) rgb_image=ycbcr2rgb(ycbcr_image); figure,imshow(rgb_image) 效果如下图: 3、HSV 和RGB 彩色空间的相互转换 >> hsv_image=rgb2hsv(f); >> figure,imshow(hsv_image); >> rgb_image=hsv2rgb(hsv_image); >> figure,imshow(rgb_image); 效果如下图: 4、CMY 和RGB 彩色空间的相互转换 >> cmy_image=imcomplement(f); >> figure,imshow(cmy_image); >> rgb_image=imcomplement(cmy_image); >> figure,imshow(rgb_image); 效果如下图:

5、RGB 彩色空间到HSI 彩色空间的转换 hsi=rgb2hsi(f); figure,subplot(141),imshow(hsi) subplot(142),imshow(hsi(:,:,1)) subplot(143),imshow(hsi(:,:,2)) subplot(144),imshow(hsi(:,:,3)) 效果如下图: 三、实验总结 通过本次实验我掌握了MATLAB 中彩色空间的转换的基本方法。本次实验与上次实验联系比较紧密。但本次实验于上次实验相比,难度上有了一些变化,尤其是在RGB 彩色空间到HSI 彩色空间的转换的时候,出现了一点问题。由于在系统中本身没有rgb2hsi这个函数,所以运行时出现了错误,但通过,上网查找资料终于解决了这一问题。总体来说本次实验收获还是比较大的。

MATLAB模块介绍$

MATLAB 模块介绍 -------- 数学 & 金融 u Curve Fitting Toolbox Curve Fitting Toolbox 扩展MATLAB 环境,集成数据管理,拟合,显示,检验和输入分析过程等功能。所有能通过GUI 使用的功能都可以通过命令行来进行。

u Database Toolbox ——与关系数据库交换数据 Database Toolbox提供了同任何支持ODBC/JDBC标准的数据库进行数据交换的能力。利用在工具箱中集成的Visual Query Builder工具,无需学习任何SQL语句就可以实现在数据库中查寻数据的功能。这样MATLAB就能够对存储在数据库中的数据进行各种各样的复杂分析。在MATLAB环境中,也可以使用SQL命令来进行如下操作: 对数据库数据进行读、写操作;应用简单或复杂的条件查询数据库中的内容。 特点: ?与支持ODBC/JDBC 数据库建立连接,包括Oracle 、Sybase SQL Server ,Sybase SQL Anywhere ,Microsoft SQL Sever ,Microsoft Access ,Informix Ingres 等。?支持SQL 语句,可以在MATLAB 环境下直接执行SQL 查询命令 ?动态数据调入:可以根据需要使用SQL 在MATLAB 中获取数据,本工具箱对某一种类型的数据库进行大量或小量的查询 ?数据类型保持:在MATLAB 中对数据的调入或调出操作都能保持原有的数据类型 ?多个对话能力,采用本工具箱可在MATLAB 中从一个数据库中调入数据,对那些数据进行分析,然后输出到另一个数据库中 ?处理大量数据的能力:采用本工具箱你可以一次或分几次处理大量的数据,这样能让你根据任务高效地进行数据处理 ?连续状态的数据库联接:一旦和某个数据库的联接建立起来后,数据库一直是打开的,除非你在MATLAB 中执行关闭语句。这提高了数据库的读取速度,减少了不必要的命令来调入、输出数据。 ?无需了解SQL 也能够对数据库数据进行查询。 功能: Database Toolbox 可以与流行的数据库交互数据,其中包括Oracle ,Sybase ,Microsoft SQL Server 及Informix 等。工具箱还允许在单个MATLAB 进程中对多个数据库进行操作,同时支持对大量数据处理。工具箱中包含的Visual Query Builder ,即使不知道SQL ,也能可视化地与数据库打交道。 u Financial Derivatives Toolbox Financial Derivatives Toolbox 用于分析金融衍生工具和投资。 特点 ?提供各种利息率模型 ?提供七种金融工具一系列计算的函数

基于matlab的坐标正反算

测量程序设计实验报告 实验名称:坐标正反算

实验三坐标正反算 一、实验目的 编写坐标正反算程序,并对格式化文件数据进行计算,验证程序。 二、实验内容 1、编写坐标正算程序 1)建立以xy_direct命名的函数,函数输入输出格式为 [x2,y2] = xy_direct(x1,y1,distance, azimuth) 度转度分秒: >> function dms= degree2dms(jiaodu) >>degree = fix(jiaodu); >>mimute = fix((jiaodu-degree)*60); >>second = ((jiaodu-degree)*60-mimute)*60; >>dms = degree+mimute/100+second/10000; 度分秒转度: >> function degree = dms2degree(jiaodu) >>degree = fix(jiaodu); >> mimute = fix((jiaodu-degree)*100); >>second = (jiaodu-degree-mimute/100)*10000; >>degree = degree+mimute/60+second/3600; 弧度转度: >> function dms=rad2dms(rad) >> rad=abs(rad); >>jiaodu=rad*180.0/pi; >> % l=fix(a) >> % b=(a-l)*60.0 >> % m=fix(b) >> % a=l+m/100.0+(b-m)*0.006

实验8多媒体实验颜色空间转换

多媒体实验报告——颜色空间的转换 一、实验目的 通过本章的课程设计,加深对数字图像基础知识的理解,并获得如何处理图像的实际经验,并达到以下目的 1、熟练使用matlab进行图像的读取和显示; 2、了解各种颜色空间的不同; 3、掌握各种颜色空间的转换方法。 二、实验内容 1、完成实验指导书3.5节的内容,掌握颜色空间的转换方法; 2、在以上基础上完成下列程序的编写: 练习1:将图片flowers.tif图像转换为hsv空间图像,并提取hsv空间下的每个分量,对转换后的hsv图像进行调整,并将调整后的图像重新转换为rgb空间图像,要求:(1)用一个显示原始图像。(2)用另一个窗口分四个区域显示hsv的三个分量,以及调整后的图像。 练习2:仿照上面的练习,将rgb空间转换为ycbcr空间,显示要求同上。 三、实验结果(粘贴程序以及程序运行结果,或运行结果的说明) 练习1: (1)编程如下: clear all; clc pic = imread('flowers.tif'); phsv = rgb2hsv(pic); figure(1) subimage(pic):colorbar; figure(2) ph = phsv(:,:,1); ps = phsv(:,:,2); pv = phsv(:,:,3); pm = cat(3,ph,ps,pv); phsv = hsv2rgb(pm); subplot(2,2,1),subimage(ph):colorbar; xlabel('(a)色调分量图像','FontSize',14,'FontName','隶书','color','b');

Matlab_Simulink中Clark变换和Park变换的深度总结

Matlab_Simulink 中Clark 变换和Park 变换的深度总结 最近搞三相并网逆变系统,对这个坐标变换产生了很多疑惑。调模型,排错,最后发现坐标变换这个地方出来的波形总是和我设想的不一样。以前认为坐标变换都是死的,带公式即可,经过这几天的研究,发现这里面真的有些方法。基于MATLAB/Simulink 中的模块,我也发现了Simulink 中和一些书上不一样的地方。而且现在这个坐标变换每本书上的表示方法都不一样,甚至字母都有好多种。下面我想基于MATLAB/Simulink 深刻的总结一下三相交流控制系统常用的两个变换Clark (3-2)变换和Park (2-2)变换。 首先来搞清楚为什么要用这两个变换,在三相交流系统中,常用的控制器还是经典的PI 调节器。PI 调节器可以对直流量进行无净差的调节,而交流量就不行,所以需要将三相交流分量转化为两项直流分量加以控制。 接下来看看Clark 变换(3-2)原理。由于三相分量幅值相等,相位相差120,角速度相等,因此三相分量存在信息冗余,这时,可以去掉一项将其化为两相,这就是Clark 变换的作用。由于两项分量所在的坐标轴是静止的,所以我们把此坐标轴称为两相静止坐标系。也就是说平面上的原来基于三相静止坐标系的矢量,可以切换到两相静止坐标系表示。变换的原则是投影原则+等幅值等效原则(DPC 时用功率等效原则)。 令A 与alfa 轴重合,按照变换原则,计算投影ABC 分量在alfa 、beta 上的投影,按照 等复制变换原则导出变换矩阵方程如下。 11122230A B C αβ????-- ????? =???? ???? ??? Simulink 中的3/2变换也是基于此变换进行的。但是,在电气工程中为大家熟知的三相正序的相序是,A 为0,B 为-120,C 为120(也可以是-240).如果按照图中所标注的方向进行坐标变换,那一定要将相序变为负序,也就是说A 为0,B 为120,C 为-120. 如果坚持用传统正序,那么再按上式变换之后的坐标进行变换的话,beta 轴就反向了。也就是说,采用A 为0,B 为-120,C 为120的相序,利用上面的变换方程进行变换的结果是,beta 滞后alfa 90°.

色彩空间介绍及从RGB到LUV的转换

UV色彩空间介绍及从RGB到LUV的转换收藏 CIE 1931 XYZ 色彩空间(也叫做CIE 1931 色彩空间)是其中一个最先采用数学方式来定义的色彩空间,它由国际照明委员会(CIE)于1931年创立。人类眼睛有对于短(S)、中(M)和长(L)波长光的感受器(叫做视锥细胞),所以原则上只要三个参数便能描述颜色感觉了。在三色加色法模型中,如果某一种颜色和另一种混合了不同份量的三种原色的颜色,均使人类看上去是相同的话,我们把这三种原色的份量称作该颜色的三色刺激值。CIE 1931 色彩空间通常会给出颜色的三色刺激值,并以X、Y和Z来表示。 因为人类眼睛有响应不同波长范围的三种类型的颜色传感器,所有可视颜色的完整绘图是三维的。但是颜色的概念可以分为两部分:明度和色度。例如,白色是明亮的颜色,而灰色被认为是不太亮的白色。换句话说,白色和灰色的色度是一样的,而明度不同。 CIE xyY空间是由XYZ值导出的空间,Y 是颜色的明度或亮度。x和y是CIE xy色度坐标,它们是所有三个三色刺激值X、Y 和Z 的函数所规范化的三个值中的两个: 反变换:(Y是亮度,x和y是色度坐标,已知) 在这里,x和y是色度坐标,CIE 1931色度图如下:

---------------------------------------------------------------------------------- LUV色彩空间全称CIE 1976(L*,u*,v*)(也作CIELUV)色彩空间,L*表示物体亮度,u*和v*是色度。于1976年由国际照明委员会(International Commission on Illumination)提出,由CIE XYZ空间经简单变换得到,具视觉统一性。类似的色彩空间有CIELAB。对于一般的图像,u*和v*的取值范围为-100到+100,亮度为0到100。 ----------------------------------------------------------------------------------- 转换: RGB to LUV 1,RGB to CIE XYZ:

MATLAB与C#数据类型转换

以下是本人编程中总结的一些思路,拿出来与大家共享。不对之处,请留言说明。 版本:Matlab R2007b,Visual Studio2005 C++/C#数据类型到M类型 此方向转换十分简单。 如果C++/C#数据不是数组, ?直接将值传递给已经初始化的MWArray数组中的成员 ?直接将数据类型赋值给已经初始化的MWNumericArray变量。 ?直接将字符串类赋值给已经初始化的MWCharArray变量。 如果是数组类型: ?直接赋值给MWNumericArray变量; ?赋值给MWArray变量,则在前面加上类型转换如:(MWNumericArray)进行强制转换。 总之,MWArray是总类型,其它的以MW开头,以Array结尾的变量类型都可以直接对它进行赋值或取值。 M类型到C++/C#数据类型 MWArray M类型,它是M文件的编译后内部的标准类型,一切C++/C#类型都要最终转换成此类型,方可作为参数调用M语言函数。 MWCharArray M的字符串类型,使用它可以将M中的字符类型转换成C++/C#的字符串类型。 MWNumericArray MWNumericArray是MWArray与C#等语言的转换中间类型。 常用的转换函数: ①public Array ToArray(MWArrayComponent component); 将M类型转换成C#的Array类型,然后可以直接转换成其它类型的数组。 ②public byte ToScalarByte();

将M类型转换成C#的字节类型; ③public double ToScalarDouble(); 将M类型转换成C#的双精度类型; double temp=((MWNumericArray)(mwArgout[0])).ToScalarDouble(); ④public float ToScalarFloat(); 将M类型转换成C#的单精度类型; ⑤public int ToScalarInteger(); 将M类型转换成C#的整型类型; ⑥public long ToScalarLong(); 将M类型转换成C#的长整C/C++/C#数据型类型; ⑦public short ToScalarShort(); 将M类型转换成C#的短整型类型; ⑧public override string ToString(); 将M类型转换成C#的字符串类型;string arror=mwArgout[2].ToString(); ⑨public Array ToVector(MWArrayComponent component); 将M类型转换成C#的Array类型,然后可以直接转换成其它类型的数组。 下面使用调试过的代码示例表述①⑨两个函数的区别: ① double[,]Temp1=new double[1,3]; Temp1=(double[,])((MWNumericArray)mwArgout[1]).ToArray(MWArrayComponent.Real);⑨ double[]s1=new double[2]; s1=(double[])((MWNumericArray)mwArgout[1]).ToVector(MWArrayComponent.Real);

C#实现颜色空间转换

实验一颜色空间转换 下载链接:https://www.wendangku.net/doc/f712741654.html,/share/link?shareid=139708&uk=521254270 一、实验目的 理解颜色空间的原理,并实现各颜色空间的转换算法. 二、实验内容和步骤 请编程实现以下转换算法: 1.RGB ←→CMY 2.RGB ←→ HSL 3.RGB ←→ HSV 三、实验要求 1. 实现语言不做要求, C, C++, Java, Matlab均可 2. 要求按照课本上的算法实现 3. 请关键语句都加上注释 四、实验结果(本次实验采用C#语言) 1.实验界面截图: (1)初始截图 (2)操作后截图

2.实验代码

using System; using System.Collections.Generic; using https://www.wendangku.net/doc/f712741654.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; namespace RGBChange { public partial class Form1 : Form { public Form1() { InitializeComponent(); } //选择转换模式 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e) { if (comboBox1.Text == "RGB-->CMY" || comboBox1.Text == "RGB--->HSL" || comboBox1.Text == "RGB-->HSV") { label6.Text = "请输入数据,R:[0,255],G:[0,255],B:[0,255]"; label1.Text = "R:"; label2.Text = "G:"; label3.Text = "B:"; } if (comboBox1.Text == "CMY-->RGB" ) { label6.Text = "请输入数据,C:[0,360],M:[0,1],Y:[0,1]"; label1.Text = "C:"; label2.Text = "M:"; label3.Text = "Y:"; } if (comboBox1.Text == "HSV--->RGB" ) { label6.Text = "请输入数据,H:[0,360],S:[0,1],:[0,1] "; label1.Text = "H:"; label2.Text = "S:"; label3.Text = "V:"; }

MATLAB数据输入和输出

数据输入和输出 一、概述 二、使用输入向导(Import Wizard) 从菜单File->Import Data打开Import Wizard;或者命令窗口输入函数uiimport。 从剪贴板开始Import Wizard:Edit->Paste to workspace。 三、保存和加载MAT文件 MA T文件是双精度、二进制、MA TLAB格式的文件。 输出到MA T文件:save filename [var1 var2 …] [str*];可以通过[var1 var2 …]选择性保存变量;也可以使用通配符“*”。 查看MA T文件中的变量:whos –file 文件名。 存放结构数组的某个字段:加上“-struct”选项。 在已经存在的MA T文件上添加数据:-append选项。 禁止压缩和Unicode字符编码文件,在save语句中加入“-v6”或者File->Preferences-> General->MA T-Files->MA T-File save options->Ensure backward compatibility(-v6)。save语句默认为数据压缩。 选择输出格式:“-ascii”、“-tabs”、“-double”“-v4”。 从MA T文件输入数据:load函数。 四、输入文本数据 各种输入函数的数据定界符: textscan和textread性能比较:前者有更好的性能,特别是读大文件时;使用前者首先要

打开文件,最后要关闭文件,可从文件任意位置读;前者只输出一个单元数组,不必给每个被读字段指定一个输出参数;前者有更多的数据转换选项和更多的用户设置选项。 五、输出文本数据 六、输入/输出标准图像文件 七、输入/输出音频和视频数据 八、输入/输出电子表数据 九、低级文件输入/输出函数

基于matlab的大地坐标与直角坐标间的转换精编版

测量程序设计 实验报告 实验名称:大地坐标与空间直角坐标的 换算

实验四 大地坐标与空间直角坐标的换算 一、实验目的 编写大地坐标与空间直角坐标相互转换的程序,并对格式化文件数据进 行计算,验证程序。 二、实验内容: 1、大地坐标向空间直角坐标换算 转换公式: B h e N z L B h N y L B h N x sin ])1([sin cos )(cos cos )(2+-=+=+= (1) 其中:L 为经度,B 为纬度,h 为大地高,B e a N 22sin 1-=为卯酉圈曲率半径, a b a e 2 2-=为第一偏心率,a 为旋转椭球长半轴,b 为短半轴。 WGS84椭球参数:长半轴 a = 6378137 扁率 f = 1/298.257223563 根据上式创建以geo 2xyz 命名的函数,函数输入输出格式为 [x, y, z] = geo 2xyz (L, B, h) 2、空间直角坐标向大地坐标换算 根据式(1)推导大地坐标向空间直角坐标转换公式: N B y x h y x B Ne z B x y L -+=++==cos )sin arctan() /arctan(2 2222 注意计算纬度时需要用到迭代,可用)arctan(22y x b az B +=作为初始值。 创建以xyz2geo 命名的函数,函数输入输出格式为 [L, B, h] = xyz 2geo (x, y, z)

三、实验步骤 1、大地坐标向空间直角坐标换算 主程序: %%大地坐标向空间直角坐标换算 %函数的输入输出格式为[x,y,z]=geo2xyz(L,B,h) [filename,pathname] = uigetfile('*.txt','请选择打开的数据文件'); file = [pathname, filename]; data = importdata(file); L=data.data(:,1); B=data.data(:,2); h=data.data(:,3); [x,y,z]=geo2xyz(L,B,h); A=[x,y,z]; A=A'; [filename_out,pathname_out] = uiputfile('*.txt','请选择要输出数据文件'); fileout = [pathname_out, filename_out]; fid = fopen(fileout,'wt'); fprintf(fid,' x y z\n'); fprintf(fid,'%15.7f %15.7f %15.7f\n',A); close('all'); 函数: function [x,y,z]=geo2xyz(L,B,h) %大地坐标经纬度转换成空间直角坐标 B=dms2rad(B); L=dms2rad(L); a=6378137; %a是长半轴 f=1/298.257223563; %f是扁率 b=a-a*f; e=sqrt(a^2-b^2)/a; N=a./(sqrt(1-e^2.*(sin(B)).^2)); %N为卯酉圈半径率,e为第一偏心率 x=(N+h).*cos(B).*cos(L); y=(N+h).*cos(B).*sin(L); z=(N*(1-e^2)+h).*sin(B); end function rad=dms2rad(jiaodu) %度分秒->弧度(rad) degree = fix(jiaodu); mimute = fix((jiaodu-degree)*100);

几种典型的颜色空间

几种典型的颜色空间 (一)CIE色度模型 国际照明委员会(CIE,Commission Internationale de L'Eclairage / International Commission on Illumination)的色度模型是最早使用的模型之一。它是三维模型,其中,x和y两维定义颜色,第3维定义亮度。 CIE 在1976 年规定了两种颜色空间。一种是用于自照明的颜色空间,叫做CIE LUV(图06-02-2)。 图06-02-2 CIE 1976 Lu’v’色度图 另一种用于非自照明的颜色空间,叫做CIE 1976 L*a*b*,或者叫CIE LAB。CIE LAB 系统使用的坐标叫做对色坐标(opponent color coordinate),如图06-02-3 所示。CIELAB 使用b*, a *和 L*坐标轴定义CIE 颜色空间。其中,L*值代表光亮度,其值从0(黑色)~100(白色)。b*和a*代表色度坐标,其中a*代表红-绿轴,b*代表黄-蓝轴,它们的值从0到10。a* = b*= 0表示无色,因此L*就代表从黑到白的比例系数。使用对色坐标(opponet color coordinate)的想法来自这样的概念:颜色不能同时是红和绿,或者同时是黄和蓝,但颜色可以被认为是红和黄、红和蓝、绿和黄以及绿和蓝的组合。 图06-02-3 CIE LAB 颜色空间 CIE XYZ 是国际照明委员会在1931 年开发并在1964年修订的CIE 颜色系统(CIE Color System),该系统是其他颜色系统的基础。它使用相应于红、绿和蓝三种颜色作为三种基色,而所有其他颜色都从这三种颜色中导出。通过相加混色或者相减混色,任何色调都可以使用不同量的基色产生。CIE 1931 色度

MATLAB程序北京54转换为WGS84坐标(GPS)

%北京54转换为WGS84坐标(GPS) %X=3459174.0300 Y=36503163.4500 X=3459181.0255; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%输入X值 Y=36503206.2860; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%输入X值 x=X; y=Y-fix(Y/1000000)*1000000-500000; b=x*3600*180/pi/6367558.4969; T=(cos(b*pi/180/3600))^2; Bf=b+(50221746+(293622+(2350+22*T)*T)*T)*sin(b*pi/180/3600)*cos(b*pi/180/3600)*3600* 180/pi/10^10; Q=(cos(Bf*pi/180/3600))^2; Nf=6399698.902-[21562.267-(108.973-0.612*Q)*Q]*Q; Z=y/(Nf*cos(Bf*pi/180/3600)); b2=(0.5+0.003369*Q)*sin(Bf*pi/180/3600)*cos(Bf*pi/180/3600); b3=0.333333-(0.166667-0.001123*Q)*Q; b4=0.25+(0.16161+0.00562*Q)*Q; b5=0.2-(0.1667-0.0088*Q)*Q; B=Bf-[1-(b4-0.12*Z^2)*Z^2]*Z^2*b2*180*3600/pi; L=[1-(b3-b5*Z^2)*Z^2]*Z*180*3600/pi; B1=fix(B/3600); B2=fix((B-B1*3600)/60); B3=B-B1*3600-B2*60; L1=fix(L/3600); L2=fix((L-L1*3600)/60); L3=L-L1*3600-L2*60; L4=fix(Y/1000000)*3+L1; fprintf('\n\n') fprintf('p点的WGS84坐标:%f\t%f\t%f\t\n',B1,B2,B3) fprintf('p点的WGS84坐标:%f\t%f\t%f\t\n',L4,L2,L3)

matlab数据类型和转换

matlab数据类型和转换 Matlab中有15种基本数据类型,主要是整型、浮点、逻辑、字符、日期和时间、结构数组、单元格数组以及函数句柄等。 1、整型:(int8;uint8;int16;uint16;int32;uint32;int64;uint64)通过intmax(class)和intmin(class) 函数返回该类整型的最大值和最小值,例如intmax(‘int8’)=127; 2、浮点:(single;double) 浮点数:REALMAX('double')和REALMAX('single')分别返回双精度浮点和单精度浮点的最大值,REALMIN('double')和REALMIN ('single')分别返回双精度浮点和单精度浮点的最小值。 3、逻辑:(logical) Logical:下例是逻辑索引在矩阵操作中的应用,将5*5矩阵中大于0.5的元素设定为0: A = rand(5); A(A>0.5)=0; 4、字符:(char) Matlab中的输入字符需使用单引号。字符串存储为字符数组,每个元素占用一个ASCII字符。如日期字符:Date String=’9/16/2001’ 实际上是一个1行9列向量。构成矩阵或向量的行字符串长度必须相同。可以使用char函数构建字符数组,使用strcat函数连接字符。 例如,命令 name = ['abc' ; 'abcd'] 将触发错误警告,因为两个字符串的长度不等,此时可以通过空字符凑齐如:name = ['abc ' ; 'abcd'],更简单的办法是使用char函数:char(‘abc’,’abcd’),Matlab自动填充空字符以使长度相等,因此字符串矩阵的列纬总是等于最长字符串的字符数. 例如s ize(char(‘abc’,’abcd’))返回结果[2,4],即字符串’abc’实际存在的是’abc ’,此时如需提取矩阵中的某一字符元素,需要使用deblank 函数移除空格如name =char(‘abc’,’abcd’); deblank(name(1,:))。 此外,Matlab同时提供一种更灵活的单元格数组方法,使用函数cellstr 可以将字符串数组转换为单元格数组: data= char(‘abc’,’abcd’) length(data(1,:)) ->? 4 cdata=cellstr(data) length(cdata{1}) ->?3 常用的字符操作函数 blanks(n) 返回n个空字符 deblank(s) 移除字符串尾部包含的空字符 (string) 将字符串作为命令执行 findstr(s1,s2) 搜索字符串 ischar(s) 判断是否字符串 isletter(s) 判断是否字母 lower(s) 转换小写 upper(s) 转换大写 strcmp(s1,s2) 比较字符串是否相同

相关文档
相关文档 最新文档