文档库 最新最全的文档下载
当前位置:文档库 › 化工原理实验—吸收

化工原理实验—吸收

化工原理实验—吸收
化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定

一、实验目的

1.了解填料吸收塔的结构和流程;

2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC

二、实验原理

吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。

(一). 吸收速率方程式:

吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?=

式中: Ky 气相总传系数,mol/m 3.s ; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3;

K y a 气相总容积吸收传质系数,mol/m 2.s 。

从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。

(二).影响因素: 1.设备因素:

V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素:

a .气相总容积吸收传质系数K y a

根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成:

a

k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。

b .气相平均推动力Δy m

将操作线方程为:22)(y x x G

L

y +-=的吸收操作线和平衡线方程为:y

=mx 的平衡线在方格纸上作图,从图5-1中可得知: 2

12

1ln y y y y y m ???-?=

?

图5-1 吸收操作线和平衡线

其中 ;11*1

11mx y y y y -=-=?,22*222mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平衡。

(三). 吸收塔的操作和调节:

吸收操作的结果最终表现在出口气体的组成y 2上,或组分的回收率η上。在低浓度气体吸收时,回收率η可近似用下式计算:

1

21211y y

y y y -=-=

η 吸收塔的气体进口条件是由前一工序决定的,控制和调节吸收操作结果的是

吸收剂的进口条件:流率L 、温度t 、浓度x 2三个因素。

由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率G 不变时,增加吸收剂流率,吸收速率N A 增加,溶质吸收量L 增加,那么出口气体的组成y 2减小,回收率η增大。

当液相阻力较小时,增加液体的流量,传质总系数K y a 变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δy m 的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。

当液相阻力较大时增加液体的流量。传质系数K y a 大幅度增加,而平均推动力可能减小,但总的结果使传质速率N A 增大,溶质吸收量增大。

吸收剂入口温度对吸收过程影响也甚大,也是控制和调节吸收操作的一

个重要因素。降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。 对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力

a

k m

a K x y ≈1将随之减小,结果使吸收效果变好,y 2降低,而平均推动力Δy m 或许会减小。对于气相控制的吸收过程,降低操作温度,过程阻力

a

k a K y y 11≈不变.但平均推动力Δy m 增大,吸收效果同样将变好。总之,吸收剂温度的降低,改变了相平衡常数,对过程阻力及过程推动力都产生影响,其总的结果使吸收效果变好,吸收过程的回收率增加。

吸收剂进口浓度x 2是控制和调节吸收效果的又一重要因素。吸收剂进口浓度的降低,液相进口处的推动的增大,全塔平均推动力也将随之增大而有利于吸收过程回收率的提高。

应当注意,当气液两相在塔底接近平衡(L/G <m )(见图5-2a )欲降低y 2,提高回收率,用增加吸收剂用量的方法更有效。但是当气液两相在塔顶接近平衡时(L/G >m )(见图5-2b )提高吸收剂用量,即增大L/G 并不能使y 2明显的降低,只有用降低吸收剂入塔浓度x 2才是有效的。

a b

图5 - 2 L/G 大小对操作的影响

三、实验要点

1.单元操作 ----- 吸收单元操作的特点;回收率η的影响因素;

2.实验结果 ----- 双膜理论、分析吸收过程属于气膜控制或液膜控制; 3.实验测量 ----- 气体转子流量计的读数以及校正;

4.实验流程 ----- 液泛现象及预防,液封的作用及控制; 5.实验设备 ----- 填料吸收塔的结构及操作及填料介绍。

四、实验装置示意图及流程

五、实验步骤

(一).设备:

本实验装置是空气―丙酮混合气―水吸收系统,吸收塔为填料吸收塔,气体是经定值器将压力恒定的室温空气,进入丙酮容器鼓泡而出,得到的丙酮已达饱和的混合气,吸收剂为自来水,用色谱分析的方法,测定混合气进口浓度y1及混合气出口浓度y2。

(二).测试准备:

1.接通气路,打开水流量计开关,再打开定值器开关,将压力恒定在0.02MPa左右,然后,打开气体转子流量计,把水和气的转子流量计调节至

测试时的最大值,仔细检查设备是否有漏液、液泛等不正常现象,如果一切正常,即可开始调试。

2.测试:

在上面的步骤完成后,用分别改变水流量、空气流量(均由小至大)、及水温(升高)的方法,测数组数据。每改变一次水流量或空气流量,均需间隔数分钟取样,或出口水温基本恒定。取样时,先取y1再取y2。

3. 注意事项:

气体流量不能超过600 L/h,液体流量不能超过7L/h,否则有可能液泛。液封的液位高低由后面的阀门控制。

六、实验操作原则及内容

(一).实验操作原则:

1.先开水的开关,后开气的开关,并测量空气的温度。?

2.y1每次都要测量,且要先测y2,后测y1,防止影响吸收的平衡。

3.注意控制液封的水位,且要防止液泛。

4.加热温度要小于50℃,。(电压95伏左右)

5.改变控制条件时,要经过10 ~ 15 min时间稳定。

(二).实验内容:

1.在空气流量恒定条件下,改变清水流量,测定气体进出浓度y1、y2,计算组分回收率η,传质推动力面Δy m和传质系数K y a。

2.在清水流量恒定条件下,改变空气流量,测定气体进出口浓度y1、y2,计算组分回收率η,传质推动力面Δy m和传质系数K y a。

3.在空气流量和清水流量恒定条件下,改变清水温度,测定气体进出口浓度y1、y2,计算组分回收率η,传质推动力面Δy m和传质系数K y a。

七、实验数据记录及数据处理

(一). 设备参数:

填料:瓷质拉西环;气液接触方式:气~ 液逆流;

(二). 操作参数:

定值器压力:0.02-0.04MPa ( 表压)

(三).原始数据记录:

1.常数:

填料塔直径D:40 mm;填料塔高度H:220 mm;

色谱仪系数:0.18;室温:10℃;气压:101.3KPa

2.实验数据记录:

(四)计算结果

八、实验数据处理中注意事项说明:

1.气体流量计在0.02MPa 下使用,与气体流量计标定时的状态不同,故需校正: 0

0PT T

P G G N

= 2.吸收剂的进口温度由半导体温度计测得,需计算全塔平均温度,来查得各组的m 值。全塔平均温度为: 2

进t t t +=

3.色谱仪上读得的峰面积正比于取样气相浓度,进出口峰面积之比,等于气体进出口浓度y 1, y 2之比。 4. 丙酮的安托因方程系数 t C B A lgP +

-

=

P :mmHg A :6.75.30 B :1030.96 C :209.83

t :℃ (5~45℃)

九、实验数据处理结果的讨论及要求

1.在空气流量恒定条件下,改变清水流量,讨论组分回收率η,传质推动力面Δy m和传质系数K y a的变化规律。

2.在清水流量恒定条件下,改变空气流量,讨论组分回收率η,传质推动力面Δy m和传质系数K y a的变化规律。

3.从实验数据分析水吸收丙酮是气膜控制还是液膜控制,还是两者兼而有之。

十、思考题

1.从传质推动力和传质阻力两方面分析吸收剂流量和吸收温度对吸收过程的影响?

2.从实验数据分析水吸收丙酮是气膜控制还是液膜控制,还是两者兼而有之?

3.填料吸收塔塔底为什么必须有液封装置,液封装置是如何设计的。

4.将液体丙酮混入空气中,除实验装置鼓泡器中用到的方法外,还可有哪几种?

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

化工原理实验—吸收

填料吸收塔的操作及吸收传质系数的测定 一、实验目的 1.了解填料吸收塔的结构和流程; 2.了解吸收剂进口条件的变化对吸收操作结果的影响; 3.掌握吸收总传质系数K y a 的测定方法 4. 学会使用GC 二、实验原理 吸收操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y 2是度量该吸收塔性能的重要指标,但影响y 2的因素很多,因为吸收传质速率N A 由吸收速率方程式决定。 (一). 吸收速率方程式: 吸收传质速率由吸收速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/; A 填料的有效接触面积,m 2; Δy m 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m 3; K y a 气相总容积吸收传质系数,mol/。 从前所述可知,N A 的大小既与设备因素有关,又有操作因素有关。 (二).影响因素: 1.设备因素:

V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸收传质系数K y a 根据双膜理论,在一定的气温下,吸收总容积吸收传质系数K y a 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得b a y L G C a K ?=,显然K y a 与气体流量及液体流量均有密切关系。比较a 、b 大小,可讨论气膜控制或液膜控制。 b .气相平均推动力Δy m 将操作线方程为:22)(y x x G L y +-= 的吸收操作线和平衡线方程为:y =mx 的平衡线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸收操作线和平衡线

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

化工原理实验模拟试题

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上 A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体 A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。 C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管 A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力不再减小的管 子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验—吸收

化工原理实验—吸收 一、实验目的 1.了解填料吸取塔的结构和流程; 2.了解吸取剂进口条件的变化对吸取操作结果的阻碍; 3.把握吸取总传质系数Kya 的测定方法 4. 学会使用GC 二、实验原理 吸取操作是分离气体混合物的方法之一,在实际操作过程中往往同时具有净化与回收双重目的。因而,气体出口浓度y2是度量该吸取塔性能的重要指标,但阻碍y2的因素专门多,因为吸取传质速率NA 由吸取速率方程式决定。 (一). 吸取速率方程式: 吸取传质速率由吸取速率方程决定 : m y A y aV K N ?=填 或 m y A y A K N ?= 式中: Ky 气相总传系数,mol/m3.s ; A 填料的有效接触面积,m2; Δym 塔顶、塔底气相平均推动力, V 填 填料层堆积体积,m3; Kya 气相总容积吸取传质系数,mol/m2.s 。 从前所述可知,NA 的大小既与设备因素有关,又有操作因素有关。

(二).阻碍因素: 1.设备因素: V 填与填料层高度H 、填料特性及放置方式有关。然而,一旦填料塔制成,V 填就为一定值。 2.操作因素: a .气相总容积吸取传质系数Kya 按照双膜理论,在一定的气温下,吸取总容积吸取传质系数Kya 可表示成: a k m a k a K x y y +=11 又有文献可知:a y G A a k ?=和b x L B a k ?=,综合可得 b a y L G C a K ?=,明显Kya 与气体流量及液体流量均有紧密关系。 比较a 、b 大小,可讨论气膜操纵或液膜操纵。 b .气相平均推动力Δym 将操作线方程为:22)(y x x G L y +-=的吸取操作线和平稳线方程为:y =mx 的平稳线在方格纸上作图,从图5-1中可得知: 2 12 1ln y y y y y m ???-?= ? 图5-1 吸取操作线和平稳线 其中 ;11*111mx y y y y -=-=?,22* 2 22mx y y y y -=-=?,另外,从图5-1中还可看出,该塔是塔顶接近平稳。 (三). 吸取塔的操作和调剂: 吸取操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。在低浓度气体吸取时,回收率η可近似用下式运算:

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

化工原理实验试卷

1 化工原理实验试卷 注意事项:1.考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3 ?考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1. 在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 2. 实验数据中各变量的关系可表示为表格,图形和公式. 3. 影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等 4. 用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空 气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5. 用皮托管放在管中心处测量时,其U形管压差计的读数R反映管中心处的静压头。 6. 吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7. 在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定进料量、进料温度、进料浓度等。 8. 干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9. 在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到?, 可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10. 吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12. 在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13. 测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14. 在精馏实验中,确定进料状态参数q需要测定进料温度,进料浓度参数。 15. 在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系 数的目的。 16. 在干燥实验中,要先开风机,而后再打开加热以免烧坏加热丝。 17. 在流体流动形态的观察实验中,改变雷诺数最简单的方法是改变流量。 18. (1)离心泵最常用的调节方法是出口阀门调节;(2)容积式泵常用的调节方法是旁路调节。 19. 在填料塔流体力学特性测试中,压强降与空塔气速之间的函数关系应绘在双对

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封?液封高度如何计算? 答:保证塔内液面,防止气体漏出,保持塔内压力.0.1 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)X10.2/Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)X10.2/Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量

为宜。 (2)测定填料塔的流体力学性能有什么工程意义? 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义? 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制? 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数? 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升

相关文档
相关文档 最新文档