文档库 最新最全的文档下载
当前位置:文档库 › 高三数学高考一轮复习资料: 基本不等式

高三数学高考一轮复习资料: 基本不等式

高三数学高考一轮复习资料: 基本不等式
高三数学高考一轮复习资料: 基本不等式

基本不等式

[最新考纲]

1.了解基本不等式的证明过程.

2.会用基本不等式解决简单的最大(小)值问题.

知 识 梳 理

1.基本不等式:ab ≤a +b

2

(1)基本不等式成立的条件:a >0,b >0.

(2)等号成立的条件:当且仅当a =b 时取等号.

(3)其中a +b

2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式

(1)重要不等式:a 2+b 2≥2ab (a ,b ∈R ).当且仅当a =b 时取等号. (2)ab ≤?

????a +b 22

(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥?

????a +b 22

(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a

b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x >0,y >0,则

(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).

(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2

4(简记:和定积最大).

辨 析 感 悟

1.对基本不等式的认识

(1)当a ≥0,b ≥0时,a +b

2≥ab .(√)

(2)两个不等式a 2+b 2≥2ab 与a +b

2≥ab 成立的条件是相同的.(×) 2.对几个重要不等式的认识 (3)(a +b )2≥4ab (a ,b ∈R ).(√) (4)2ab a +b =2

1a +1

b

≤ab ≤a +b 2≤a 2+b 2

2.(×)

(5)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).(√) 3.利用基本不等式确定最值

(6)函数y =sin x +4sin x ,x ∈???

???0,π2的最小值为4.(×)

(7)(·福州模拟改编)若x >-3,则x +

4

x +3

的最小值为1.(√) (8)(·四川卷改编)已知函数f (x )=4x +a

x (x >0,a >0)在x =3时取得最小值,则a =36.(√) [感悟·提升]

两个防范 一是在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.对于公式a +b ≥2ab ,ab ≤?

????a +b 22

,要弄清它们的作用、使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.如(2)、(4)、(6).

二是在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.

考点一 利用基本不等式证明简单不等式

【例1】 已知x >0,y >0,z >0. 求证:? ????y x +z x ? ????x y +z y ? ????

x z +y z ≥8.

证明 ∵x >0,y >0,z >0,

∴y x +z x ≥2 yz x >0,x y +z y ≥2 xz

y >0,

x z +y z ≥2 xy

z >0, ∴? ????y x +z x ? ????x y +z y ? ????x z +y z ≥ 8 yz ·xz ·xy

xyz

=8.

当且仅当x =y =z 时等号成立.

规律方法 利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题.

【训练1】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1

c ≥9.

证明 ∵a >0,b >0,c >0,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +

a +

b +

c c =3+b a +c a +a b +c b +a c +b c =3+? ????b a +a b +? ????c a +a c +? ????c b +b c

≥3+2+2+2=9,

当且仅当a =b =c =1

3时,取等号.

考点二 利用基本不等式求最值

【例2】 (1)(·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy

z 取得最大值时,2x +1y -2

z 的最大值为 ( ). A .0 B .1 C.94

D .3

(2)(·广州一模)已知2x +2

y =1,(x >0,y >0),则x +y 的最小值为

A .1

B .2

C .4

D .8

审题路线 (1)x 2

-3xy +4y 2

-z =0?变形得z =x 2

-3xy +4y 2

?代入z

xy ?变形后利

用基本不等式?取等号的条件把2x +1y -2z 转化关于1

y 的一元二次函数?利用配方法求最大值.

解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4y

x -3.

又x ,y ,z 为正实数,∴x y +4y

x ≥4,

当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-? ??

??1y 2+2y

=-? ????

1y -12+1,当1y =1,即y =1时,上式有最大值1.

(2)∵x >0,y >0,∴x +y =(x +y )·? ????

2x +2y = 4+2? ??

??

x y +y x ≥4+4

x y ·y

x =8.

当且仅当x y =y

x ,即x =y =4时取等号. 答案 (1)B (2)D

规律方法 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.

【训练2】 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是

A.245

B.285 C .5

D .6

(2)(·浙江十校联考)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 A.43

B.53

C .2

D.54

解析 (1)由x +3y =5xy 可得15y +3

5x =1,

∴3x +4y =(3x +4y )? ????15y +35x =95+45+3x 5y +12y 5x ≥135+12

5=5(当且仅当3x 5y =12y 5x ,即

x =1,y =1

2时,等号成立), ∴3x +4y 的最小值是5.

(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2. 答案 (1)C (2)C

考点三 基本不等式的实际应用

【例3】 (·济宁期末)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=1

3x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100

x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.

(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

解 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元,依题意得,当0<x <8时,

L (x )=5x -? ??

??

13x 2+x -3=-13x 2+4x -3;

当x ≥8时,L (x )=5x -? ????6x +100x -38-3=35-? ????

x +100x .所以L (x )=

?????

-13x 2

+4x -3,0<x <8,35-? ??

??

x +100x ,x ≥8.

(2)当0<x <8时,L (x )=-1

3(x -6)2+9.

此时,当x =6时,L (x )取得最大值L (6)=9万元, 当x ≥8时,L (x )=35-? ??

??

x +100x ≤35-2

x ·100

x =35-20=15,

此时,当且仅当x =100

x 时,即x =10时,L (x )取得最大值15万元.

∵9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大.最大利润为15万元.

规律方法 (1)利用基本不等式解决实际问题时,应先仔细阅读题目信息,理解题意,明确其中的数量关系,并引入变量,依题意列出相应的函数关系式,然后用基本不等式求解.

(2)在求所列函数的最值时,若用基本不等式时,等号取不到,可利用函数单调性求解.

【训练3】 为响应国家扩大内需的政策,某厂家拟在年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t (t ≥0)万元满足x =4-

k

2t +1

(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家年的年促销费用投入多少万元时,厂家利润最大? 解 (1)由题意有1=4-k 1,得k =3,故x =4-32t +1.

∴y =1.5×

6+12x

x ×x -(6+12x )-t

=3+6x -t =3+6? ?

???4-32t +1-t =27-182t +1-t (t ≥0).

(2)由(1)知:y =27-182t +1-t =27.5-?

????

???9t +12+

? ????t +12.

由基本不等式

9

t+1

2

?

?

?

?

?

t+

1

2≥2

9

t+

1

2

·?

?

?

?

?

t+

1

2=6,

当且仅当

9

t+1

2

=t+

1

2,

即t=2.5时等号成立,

故y=27-

18

2t+1

-t=27.5-

?

?

?

?

?

?

?

?

9

t+

1

2

?

?

?

?

?

t+

1

2

≤27.5-6=21.5.

当且仅当

9

t+1

2

=t+

1

2时,等号成立,即t=2.5时,y有最大值21.5.所以年的年促

销费用投入2.5万元时,该厂家利润最大,最大利润为21.5万元.

1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.

2.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.

教你审题7——如何挖掘基本不等式中的“相等”

【典例】(·天津卷)设a+b=2,b>0,则

1

2|a|+

|a|

b取得最小值为________.

[审题]一审条件:a+b=2,b>0,转化为条件求最值问题;

二审问题:1

2|a|+|a|

b转化为“1”的代换;

三审过程:利用基本不等式时取等号的条件.

解析因为a+b=2,所以

1

2|a|+

|a|

b=

a+b

4|a|+

|a|

b=

a

4|a|+

b

4|a|+

|a|

b≥

a

4|a|+2

b

4|a|·

|a|

b

=a

4|a|+1≥-1

4+1=

3

4,当且仅当

b

4|a|=

|a|

b,a<0,即a=-2,b=4时取等号,故

1

2|a|+|a|

b的最小值为

3

4.

答案 34

[反思感悟] 在求解含有两个变量的代数式的最值问题时,通常的解决办法是变量替换或常值“1”的替换,即由已知条件得到某个式子的值为常数,然后将欲求最值的代数式乘上常数,再对代数式进行变形整理,从而可利用基本不等式求最值.

【自主体验】

(·台州一模)设x ,y 均为正实数,且32+x +3

2+y

=1,则xy 的最小值为 A .4 B .4 3 C .9 D .16

解析 由

32+x +32+y

=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16. 答案 D

基础巩固题组

(建议用时:40分钟)

一、选择题

1.(·泰安一模)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ). A .a +b ≥2ab B.1a +1b >2ab

C.b a +a

b ≥2 D .a 2+b 2>2ab

解析 因为ab >0,即b a >0,a b >0,所以b a +a

b ≥2b a ×a

b =2.

答案 C

2.(·杭州一模)设a >0,b >0.若a +b =1,则1a +1

b 的最小值是( ). A .2 B.1

4 C .4 D .8

解析 由题意1a +1b =a +b a +a +b b =2+b a +a

b ≥2+2b a ×a b =4,当且仅当b a =a b ,

即a =b =1

2时,取等号,所以最小值为4. 答案 C

3.(·金华十校模拟)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1

a ,n =a +1

b ,则m +n 的最小值是( ). A .3 B .4 C .5 D .6

解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1

b =2a , ∴m +n =2(a +b )≥4ab =4. 答案 B

4.(·陕西卷)小王从甲地到乙地的时速分别为a 和b (a

A .a

B .v =ab C.ab

a +

b 2 D .v =a +b

2

解析 设甲、乙两地之间的距离为s . ∵a

a +s b

2sab (a +b )s =2ab a +b <2ab

2ab

=ab .

又v -a =2ab

a +

b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .

答案 A

5.(·兰州模拟)已知函数y =x -4+9

x +1

(x >-1),当x =a 时,y 取得最小值b ,则a +b =( ).

A .-3

B .2

C .3

D .8 解析 y =x -4+

9x +1=x +1+9x +1-5,由x >-1,得x +1>0,9

x +1

>0,所以由基本不等式得y =x +1+9

x +1

-5≥2(x +1)×

9

x +1

-5=1,当且仅当x +1=

9

x +1,即(x +1)2=9,所以x +1=3,即x =2时取等号,所以a =2,b =1,a +b =3. 答案 C 二、填空题

6.(·广州模拟)若正实数a ,b 满足ab =2,则(1+2a )·(1+b )的最小值为________. 解析 (1+2a )(1+b )=5+2a +b ≥5+22ab =9.当且仅当2a =b ,即a =1,b =2时取等号. 答案 9

7.已知x ,y ∈R +,且满足x 3+y

4=1,则xy 的最大值为______. 解析 ∵x >0,y >0且1=x 3+y

4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =3

2,y

=2时取等号. 答案 3

8.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1

n 的最小值为________.

解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,

∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =1

2时,取“=”,∴1m +1

n 的最小值为4. 答案 4 三、解答题

9.已知a >0,b >0,a +b =1,求证:1a +1b +1

ab ≥8.

证明 1a +1b +1ab =1a +1b +a +b ab =2? ????1a +1b ,

∵a +b =1,a >0,b >0,

∴1a +1b =a +b a +a +b b =2+a b +b

a ≥2+2=4, ∴1a +1

b +1ab ≥8? ??

??

当且仅当a =b =12时等号成立.

10.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1

y 的最小值. 解 (1)∵x >0,y >0,

∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,

∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有??

?

2x +5y =20,

2x =5y ,解得???

x =5,y =2,

此时xy 有最大值10.

∴u =lg x +lg y =lg(xy )≤lg 10=1.

∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,

∴1x +1y =? ????1x +1y ·2x +5y 20=120? ?

???7+5y x +2x y ≥120? ??

??7+2 5y x ·2x y =

7+210

20, 当且仅当5y x =2x

y 时,等号成立. 由????

?

2x +5y =20,5y x =2x

y

,解得???

??

x =1010-203

,y =20-4103

.

∴1x +1

y 的最小值为7+21020.

能力提升题组 (建议用时:25分钟)

一、选择题

1.已知x >0,y >0,且2x +1

y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( ).

A .(-∞,-2]∪[4,+∞)

B .(-∞,-4]∪[2,+∞)

C .(-2,4)

D .(-4,2)

解析 ∵x >0,y >0且2x +1

y =1, ∴x +2y =(x +2y )? ????

2x +1y =4+4y x +x y

≥4+2

4y x ·x y =8,当且仅当4y x =x y ,

即x =4,y =2时取等号,

∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

2.(·郑州模拟)已知正实数a ,b 满足a +2b =1,则a 2+4b 2+1

ab 的最小值为( ). A.72 B .4 C.16136 D.172

解析 因为1=a +2b ≥22ab ,所以ab ≤18,当且仅当a =2b =1

2时取等号.又因为a 2+4b 2+1ab ≥2a 2·4b 2+1ab =4ab +1ab .令t =ab ,所以f (t )=4t +1t 在? ?

???0,18单调

递减,所以f (t )min =f ? ????18=17

2.此时a =2b =12.

答案 D 二、填空题

3.(·南昌模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 解析 由已知,得xy =9-(x +3y ),即3xy =27-3(x +3y )≤?

????x +3y 22

,令x +3y =t ,则t 2+12t -108≥0,解得t ≥6,即x +3y ≥6. 答案 6 三、解答题

4.(·泰安期末考试)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).

(1)大货车运输到第几年年底,该车运输累计收入超过总支出?

(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)

解 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ),

由-x 2+20x -50>0,解得10-52<x <10+5 2.

而2<10-52<3,故从第3年开始运输累计收入超过总支出.

(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为

y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-? ????x +25x ,而19-? ????

x +25x ≤19-

2

x ·25

x =9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,

才能使年平均利润最大.

方法强化练——不等式 (对应学生用书P305)

(建议用时:75分钟)

一、选择题

1.“|x |<2”是“x 2-x -6<0”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件

解析 不等式|x |<2的解集是(-2,2),而不等式x 2-x -6<0的解集是(-2,3),于是当x ∈(-2,2)时,可得x ∈(-2,3),反之则不成立,故选A. 答案 A

2.(·青岛一模)若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ). A .a 2

>b 2

B.b a <1 C .lg(a -b )>0 D.? ????13a <? ??

??13b

解析 ∵0<13<1,∴y =? ????

13x 是减函数,又a >b ,

∴? ????13a <? ????13b . 答案 D

3.(·杭州二中调研)若不等式|8x +9|<7和不等式ax 2+bx >2的解集相等,则实数a ,b 的值分别为( ).

A .a =-8,b =-10

B .a =-4,b =-9

C .a =-1,b =9

D .a =-1,b =2

解析 据题意可得|8x +9|<7的解集是{x |-2<x <-14},故由{x |-2<x <-14}是一元二次不等式ax 2+bx >2的解集,可知x 1=-2,x 2=-1

4是ax 2+bx -2=0的两个根,根据根与系数的关系可得x 1x 2=-2a =1

2, ∴a =-4,x 1+x 2=-b a =-9

4,∴b =-9,故选B. 答案 B

4.(·浙江温岭中学模拟)下列命题错误的是( ). A .若a ≥0,b ≥0,则a +b

2≥ab B .若a +b

2≥ab ,则a ≥0,b ≥0

C .若a >0,b >0,且a +b

2>ab ,则a ≠b D .若a +b

2>ab ,且a ≠b ,则a >0,b >0

解析 若a +b

2>ab ,且a ≠b ,则a =0,b >0或a >0,b =0或a >0,b >0.故D 错误. 答案 D

5.(·长沙诊断)已知实数x ,y 满足不等式组???

2x -y ≥0,

x +2y ≥0,

3x +y -5≤0,

则2x +y 的最大值

是( ).

A .0

B .3

C .4

D .5

解析 设z =2x +y ,得y =-2x +z ,作出不等式对应的区域,平移直线y =-2x +z ,由图象可知当直线经过点B 时,直线的截距最大,由???

2x -y =0,

3x +y -5=0,解

得???

x =1,y =2,即B (1,2),代入z =2x +y ,得z =2x +y =4. 答案 C

6.(·北京海淀一模)设x ,y ∈R +,且x +4y =40,则lg x +lg y 的最大值是( ). A .40 B .10 C .4 D .2

解析 ∵x ,y ∈R +,∴40=x +4y ≥24xy =4xy ,当x =4y =20时取等号, ∴xy ≤100,lg x +lg y =lg xy ≤lg 100=2. 答案 D

7.某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,则这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)( ). A .8 B .9 C .10 D .11

解析 设使用x 年的年平均费用为y 万元.

由已知,得y =10+0.9x +

0.2x 2+0.2x

2x ,即y =1+10x +x 10(x ∈N *

).

由基本不等式知y ≥1+2

10x ·x 10=3,当且仅当10x =x

10,即x =10时取等号.因

此使用10年报废最合算,年平均费用为3万元. 答案 C

8.(·天水一模)实数x ,y 满足???

x ≥1,

y ≤a (a >1),

x -y ≤0,

若目标函数z =x +y 取得最大值4,

则实数a 的值为( ). A .4 B .3 C .2 D.3

2 解析

作出可行域,由题意可知可行域为△ABC 内部及边界,y =-x +z ,则z 的几何意义为直线在y 轴上的截距,将目标函数平移可知当直线经过点A 时,目标函数取得最大值4,此时A 点坐标为(a ,a ),代入得4=a +a =2a ,所以a =2. 答案 C

9.(·湖州模拟)设x ,y 满足约束条件???

3x -y -6≤0,x -y +2≥0,

x ≥0,y ≥0.

若目标函数z =ax +by (a

>0,b >0)的最大值为12,则2a +3

b 的最小值为( ). A.256 B.83 C.11

3 D .4

解析 不等式表示的平面区域如图所示阴影部分.当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a

>0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6. 所以2a +3b =? ????2a +3b ·2a +3b 6

=136+? ??

??

b a +a b

≥136+2=256(当且仅当a =b =6

5时等号成立). 答案 A

10.(·金丽衢十二校联考)已知任意非零实数x ,y 满足3x 2+4xy ≤λ(x 2+y 2)恒成立,则实数λ的最小值为( ).

A .4

B .5 C.115 D.72

解析 依题意,得3x 2

+4xy ≤3x 2

+[x 2

+(2y )2

]=4(x 2

+y 2

),因此有3x 2+4xy

x 2+y

2≤4,

当且仅当x =2y 时取等号,即3x 2+4xy x 2+y 2的最大值是4,结合题意得λ≥3x 2+4xy

x 2+y 2,

故λ≥4,即λ的最小值是4. 答案 A 二、填空题

11.(·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为? ????

-13,12,则不等式

-cx 2+2x -a >0的解集为________.

解析 由ax 2

+2x +c >0的解集为? ??

??

-13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,? ????-13×12=c

a ,解得a =-12,c

=2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)

12.(·武汉质检)已知f (x )=????

?

3x ,x ≥0,? ????13x

,x <0,则不等式f (x )<9的解集是________.

解析 当x ≥0时,由3x <9得0≤x <2.

当x <0时,由? ????13x

<9得-2<x <0.

故f (x )<9的解集为(-2,2). 答案 (-2,2)

13.(·湖北七市联考)点P (x ,y )在不等式组???

x ≥0,

x +y ≤3,

y ≥x +1

表示的平面区域内,若

点P (x ,y )到直线y =kx -1(k >0)的最大距离为22,则k =________.

解析 在坐标平面内画出题中的不等式组表示的平面区域及直线y =kx -1的大概位置,如图所示,因为k >0,所以由图可知,点(0,3)到直线y =kx -1的距离最大,因此|0-1-3|

k 2+1=22,解得k =1(负值舍去).

答案 1

14.(·湘潭诊断)已知向量a =(x -1,2),b =(4,y ),若a ⊥b ,则9x +3y 的最小值为________.

解析 由a ⊥b 得a ·b =4(x -1)+2y =0,即2x +y =2.所以9x +3y ≥29x ·3y =232x +y =6. 答案 6

15.(·宁波十校联考)设a ,b ∈(0,+∞),a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2

x +y ,

当且仅当a x =b y 时,上式取等号,利用以上结论,可以得到函数f (x )=2x +9

1-2x (x

∈(0,1

2))的最小值为________.

解析 根据已知结论,f (x )=2x +91-2x =42x +9

1-2x ≥(2+3)22x +(1-2x )=25,当且仅当

22x =31-2x ,即x =15∈(0,1

2)时,f (x )取最小值为25.

答案 25 三、解答题

16.(·长沙模拟)已知f (x )=

2x

x 2+6

. (1)若f (x )>k 的解集为{x |x <-3或x >-2},求k 的值; (2)若对任意x >0,f (x )≤t 恒成立,求实数t 的范围. 解 (1)f (x )>k ?kx 2-2x +6k <0, 由已知其解集为{x |x <-3或x >-2},

得x 1=-3,x 2=-2是方程kx 2-2x +6k =0的两根, 所以-2-3=2k ,即k =-2

5. (2)∵x >0,f (x )=

2x x 2+6

=2x +6x

6

6, 由已知f (x )≤t 对任意x >0恒成立,故实数t 的取值范围是????

??

66,+∞.

17.(·广州诊断)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长? 解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式,得3 200≥240x ·90y +20xy =120 xy +20xy =120S +20S ,则S +6S -160≤0,即(S -10)(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米. 18.(·泉州调研)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;

(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围. 解 (1)当a =-2时,f (x )=x 3-32x 2+3x +1. f ′(x )=3x 2-62x +3.

令f ′(x )=0,得x =2-1或2+1.

当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)法一 ∵当x ∈[2,+∞)时,f (x )≥0, ∴3ax 2≥-x 3-3x -1, ∴a ≥-x 3-1x -1

3x 2,

设g (x )=-x 3-1x -13x 2,∴求g (x )的最大值即可,则g ′(x )=-13+1x 2+2

3x 3=-x 3+3x +2

3x 3

设h (x )=-x 3+3x +2,

则h ′(x )=-3x 2+3,当x ≥2时,h ′(x )<0, ∴h (x )在[2,+∞)上单调递减, ∴g ′(x )在[2,+∞)上单调递减, ∴g ′(x )≤g ′(2)=0, ∴g (x )在(2,+∞)上单调递减, ∴g (x )max =g (2)=-5

4, ∴a ≥-5

4.

法二 因为x ∈[2,+∞)时,f (x )≥0,所以由f (2)≥0,得a ≥-5

4. 当a ≥-5

4,x ∈(2,+∞)时,f ′(x )=3(x 2+2ax +1)≥ 3? ????x 2-52x +1=3? ??

??x -12(x -2)>0, 所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是??????-54,+∞.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高三数学不等式基本不等式经典例题高考真题剖析解析版

必修五:基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元 例:求2710 (1)1 x x y x x ++= >-+的值域。

高三数学第二轮复习教案 不等式的问题 人教版

高三数学第二轮复习教案不等式问题的题型与方法三 (3课时) 一、考试内容 不等式,不等式的基本性质,不等式的证明,不等式的解法,含绝对值不等式 二、考试要求 1.理解不等式的性质及其证明。 2.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。 3.掌握分析法、综合法、比较法证明简单的不等式。 4.掌握简单不等式的解法。 5.理解不等式|a|-|b|≤|a+b|≤|a|+|b|。 三、复习目标 1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式; 3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题; 4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力; 5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题. 6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.四、双基透视 1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰. 2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用. 4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值). 5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的. 6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点. 7.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

2015届高三数学—不等式1:基本不等式经典例题+高考真题剖析(解析版)

基本不等式 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -=-,即1x =时,上式等号成立,故当1x =时,max 1y =。 技巧二:凑系数 例: 当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离、换元

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高三数学不等式选讲 知识点和练习

不等式选讲 一、绝对值不等式 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立。 注:(1)绝对值三角不等式的向量形式及几何意义:当a,b不共线时,|a+b|≤|a|+|b|,它的几何意义就是三角形的两边之和大于第三边。 (2)不等式|a|-|b|≤|a±b|≤|a|+|b|中“=”成立的条件分别是:不等式|a|-|b|≤|a+b|≤|a|+|b|,在侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|。 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解集 注:|x|以及|x-a|±|x-b|表示的几何意义(|x|表示数轴上的点x到原点O的距离;| x-a |±|x-b|)表示数轴上的点x到点a,b的距离之和(差) (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②| ax+b|≥c? ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想; 方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。

基本不等式培优专题(推荐)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且 ab b a =+3 2,则ab 的最小值是_____________

6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则b b a 21 4+ -的最小值是_____________ 7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 1 11=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

高三数学一轮复习 18 基本不等式及其应用学案 文

学案18 基本不等式及其应用 班级________姓名________ 【导学目标】 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】 1.基本不等式 ab ≤ a +b 2 (1)基本不等式成立的条件:____________. (2)等号成立的条件:当且仅当________时取等号. 2.几个重要的不等式 (1)a 2+b 2≥__________(a ,b ∈R ). (2)b a +a b ≥____(a ,b 同号). (3)ab ≤? ?? ?? a + b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为________,几何平均数为________; 基本不等式可叙述为:________________________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当________时,x +y 有最____值是________(简记:积定和最小). (2)如果和x +y 是定值p ,那么当且仅当________时,xy 有最____值是__________(简记:和定积最大). 5.一个结论:11 02; 0 2.x x x x x x >+ ≥<+≤-当时,则当时,则 【自我检测】 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 2.已知t >0,则函数y = t 2-4t +1 t 的最小值为________.

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

高三数学(理科)二轮复习-不等式

2014届高三数学第二轮复习 第3讲 不等式 一、本章知识结构: 实数的性质 二、高考要求 (1)理解不等式的性质及其证明。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。 (3)分析法、综合法、比较法证明简单的不等式。 (4)掌握某些简单不等式的解法。 (5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。 三、热点分析 1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注. 2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点. 3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点. 4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识. 不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。高考试题中有以下几个明显的特点: (1)不等式与函数、数列、几何、导数,实际应用等有关内容综合在一起的综合试题多,单独考查不等式的试题题量很少。

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

高三数学不等式题型总结全

不等式的解题归纳第一部分含参数不等式的解法 例1解关于x的不等式2x2? kx _ k岂0 例2 .解关于x的不等式:(x-x2+12)(x+a)<0. 2x2+2k x +k 例3、若不等式2x 2 2kx 1 :::1对于x取任何实数均成立,求k的取值范围. 4x +6x +3 例4若不等式ax2+bx+1>0的解集为{x | -3 (x- 1)2对一切实数x都成立,a的取值范围是____________________ 2 .如果对于任何实数x,不等式kx2—kx+ 1>0 (k>0)都成立,那么k的取值范围是 3.对于任意实数x,代数式(5 —4a—a2)x2—2(a —1)x—3的值恒为负值,求a的取值范围+ 2 2 口 2 4 .设a、B是关于方程x —2(k —1)x + k+仁0的两个实根,求y=> + ■关于k的解析式,并求y 的取值范围. 第二部分绝对值不等式

1. (2010年高考福建卷)已知函数f(x) = |x —a|. (1)若不等式f(x)w 3的解集为{x|—K x< 5},求实数a的值; ⑵在(1)的条件下,若f(x) + f(x+ 5)> m对一切实数x恒成立,求实数m的取值范围. 2. 设函数f (x) =|x-1| |x-a|, (1 )若a = -1,解不等式f(x)_3 ;(2)如果- x R , f(x) —2,求a的取值范围 3. 设有关于x的不等式lg(j x + 3+|x-7?a

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

高三数学 第40课时 均值不等式教案

课题:算术平均数与几何平均数 教学目标:1.掌握两个正数的算术平均数不小于它们的的定理,并会简单运用; 2.利用不等式求最值时要注意到“一正” “二定”“三相等”. 教学重点:均值不等式的灵活应用。 (一) 主要知识: 1.两个数的均值不等式:若,a b R +∈,则 2 a b +(等号仅当a b =时成立) 三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) 2.几个重要的不等式: ① ab ≤22a b +?? ???≤222a b + ②abc ≤33a b c ++?? ???; ③如果,a b R ∈≥2a b +≥211a b + 3.最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时,其和 有最小值。 (二)主要方法: 1.常见构造条件的变换:加项变换,系数变换,平方变换,拆项变换,常量代换,三角代换等. 2.当使用均值定理时等号不能成立时,应考虑函数的单调性(例如“对号”函数,导数法). (三)典例分析: 问题1.求下列函数的最值: ()113y x x = +-()3x <;()2121y x x =+-()1x >;()3241y x x =+()0x >; ()323 y x x =+()0x >;()4 ()21y x x =-()01x <<;()5 ()21y x x =-()01x << ()6y =()7 已知,,,a b x y R +∈(,a b 为常数),1a b x y +=,求x y +的最小值

问题2.已知0x >,0y >,且1x y +=,求. 问题3.求最小值()1231()1x x f x x -+=+()1x >-;()2 223sin sin y x x =+ 问题4.()1设0x >,0y >,且()1xy x y -+=,则 .A 2x y +≤.B 2x y +≥ .C )21x y +≤ .D )2 1x y +≥ ()2已知x ≥0,y ≥0,且22 12y x +=,求证:≤4 ()3若0a b >>, 求216() a b a b + -的最小值 (四)课后作业: 1.已知1>a 那么1 1-+a a 的最小值是 .A 12-a a .B 15+ .C 3 .D 2

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关文档 最新文档