文档库 最新最全的文档下载
当前位置:文档库 › (完整版)初高中函数知识点总结大全

(完整版)初高中函数知识点总结大全

初高中函数知识点总结大全

正比例函数

形如y=kx (k为常数,k≠0)形式,y是x的正比例函数。

1.定义域:R(实数集)

2.值域:R(实数集)

3.奇偶性:奇函数

4.单调性:

当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)。

一次函数

一、定义与定义式:

自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0)

一次函数与正比例函数的识别

方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若

y=b,这时,y叫做常函数。

☆A与B成正比例 A=kB(k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b (k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以做出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x 轴和y轴的交点)

2.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.关于点的距离的问题

方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;

任意两点

(,),(,)

A x y

B x y;

A A

B B

若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -;

若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;

(,)A A A x y

点的坐标

方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;

若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;

若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;

若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;

☆一次函数y=kx+b (k ≠0)中k 、b 的意义:

k(称为斜率)表示直线y=kx+b (k ≠0) 的倾斜程度;

b (称为截距)表示直线y=kx+b (k ≠0)与y 轴交点的 ,也表示直线在y 轴上的 。

☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系:

当 时,两直线平行。当 时,两直线垂直。

当 时,两直线相交。当 时,两直线交于y 轴上同一点。 ☆特殊直线方程:

X 轴 : 直线 Y 轴 : 直线

与X轴平行的直线与Y轴平行的直线

一、三象限角平分线二、四象限角平分线

待定系数法求解析式

方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。

☆已知是直线或一次函数可以设y=kx+b(k≠0);

☆若点在直线上,则可以将点的坐标代入解析式构建方程。

平移

方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。

直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

交点问题及直线围成的面积问题

方法:

两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;

复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);

往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下, |a|还可以决定开口大小, |a|越大,则抛物线的开口越小。)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h) 2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x?,0)和B (x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b2)/4a x?,x?=(-b±√b2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中做出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h 个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2 +k的图象;

当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

因此,研究抛物线y=ax2+bx+c(a≠0)的图像,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图像提供了方便.

2.抛物线y=ax2+bx+c(a≠0)的图像:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,

[4ac-b2]/4a).

3.抛物线y=ax2+bx+c(a≠0),若a>0,当x ≤-b/2a时,y随x 的增大而减小;当x ≥-b/2a时,y随x的增大而增大.若a<0,

当x ≤-b/2a时,y随x的增大而增大;当x ≥-b/2a时,y随x 的增大而减小.

4.抛物线y=ax2+bx+c的图像与坐标轴的交点:

(1)图像与y轴一定相交,交点坐标为(0,c);

(2)当△=b2-4ac>0,图像与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图像与x轴只有一个交点;

当△<0.图像与x轴没有交点.

当a>0时,图像落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图像落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x= -b/2a 时,y最小(大)值=(4ac-b2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图像经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).

(2)当题给条件为已知图像的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h) 2+k(a≠0).

(3)当题给条件为已知图像与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

重要知识:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

二次函数表达式的右边通常为二次。x是自变量,y是x的二次函数。一元二次方程求根公式

当b2-4ac>0 时

当b2-4ac=0时

x1=x2=-b/2a

y=ax2+bx+c(a,b,c为常数,a≠0)

[抛物线的顶点P(h,k) ]:y=a(x-h)2+k(a,h,k为常数,a≠0)

[仅限于与x轴有交点A(x1,0) 和B(x2,0) 的抛物

线]:y=a(x-x1)(x-x2)(a,x1,x2为常数,a≠0)

3种形式的转化∶

①一般式和顶点式

对于二次函数y=ax2+bx+c,其顶点坐标为(-b/2a,(4ac-b2)/4a),即h=-b/2a=(x1+x2)/2

k=(4ac-b2)/4a

②一般式和交点式

x1,x2=[-b±√(b2-4ac)]/2a(即一元二次方程求根公式)

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a )

当-b/2a=0,〔即b=0〕时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即a b>0),对称轴在y轴左;

当a与b异号时(即a b<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b2-4ac>0时,抛物线与x轴有2个交点。

Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b ±√b2-4ac /2a乘上虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=〔4ac-b2〕/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0)

7.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,正无穷);②[k,正无穷)

8.奇偶性:非奇非偶(当且仅当b=0时,函数解析式为f(x)=ax2+c, 此时为偶函数)

周期性:无

解析式:

①y=ax2+bx+c[一般式]

⑴a≠0,a、b、c为常数。

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b2)/4a);

⑷Δ=b-4ac,

Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b-√Δ]/2a,0); Δ=0,图象与x轴交于一点:(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)2+k[配方式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a;

特别地,二次函数(以下称函数)y=ax2+bx+c(a≠0),

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2+bx+c=0(a≠0)

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

反比例函数

1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y =还可以写成kx y =1-

2. 反比例函数解析式的特征:

⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k

⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像

⑴图像的画法:描点法

① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)

② 描点(有小到大的顺序)

③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )

中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x

k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

4.反比例函数性质如下表:

5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k )

6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数k y =中的两个变量必成反比例关系。

10. 反比例函数的应用

对数函数

(一)对数

1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a ——底数,N — 真数,N a log — 对

数式)

说明:○1 注意底数的限制0>a ,且1≠a ;

2 x N N a a x =?=log ; ○

3 注意对数的书写格式. 两个重要对数:

1 常用对数:以10为底的对数N lg ; ○

2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化

幂值 真数

= b 指数 对数

(二)对数的运算性质

如果0>a ,且1≠a ,0>M ,0>N ,那么:○

1 M a (log ·=)N M a log +N a log ;○

2 =N

M a log M a log -N a log ; ○

3 n a M log n =M a log )(R n ∈. 注意:换底公式

a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论

(1)b m n b a n a m log log =;(2)a

b b a log 1log =.

(二)对数函数

1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其

中x 是自变量,函数的定义域是(0,+∞).

注意:○

1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制:0(>a ,且)1≠a . 2、对数函数的性质:

对数函数的一般形式为 ,它实际上就是指数函数的反函数。因此指数函数里对于a 的规定,同样适用于对数函数。

右图给出对于不同大小a 所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a 大于1时,为单调递增函数,并且上凸;a 小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。 指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.

负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,??

?<≥-==)0()0(||a a a a a a n n 2.分数指数幂

正数的分数指数幂的意义,规定:

)1,,,0(*>∈>=n N n m a a a n m n m

)1,,,0(11

*>∈>==-n N n m a a a a n m n m

n m

0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1)r a ·s r r a a += ),,0(R s r a ∈>;

(2)rs s r a a =)( ),,0(R s r a ∈>;

(3)s r r a a ab =)( ),,0(R s r a ∈>.

(二)指数函数及其性质

1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,

其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图像和性质

注意:利用函数的单调性,结合图像还可以看出:

(1)在[a,b]上,)1

)x(f x≠

a

a(

a

=且值域是)]b(f),a(f[或)]a(f),b(f[;

>

(2)若0

x∈;

x≠,则1

)x(f≠;)x(f取遍所有正数当且仅当R

(3)对于指数函数)1

a

a(

)x(f x≠

a

=且,总有a

>

)1(f=;

指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

函数奇偶性

注图:(1)为奇函数(2)为偶函数

1.定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

相关文档
相关文档 最新文档