文档库 最新最全的文档下载
当前位置:文档库 › A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Poly

A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Poly

A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Poly
A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Poly

A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Polyanion-Enzyme Conjugated Dopant

Won Jun Sung and You Han Bae*

Department of Materials Science and Engineering,Kwangju Institute of Science and Technology,1Oryong-dong, Puk-gu,Kwangju500-712,Korea

An enzyme immobilization method has been developed by electropolymerization chemistry of conducting polymer which results in a more effective and reproducible enzyme electrode.As a model system,in this study,glucose oxidase(GOD)was conjugated with a polyanion,poly(2-acrylamido-2-methylpropane sulfonic acid),via a poly-(ethylene oxide)spacer to improve the efficiency of enzyme immobilization into a conducting polymer.GOD was successfully conjugated with a high conjugation yield of more than90%,and its bioactivity was preserved.The resulting polyanion-GOD conjugate was used as a dopant for the electrochemical polymerization of pyrrole.Poly-pyrrole was effectively deposited on a Pt wire working electrode with the polyanion-GOD conjugate.The enzyme electrode responded to glucose concentrations of up to 20mM with a sensitivity of40nA/mM at an applied potential of0.4V within a response time of30s.Although the response signal decreased at the low applied potential of0.3V,the enzyme electrode showed sensitive response signals of about16nA/mM up to20mM in glucose concentration.Under the deoxygenated condition,re-duced but clear response current signal was obtained.The results show that the current signal response of the enzyme electrode to glucose concentration may be pro-duced by mixed mechanisms.

Since Clark and Lyons1developed the first enzyme-based oxygen electrode,biosensors have been studied and analyzed intensively.2-5Enzymes have been the most frequently used biomolecules,due to their superior selectivity and faster catalytic reaction rates.

There have been a variety of approaches taken in the develop-ment of enzyme-immobilization techniques.The physical entrap-ment of enzymes has been a common means of enzyme immo-bilization.In early enzyme-electrode models,an outer holding polymer membrane was used to prevent the enzyme from undergoing diffusional loss.6-9A more advanced method of physically entrapping enzymes was through matrixes made of synthetic10,11or natural gels.12,13In physical entrapment methods, due to the long electron-transfer pathway between enzymes and electrodes,electron mediators such as ferrocene derivatives14and osmium complexes15were often co-immobilized with the enzyme. Thus,a serious problem with such methods was the leakage of these harmful electron mediators when the enzyme electrode was used as an implantable biosensor.16Moreover,although these techniques are preferable for enzyme stability,they suffer from drawbacks such as complexity of the fabrication procedure and difficulties in miniaturization.

Other enzyme immobilization techniques have been investi-gated for more reliable enzyme attachment.Such methods include the covalent bonding of enzymes to a modified substrate by using a coupling agent such as carbodiimide17,18and the use of a covalent cross-linking agent such as glutaraldehyde.19,20These techniques offer the benefits of simplicity of fabrication and stable enzyme attachment.However,a covalent attachment may interfere with enzyme activity,and additional electron mediators are required due to the low sensitivity of the enzyme electrode.In fact, functionally reproducible,uniform coatings for active enzymes on an electrode have yet to be fabricated in miniaturizable size.

*Corresponding author:(Tel)+82-62-970-2361.(Fax)+82-62-970-2304. (E-mail)yhbae@kjist.ac.kr

(1)Clark,L.C.;Lyons,C.Ann.N.Y.Acad.Sci.1962,102,29-45.

(2)Gregg,B.A.;Heller,A.Anal.Chem.1990,62,258-263.

(3)Zambonin,C.G.;Losito,I.Anal.Chem.1997,69,4113-4119.

(4)Anzai,J.;Takeshita,H.;Kobayashi,Y.;Osa,T.;Hoshi,T.Anal.Chem.1998,

70,811-817.

(5)Cosnier,S.;Innocent,C.;Allen,L.;Poitry,S.;Tsacopoulos,M.Anal.Chem.

1997,69,968-971.

(6)Campanella,L.;Pacifici,F.;Sammartino,M.P.;Tomassetti,M.Bioelectro-

chem.Bioenerg.1998,47,25-38.

(7)Saby,C.;Male,K.B.;Luong,J.H.T.Anal.Chem.1997,69,4324-4330.

(8)Csoregi,E.;Quinn,C.P.;Schmidtke,D.W.;Lindquist,S.E.;Pishko,M.

V.;Ye,L.;Katakis,I.;Hubbell,J.A.;Heller,A.Anal.Chem.1994,66,3131-3138.

(9)Svorc,J.;Miertus,S.;Katrlik,J.;Stredansky,M.Anal.Chem.1997,69,

2086-2090.

(10)Bu,H.;Mikkelsen,S.R.;English,A.M.Anal.Chem.1998,70,4320-

4325.

(11)Tatsuma,T.;Saito,K.;Oyama,N.Anal.Chem.1994,66,1002-1006.

(12)Liu,Y.;Liu,H.;Qian,J.;Deng,J.;Yu,T.J.Chem.Technol.Biotechnol.1995,

64,269-276.

(13)Gondo,S.;Kim,C.;Hirata,S.;Morishta,M.Biosens.Bioelectron.1997,

12,395-401.

(14)Schmidtke,D.W.;Heller,A.Anal.Chem.1998,70,2149-2155.

(15)Bu,H.;English,A.M.;Mikkelsen,S.R.Anal.Chem.1996,68,3951-

3957.

(16)Wilkins,E.;Atanasov,P.Med.Eng.Phys.1996,18,273-288.

(17)Wilkins,E.;Atanasov,P.;Muggenburg,B.A.Biosens.Bioelectron.1995,

10,485-494.

(18)Hsiue,G.H.;Wang,C.C.Biotechnol.Bioeng.1990,36,811-815.

(19)Mayer,M.;Ruzicka,J.Anal.Chem.1996,68,3808-3814.

(20)Appleton,B.;Gibson,T.D.;Woodward,J.R.Sensors and Actuators,B1997,

43,65-69.

Anal.Chem.2000,72,2177-2181

10.1021/ac9908041CCC:$19.00?2000American Chemical Society Analytical Chemistry,Vol.72,No.9,May1,20002177 Published on Web04/04/2000

Recently,enzyme immobilization during the electropolymer-ization of conductive polymers has attracted wide interest.21-23The technique offers the advantage of uniform and reproducible immobilization of enzymes over a small area.Furthermore, electropolymerization chemistry allows one to control the thick-ness of the coating and,thus,the amount of enzyme immobilized, by changing the polymerization conditions.24,25

The mechanisms for enzyme immobilization by in situ elec-trochemical polymerization are based on physical entrapment within the polymer matrixes during electropolymerization26,27and the use of negatively charged enzymes as a dopant for conductive polymers.28,29However,whether the mechanism is entrapment or dopant utilization,the efficiency of enzyme immobilization is questionable.30In the former,the statistical enzyme enclosure is restricted by its large size.In the latter,the net negative charge of the enzyme surface,mainly the carboxylic group,is too weak to act as a dopant for the conductive polymer.If the enzymes have net positive surface charges,the ionic repulsive force between matrix and enzyme makes enzyme immobilization difficult. Another disadvantage of these approaches is the potential dena-turation of enzymes.In addition to the above mechanisms,a third proposal is the covalent attachment of enzymes to the functional monomer.31,32However,the large size of the enzymes makes polymerization difficult due to steric hindrance.

As a model system for more effective and reproducible enzyme electrodes,in this study,glucose oxidase(GOD)was immobilized into the conducting polymer matrix during the electropolymer-ization of pyrrole.To improve the efficiency of GOD immobiliza-tion into the conducting polymer,we conjugated GOD onto a strong polyanion via a poly(ethylene oxide)(PEO)spacer.The resulting polyanion-glucose oxidase conjugate was used as a dopant in the elctropolymerization procedure.The efficiency of immobilization was investigated on the basis of the electropoly-merizability of the system.We then studied the properties of synthesized polypyrrole with the GOD conjugated polyanion dopant to examine its functionality as a glucose sensor.

EXPERIMENTAL SECTION

Reagents.2-Acrylamido-2-methylpropane sulfonic acid(AMPS) and pyrrole were obtained from ACROS.PEG monoacrylate(MW 1500)was donated from Kyoyang Moolsan Co.(Korea).Glucose oxidase(GOD)type II,peroxidase type IV-A, -D-(+)-glucose, o-dianisine and Sephadex G200-120were purchased from Sigma.

A modified Lowry protein assay reagent was obtained from PIERCE.Chemicals for polymer synthesis were purified by conventional purification methods.All other reagents were of reagent or higher grade.

Instrumentations.Copolymer synthesis and modification for GOD immobilization were confirmed by300MHz FT-NMR (JEOL)and FT-IR(Perkin-Elmer2000series).All electrochemi-cal experiments were carried out using a potentiostat(EG&G, model263A).Data display and recording were supported by electrochemical analysis software(EG&G,model270).An Ag/ AgCl(3M NaCl)reference electrode was obtained from Bio-analytical Systems,Inc.,and Pt wire was used as the working electrode.The Pt wire(diameter0.5mm,Fisher)was insulated by a Teflon heat-shrinking tube(Cole-Parmer),and about5mm of one end of the Pt wire was left uncovered.A stainless steel mesh was used as the auxiliary electrode.Morphologies of grown polypyrrole were observed after gold coating with a sputter coater (SPI-MOD-ULE,SPI sppl.),by using a scanning electron micro-sope(SEM,JSM-5800,JEOL).

Copolymer Synthesis.To convert the terminal hydroxyl groups of PEG monoacrylate macromer to carboxyl groups,dried PEG monoacrylate(50g,33.3mmol),succinic anhydride(5g, 50mmol),triethylamine(5.56mL,40mmol),and dimethylami-nopyridine(DMAP)(4.9g,40mmol)were reacted in dioxane (450mL)for24h.The powdery product of carboxylated PEG monoacrylate was obtained by precipitation into ethyl ether.

The copolymerization reaction of2-acrylamido-2-methylpro-panesulfonic acid(AMPS)and carboxylated PEG monoacrylate was initiated by benzoyl peroxide(BPO)(0.3mol%to total monomer)at75°C.The feed composition of each monomer was 98to2by molar ratio.All copolymer samples were dialyzed with a Spectra Por7membrane(MWCO15000,Spectrum)for4days to remove all unreacted monomers and low-molecular-weight compounds.

Enzyme Conjugation.The carboxylic groups(0.42mmol)of poly(AMPS-co-PEG monoacrylate)were activated by N-hydroxy-succinimide(1.2mmol)and dicyclohexylcarbodiimide(1.2mmol) in DMSO(80mL)for48h.

The activated poly(AMPS-co-PEG monoacrylate)(0.11g)and glucose oxidase(0.5g)were dissolved in a0.1M phosphate buffered solution(50mL),and the conjugation reaction proceeded at4°C for24h.The amount of glucose oxidase was fixed to10 mol%of the activated carboxylic acid groups in the copolymers. The resulting reaction mixture was diluted with cold deionized water and ultrafiltered(MWCO300000,Amicon)twice to remove any unreacted enzymes and polymers.The final product,polyanion dopants conjugated with glucose oxidase,was obtained by freeze-drying,and confirmation of the conjugation was carried out via gel-filtration chromatography.Sephadex G200-120(Sigma)was packed in a self-assembled column(length,80cm;1.5-cm i.d), and a phosphate buffer(0.1M,pH7)was used as an eluent(flow rate,0.3mL/min).The eluted solution was sampled every10 minutes and tested by the Lowry method to determine the existence of proteins.

Bioactivity of Conjugated Glucose Oxidase.To calculate the amount of glucose oxidase in the conjugate sample,the enzyme concentration was determined by the Lowry method.33,34

(21)Dumont,J.;Fortier,G.Biotechnol.Bioeng.1996,49,544-552.

(22)Sangodkar,H.;Sukeerthi,S.;Srinlvasa,R.S.;Lai,R.;Contractor,A.Q.Anal.

Chem.1996,68,779-783.

(23)Fortier,G.;Belanger,D.Biotechnol.Bioeng.1991,37,854-858.

(24)Shin,M.C.;Yoon,H.C.;Kim,H.S.Anal.Sci.1996,12,597-604.

(25)Almeida,N.F.;Beckman,E.J.;Ataai,M.M.Biotechnol.Bioeng.1993,

42,1037-1045.

(26)Hammerle,M.;Schuhmann,W.;Schmidt,H.L.Sens.Actuators,B1992,

6,106-112.

(27)Benedetto,G.E.;Palmisano,F.;Zambonin,P.G.Biosens.Bioelectron.1996,

11,1001-1008.

(28)Foulds,N.;Lowe,C.R.Anal.Chem.1988,60,2473-2478.

(29)Kajiya,Y.;Sugai,H.;Iwakura,C.;Yoneyama,H.Anal.Chem.1991,63,

49-54.

(30)Cosnier,S.Electroanalysis1997,9,894-902.

(31)Yon-Hin,B.F.Y.;Smolander,M.;Crompton,T.;Lowe,C.R.Anal.Chem.

1993,65,2067-2071.

(32)Kojima,K.;Yamauchi,T.;Shimomura,M.;Miyauchi,S.Polymer1998,

39,2079-2082.(33)Lowry,O.H.;Rosehrough,N.J.;Farr,A.L.;Randall,R.J.J.Biol.Chem.

1951,193,265-275.

2178Analytical Chemistry,Vol.72,No.9,May1,2000

The bioactivity of the conjugated glucose oxidase was determined by spectrophotometry.35Assays were performed in a2mL,0.1M phosphate buffer(pH7)containing0.2mM o-dianisidine,20μg of horseradish peroxidase,and9.5mM D-glucose.Assays were initiated by the addition of glucose oxidase(60ng)and,after incubation at room temperature for20min,the reaction was quenched with the addition of0.2mL of4N H2SO4.The absorbance change from reduced o-dianisidine was measured at 400nm by a UV-vis spectrometer(CARY1E).The relative activity of the conjugated glucose oxidase was estimated by comparison with the absorbance change between free and conjugated glucose oxidase.

Electrochemical Polymerization.Electropolymerization was performed in an undivided cell at4°C using a stainless mesh as an auxiliary electrode.Polypyrrole film was grown potentiostati-cally at800mV vs Ag/AgCl in a solution containing pyrrole(0.2 M)and polyanion dopants,which were conjugated with glucose oxidase,for10min.The amount of dopant was fixed to0.1wt %/solvent volume.As a control,glucose oxidase(0.4wt%/solvent volume)was used as a dopant for the polymerization of pyrrole (0.2M).All other conditions were the same as those of the polyanion-glucose oxidase conjugate dopant except for the polymerization time(1h)and potential(1.0V).After polymeri-zation,the electrode was rinsed several times with deionized water

to remove any unreacted monomers and dopants and was stored in a0.1M phosphate buffer(pH7.4)at4°C.

Enzyme-Electrode Response.The amperometric response of the enzyme electrode was measured by chronoamperometry to determine the bioactivity of glucose oxidase incorporated in polypyrrole film.The steady-state current was measured in8mL of the0.1M phosphate buffer(pH7.4)solution under a polarizing potential of0.4V vs Ag/AgCl.A glucose solution was added after the background current was stabilized,and the concentration of glucose was increased in a stepwise manner until there was no current change with the addition of analyte.All electrochemical response measurements were performed at37°C.To investigate the sensitivity of the enzyme electrode to oxygen,all solutions were purged with argon gas for40min and the argon atmosphere maintained during the experiment.

RESULTS AND DISCUSSION

Applying electropolymerization chemistry of conducting poly-mer to a biosensor,we tested a new approach,the electrochemical polymerization of pyrrole using a polyanion-glucose oxidase conjugate,to more effectively and reproducibly synthesize an enzyme electrode.Figure1is the schematic presentation of the approach.

Synthesis of Poly(AMPS-co-carboxylated PEG Monoacry-late).Terminal hydroxyl groups of PEG monoacrylate macromers were converted to carboxylic groups,and then poly(AMPS-co-carboxylated PEG monoacrylate)was synthesized by radical polymerization as a polyanion for the conjugation backbone of the glucose oxidase.Conversion yields of carboxylation were70-80%by aqueous titration.The number-average molecular weights of copolymers were determined to be100-160kDa using gel permeation chromatography(Waters).Carboxylation reactions and copolymer synthesis were confirmed by the characteristic peaks from FT-IR and1H NMR.

Carboxylated PEG monoacrylate:FT-IR1732cm-1(C d O), 1644cm-1(C d N+),1115cm-1(CH2OCH2),1559cm-1(COO-); 1H NMRδ2.4(COC H2C H2COOH),δ3.5(OC H2C H2),δ4.1 (OCH2C H2OCO)in D2O.

Poly(AMPS-co-carboxylated PEG monoacrylate):FT-IR1732 cm-1(C d O),1650cm-1(CONH),1458cm-1(CH3),and1038 cm-1(S d O);1H NMRδ1.38(CC H3C H3),δ3.5(OC H2C H2)in D2O.

Conjugation of Glucose Oxidase.Figure2shows the results of the gel-filtration chromatography of the polyanion-GOD conjugate.The two well-separated and nonoverlapping peaks of the chromatogram and the difference in width of the two peaks indicate that the conjugation reaction was successful.The conju-gated sample eluted much faster than free glucose oxidase due to the conjugate’s larger size,which occurred because the GOD was covalently coupled to the poly(AMPS-co-carboxylated PEG monoacrylate),which has a hydrodynamic volume in aqueous media.In terms of width and shape,the polyanion-GOD conjugate showed a broader distribution than the free glucose oxidase due to the molecular weight distribution of the copolymer in the conjugate.

Bioactivity of Glucose Oxidase in Polyanion-GOD Con-jugate.The amount of glucose oxidase and its bioactivity in the conjugate were listed in Table1.In all cases,the conjugation yield was more than90%and there was no relationship between the pHs of the reaction medium and the conjugation yield.

The bioactivity was tested in a pH7phosphate buffer solution and evaluated relative to the free enzyme(100%).As shown in Table1,the bioactivity of the glucose oxidase was well preserved after conjugation,revealing the highest bioactivity when conju-gated at pH5.The bioactivity of the conjugated glucose oxidase increased as the pH of the reaction medium decreased,because

(34)Peterson,G.L.Methods Enzymol.1983,91,95-121.

(35)Frederick,K.R.;Tung,J.;Emerick,R.S.;Masiarz,F.R.Chamberlain,S.

H.;Vasavada,A.;Rosenberg,S.J.Biol.Chem.1990,265,3793-3802.Figure1.A new enzyme immobilization method.

Figure 2.Gel-filtration chromatogram of PAMPS-PEG-GOD conjugate.(a)PAMPS-PEO-GOD,(b)GOD.

Analytical Chemistry,Vol.72,No.9,May1,20002179

the enzyme has its optimum activity between pH 5and 6.36However,the lowest value was still about 99%,and this indicates that the conjugation reaction condition was preferable for preserv-ing the enzyme’s bioactivity.

Electrochemical Polymerization of Pyrrole with Polyanion Dopant Conjugated with Glucose Oxidase.The polymerization of pyrrole was performed in deionized water in order to exclude any anionic molecules which may have acted as dopants.Figure 3illustrates the chronoamperogram during the polymerization of pyrrole in the presence of polyanion -GOD conjugate and free glucose oxidase.The chronoamperometric response shows that the GOD conjugate was effectively incorporated into the polypyr-role chain.Although the large dopant size caused high resistance in the electrochemical cell,the anodic current from pyrrole oxidation increased steeply soon after the oxidative potential (0.8V)was applied.Then,black polymer began to precipitate onto the working electrode,and a polypyrrole film was uniformly deposited within 10min.This result suggests that large GOD conjugates were forced to be incorporated in the polypyrrole chain by the strong ionic interaction between sulfonate ions in the conjugate and radical cations in the growing polypyrrole backbone.When the glucose oxidase surface charges were the only anionic group that could be incorporated,the anodic current from pyrrole oxidation was quite low,indicating a slow polymerization process.In fact,it was very difficult to achieve a well-deposited film under the applied potential of 0.8V because of the high resistance in the electrochemical cell.The low mobility of the anionic groups,caused by the large size of the glucose oxidase,and the weak negative charges on the enzyme surface might be the main reasons for the high resistance.Because polypyrrole film did not grow even after 60min given the same concentration

of dopant (0.001g/mL)and applied potential (0.8V)as used in the GOD conjugate dopant system,a higher concentration of dopant (0.004g/mL)and higher polymerization potential (1.0V)was applied.However,the anodic oxidation current was still too low and the grown film was very inhomogeneous after 1h of polymerization.The surface morphology of the grown polypyrrole film was obtained by scanning electron micrographs.As shown in Figure 4,the surface structure of the grown polypyrrole was very rough and inhomogeneous when GOD was used as the only source of incorporatible counterions.However,although the dopant size was larger than that of GOD,the grown polypyrrole film showed a homogeneous and closely packed structure when the GOD conjugate was used as the dopant for pyrrole polymer-ization.

Amperometric Response of the Enzyme Electrode.The chronoamperogram of glucose oxidation demonstrated that the enzyme electrode has a rapid response time and high sensitivity to glucose.Figure 5shows the amperometric response of the enzyme electrode plotted as a function of the glucose concentra-tion at various conditions.At the polarization potential of 0.4V under air-saturated atmosphere,after increasing the glucose concentration,the anodic current increased and reached a steady state within 30s (see insert in Figure 5).The sensitivity up to 20mM glucose concentration was about 40nA/mM,and the sensitivity to glucose addition gradually decreased at higher glucose concentrations.

The influence of applied potential on the enzyme-electrode response was measured from 0.4to 0.2V in an air-saturated

(36)Kalisz,H.M.;Hecht,H.;Schomburg,D.;Schmid,R.D.J.Mol.Biol.1990,

213,207-209.

Table 1.Amount of GOD in PAMPS -PEO -GOD Conjugate and Its Relative Bioactivity

oupling medium pH GOD content in 1mg conjugate (μg)

conjugation yield (%)(n )5)relative bioactivity(%)

(n )5)575092(5136(156890109(10107(87

800

98(4

99(12free enzyme (at pH 7)

100(

5

Figure 3.Chronoamperogram of pyrrole polymerization with dif-ferent dopant at 4°C.(a)PAMPS -PEO -GOD,(b)

GOD.

Figure 4.Scanning electron micrographs of polypyrrole electropo-lymerized with (a)PAMPS -PEO -GOD conjugate,×5000,(b)GOD,×5000.

2180Analytical Chemistry,Vol.72,No.9,May 1,2000

atmosphere.Sensitivity to glucose concentration decreased,as the applied potential decreased,and there was no reasonable signal under 0.2V.This decreasing sensitivity may have resulted from the lower catalytic activity of the enzyme electrode for the oxidation of hydrogen peroxide under lowered potential.When the applied potential was lowered from 0.4to 0.3,the anodic current signal decreased,and the sensitivity was about 16nA/mM in the range from 0to 20mM.However,the enzyme-electrode response was virtually linear up to a 20mM glucose concentration.The enzyme electrode showed a very low anodic current at 0.2V,and the linearity of the signal was also reduced to 10mM.Among amperometric glucose sensors,the hydrogen peroxide electrode-based glucose sensor,whose signal is generated by the oxidation of hydrogen peroxide at the anode,is generally operated at a potential of 0.6to 0.8V vs Ag/AgCl.Although this type of glucose sensor has advantages,such as ease of fabrication and possibility of miniaturization,it suffers from interference by electro-oxidizable substances in physiological fluids.However,as shown in Figure 5,the enzyme electrode responded linearly up to 20Mm even at a potential of 0.3V,and its sensitivity was still high enough to detect the change of a glucose concentration level of under 1mM.It is very meaningful that the interference could be reduced by decreasing the working potential to 0.3V without any electron mediators,which can cause a toxicity problem when leaked from the matrix.

To investigate the effect of oxygen on the sensitivity,the amperometric response of the enzyme electrode to glucose

concentration in an air-saturated condition was compared with that in an argon-saturated condition.In both cases,the anodic current response to glucose showed a decreasing pattern at higher concentrations.This indicates that the oxygen supply is the rate-determining factor for the enzyme-electrode response at the higher concentration of glucose.The amperometric response current was reduced when the test solution was deoxygenated by argon,indicating that the oxygen molecules were mainly responsible for the reoxidation of the FADH 2center of glucose oxidase.However,when in a deoxygenated condition,the enzyme electrode showed a linear anodic current response to glucose concentrations up to almost 20mM.This indicates that the oxygen molecule played a major role but was not solely responsible for the reoxidation of FADH 2at low glucose concentrations.Although its mechanism was not clarified,direct electrooxidation of the FADH 2may have been another reason.Therefore,a possible interpretation is that the anodic signal of an enzyme electrode may be produced by mixed mechanisms:direct electrooxidation of FADH 2and reoxidation of FADH 2by oxygen molecules.CONCLUSIONS

A new enzyme-immobilization method was developed for a more effective and reproducible biosensor.As a model system,glucose oxidase was successfully conjugated to the polyanion,and its bioactivity in the conjugate was preserved after conjugation.The resulting conjugate was effectively incorporated into a conducting polymer matrix,and its efficiency of incorporation was greatly improved when compared with that for conventional immobilization methods.Investigating its properties as a glucose sensor,the enzyme electrode displayed a sensitive response signal to glucose concentrations up to 20mM with a response time of less than 30s with a potential as low as 0.3V.The oxygen-dependency test revealed that the current signal of the enzyme electrode may be produced by mixed mechanisms.The results presented in this report demonstrate that our new approach is a very effective method of synthesizing enzyme electrodes.ACKNOWLEDGMENT

This study was supported by the Academic Research Fund of the Ministry of Education,Korea.

Received July 20,1999.Accepted for publication January 24,2000.

AC9908041

Figure 5.Amperometric response of the enzyme electrode as a function of glucose concentration in pH 7.4phosphate buffer (0.1M)at 37°C.The influence of applied potential was measured at (a)0.4V (air saturated),(b)0.3V (air saturated),(c)0.2V (air saturated),(d)0.4V (argon saturated).

Analytical Chemistry,Vol.72,No.9,May 1,20002181

D-氨基葡萄糖盐酸盐

D-氨基葡萄糖盐酸盐是甲壳素在盐酸中经充分降解得到的壳寡糖衍生物,是一种在人体内具有重要生理意义的海洋生物制剂。它具有重要的生理功能,能促进人体黏多糖合成,提高关节滑液黏性,有利于关节软骨的代谢和修复,并有明显的消炎镇痛作用。具有抗炎、抗肿瘤、免疫调节、增加骨密度、防腐抗菌等药理作用。 张伟斌等【4】通过实验,考察盐酸氨基葡萄糖胶囊治疗骨性关节炎的有效性和安全性。方法多中心、随机、阳性药物对照研究。143例膝和髋骨关节炎患者被随机分为两组,盐酸氨基葡萄糖研究组1 次,每日2次;硫酸氨基葡萄糖对照组2 次,每日3次,疗程均为6周。结果治疗6周后,盐酸氨基葡萄糖在改善行走疼痛、夜间静息痛、晨僵几方面优于硫酸氨基葡萄糖,差异有统计学意义(P<0.05)。总有效率评价显示盐酸氨基葡萄糖有效率为75.4%,硫酸氨基葡萄糖为60.6%,两组间差异无统计学意义,提示两种氨基葡萄糖治疗骨关节炎疗效相当。盐酸氨基葡萄糖组发生不良反应3例,硫酸氨基葡萄糖组2例,均较轻微,无严重不良事件发生。结论盐酸氨基葡萄糖胶囊治疗骨关节炎安全、有效,与硫酸氨基葡萄糖疗效相当。 卢锋等【5】等通过实验,探索盐酸氨基葡萄糖对骨关节炎的作用机制,通过建立棉球肉芽肿、白陶土诱导的骨关节炎和佐剂性骨关节炎实验动物模型研究方式进行研究。结果显示,盐酸氨基葡萄糖每日经口给入0.25~0.75g/ks BW 剂量可抑制肉芽组织增生、迟发性免疫反应和免疫性骨节炎;在0.5~1.5g/kg BW 剂量能抑制血管渗出,组织水肿和细胞游离。提示盐酸氨基葡萄糖对骨关节炎具有一定的保护和辅助治疗的作用。

邱贵兴等【6】等,通过实验考察盐酸/硫酸氨基葡萄糖治疗膝骨关节炎的疗效和安全性。方法采用多中心、随机、阳性药平行对照临床研究方法,将142 例膝骨关节炎患者随机分为2组,试验组和对照组各为71例,分别给予盐酸氨 基葡萄糖480 mg/次和硫酸氨基葡萄糖500mg/次,每天口服药物3次,共治疗4周,停药后继续观察2周,采用Lequesne指数作为疗效评分标准,观察服药前 后的膝关节症状变化包括休息痛、运动痛、压痛、肿胀、晨僵和行走能力的改 善程度,纪录不良反应及实验室生化指标等。结果治疗4周后,试验组和对照组的Lequesne指数总评分与基础值相比分别下降至3.4±1.9(P<0.05)和 3.4±1.8(P<0.05),症状改善率分别为91.4%(64//70)和90.0%(63/70),两组间差异无统计学意义(P>0.05);停药两周后,两组皆维持原有的治疗效果,症状 改善率分别为92.4%(61/66)和91.2%(62/68),组间差异无统计学意义(P>0.05);试验组和对照组的不良反应发生率分别为4.2%(3/71)和7.0%(5/71).结论盐酸 氨基葡萄糖治疗骨关节炎的疗效和安全性与硫酸氨基葡萄糖相似,是一种治疗 骨关节炎的安全、有效的药物。 魏长征等【7】通过试验,探讨氨基葡萄糖(GLC)和壳寡糖(cos)对去势大鼠动物模型血液生化指标的影响,进一步研究其抗骨质疏松的作用,以期为临床骨 质疏松的防治和新药、功能性食品开发提供理论和实验依据。方法:通过切除3月龄雌性大鼠双侧卵巢复制绝经骨质疏松动物模型,每日分别给予不同剂量的 氯基葡萄糖和壳寡糖,心脏取血观察血清生化指标的变化。结果:模型组碱性 磷酸酶(ALP)、抗酒石酸酸性磷酸酶(TRAP)、甘油三酯(TG)、胆固醇(CHO)、低密度脂蛋白(LDL)、肌酐(cr)都明显升高,氨基葡萄糖和壳寡糖中剂量(0.25g/kg)能明显降低上述6个指标的水平(P<0.05)。结论:氮基葡萄糖和壳寡糖对去势大

2019年执业药师继续教育 创新机制–肾脏钠葡萄糖共转运蛋白2 SGLT-2抑制剂-达格列净...考试

创新机制–肾脏钠葡萄糖共转运蛋白2 SGLT-2抑制剂-达格列净...考试 返回上一级 单选题(共10 题,每题10 分) 1 . 最近统计中国糖尿病患病率在成人中达到() ? A.11.6% ? B.9.8% ? C.6.6% ? D.4.5% 我的答案: A 参考答案:A 答案解析:暂无 2 . 由于人口的原因世界上患糖尿病人数最多的国家是() ? A.美国 ? B.中国 ? C.印度 ? D.日本 我的答案: B 参考答案:B 答案解析:暂无 3 . 肾脏葡萄糖转运:SGLT2负责()肾脏葡萄糖的重吸收 ? A.90% ? B.80% ? C.70% ? D.60% 我的答案: A 参考答案:A 答案解析:暂无 4 . 糖尿病是代谢综合征的一部分表现,型糖尿病患者合并高血压和(或)脂代谢紊乱的达到() ? A.70% ? B.68% ? C.60% ? D.55% 我的答案: C 参考答案:C 答案解析:暂无 5 . 第一个SGLT-2抑制剂来源于() ? A.草根 ? B.苹果树皮 ? C.苹果树叶 ? D.以上都是

我的答案: B 参考答案:B 答案解析:暂无 6 . SGLT2抑制剂肾脏保护的间接获益包括() ? A.改善血糖控制 ? B.降低血压 ? C.降低体重 ? D.以上都是 我的答案: D 参考答案:D 答案解析:暂无 7 . 与二甲双胍联合用药长期控制血糖非常好的药物是() ? A.安慰剂 ? B.二甲双胍 ? C.达格列净 ? D.都可以 我的答案: C 参考答案:C 答案解析:暂无 8 . 达格列净减重作用主要源于() ? A.体内脂肪减少 ? B.体内肌肉的减少 ? C.体内脂肪增加 ? D.体内脂肪增加 我的答案: A 参考答案:A 答案解析:暂无 9 . 达格列净初始单药治疗低血糖风险与安慰剂相比() ? A.相当 ? B.略高 ? C.高出很多 ? D.以上都对 我的答案: A 参考答案:A 答案解析:暂无 10 . 达格列净多重获益优势为糖尿病综合管理带来新的希望包括()? A.不增加心血管事件风险 ? B.减少肾病风险 ? C.快速、强效、持久的血糖控制,低血糖风险低 ? D.以上都是 我的答案: D 参考答案:D 答案解析:暂无

钠钾镁钙葡萄糖注射液标准

钠钾镁钙葡萄糖注射液 Najia meigai putaotang zhushye Sodium potassium magnesium calcium and glucose injection 本品为氯化钠、氯化钾、氯化镁、葡萄糖酸钙、枸橼酸钠、醋酸钠与葡萄糖的灭菌水溶液。含总氯量(Cl)应为0.39%~0.43%(g/ml);含总钠量(Na)应为0.30%~0.35%(g/ml);含钾量(K)应为0.0149%~0.0164%(g/ml);含钙量(Ca)应为0.0056%~0.0062%;含镁量(Mg)应为0.0022%~0.0027%(g/ml);含葡萄糖(C6H12O6?H2O)应为表示量的95.0%~105.0%。 【处方】氯化钠 6.372g 氯化钾0.3g 氯化镁0.204g 葡萄糖酸钙0.672g 枸橼酸钠0.588g 无水醋酸钠 2.052g 葡萄糖10g 注射用水适量 全量1000ml 【性状】本品为无色至淡黄色的澄明液体。 【鉴别】(1)本品显钠盐、钾盐、钙盐、镁盐及氯化物的鉴别反应。 (2)取本品,缓缓滴入温热的碱性酒石酸铜试液中,即生成氧化亚铜的红色沉淀。 【检查】PH值应为3.5~6.5(中国药典2005年版二部附录Ⅵ H)。 5-羟甲基糠醛精密量取本品适量(约相当于葡萄糖0.1g),置50ml量瓶中,加水稀释至刻度,摇匀,照分光光度法(中国药典2005年版二部附录Ⅵ A),在284nm的波长处测定,吸收度不得大于0.25。 重金属取本品50ml 置水浴上蒸发至约20ml,放冷,加醋酸盐缓冲液(PH3.5)2ml与水适量使成25ml,依法检查(中国药典2005年版二部附录Ⅷ H第一法),含重金属不得过千万分之三。 砷盐取本品200ml,置水浴上蒸发至5ml,加稀硫酸5ml与溴试液1ml,再在水浴上蒸发至约5ml,放冷,加盐酸5ml与水18ml,依法检查(中国药典2005年版二部附录Ⅷ J第一法),应符合规定(0.000001%)。 不溶性微粒取本品1袋,依法检查(中国药典2005年版二部附录ⅪC),应符合规定。 细菌内毒素取本品,依法检查(中国药典2005年版二部附录Ⅺ E),每1ml 中含内毒素量应小于0.5EU。 其他应符合注射剂项下有关的各项规定(中国药典2005年版二部附录ⅠB)。 总氯量精密量取本品10ml,加冰醋酸10ml,加甲醇75ml,曙红黄指示液 0.5ml,用硝酸银滴定液(0.1mol/L)。每1ml硝酸银滴定液(0.1mol/L)相当 于3.545mgCl。 总钠量照原子吸收分光光度法(中国药典2005年版二部附录Ⅳ D含量测定

氨基葡萄糖盐酸盐与氨基葡萄糖盐酸盐的区别

氨基葡萄糖盐酸盐与氨基葡萄糖盐酸盐的区别 氨基葡萄糖硫酸盐治疗髋关节骨关节炎 荷兰鹿特丹Erasmus医学中心Rozendaal等报告,氨基葡萄糖硫酸盐治疗髋关节骨关节炎无效,在减轻髋关节骨关节炎症状和延缓疾病进展方面,其效果与安慰剂相比并无优势[Ann Intern Med 2008,148(4): 268]。 该研究是一项随机对照试验,纳入222例髋关节骨关节炎患者。纳入者每天口服 氨基葡萄糖硫酸盐1500 mg或安慰剂治疗,持续2年。评估氨基葡萄糖硫酸盐治 疗髋关节骨关节炎的效果。 主要观察指标为治疗24个月过程中大略和McMaster大学(WOMAC)疼痛和功能评分与治疗24个月后关节间隙狭窄情况。次要观察指标为在治疗3、12、24个月后 WOMAC 疼痛、功能和僵硬程度评分。在治疗前,两组患者一般情况和临床指标无显着差异。 结果显示,总体上两组患者的WOMAC疼痛评分和WOMAC功能评分无显着差异。治疗24个月后,两组患者的关节间隙狭窄也无显着差异。只有在一项基于对缺失评估数据(因为患者接受了全髋关节置换手术)进行的最大限度假设的敏感性分析 中得出支持氨基葡萄糖硫酸盐无效的结果。 研究者指出,该研究的局限性在于在研究过程中有20例患者接受了全髋关节置 换手术,这可能影响分析的结果。 氨糖,又称为氨基葡萄糖,葡萄糖胺,市面上主要有两类,一类是氨基葡萄糖盐酸盐,一类是氨基葡萄糖硫酸盐. 氨基葡萄糖盐酸盐:英文D-Glucosamine Hydrochloride,分子式C6H13NO5·HCl,分子量,白色结晶,无气味,略有甜味,易溶于水,微溶于甲 醇,不溶于乙醇等有机溶剂,它对人体具有重要的生理功能,参与肝肾解毒,发挥抗炎护肝作用,对治疗风湿性关节炎症和胃溃疡有良好的疗效,是合成抗生素和抗癌药物的主要原料,还可应用于食品,化妆品和饲料添加剂 中.氨基葡萄糖盐酸盐是由天然的甲壳质提取的,是一种海洋生物制剂,是硫酸软骨素的主要成分.它能促进人体粘多糖的合成,提高关节滑液的粘 性,能改善关节软骨的代谢,有利于关节软骨的修复,具有明显的消炎镇痛 作用.它具有促进抗生素注射效能的作用,可供糖尿病者作营养补助剂. 氨基葡萄糖硫酸盐:产品英文名称D-Glucosamine sulfate 别名:D-氨基葡萄糖硫酸盐;D-氨基葡萄糖硫酸钾盐 CAS 号 29031-19-4 分子式分子量产品英文名称 D-Glucosamine sulfate 氨基葡萄糖硫酸 钠盐白色结晶粉末,无气味,略有甜味,易溶于水,微溶于甲醇,不溶于乙醇 等有机溶剂. 用途: 制药原料.对风湿性关节炎,心脏病,肺炎及骨折均有 辅助治疗作用,另有吸收自由基,抗衰老,减肥,调节内分泌等多种有益的 生理作用. 在关节炎治疗效果来说,氨基葡萄糖盐酸盐比硫酸盐效果好,由于其盐酸盐不含钠离子,副作用小.纯度更纯,分子更小,人体容易吸收,可以直

混合糖、转化糖、钠钾镁钙葡萄糖对比

混合糖电解质注射液说明书 本品为复方制剂,其组份为每瓶含: 葡萄糖(按无水物计):30g 果糖:15g 木糖醇:7.5g(糖份合计:52.5g) 氯化钠:0.730g 乙酸钠:0.410g氯化钙:0.185g 氯化镁:0.255g 柠檬酸:适量 【适应症】不能口服给药或口服给药不能充分摄取时,补充和维持水分及电解质,并补给能量。 【用法用量】 缓慢静脉滴注。 通常,成人每次500ml~1000ml。给药速度(按葡萄糖计),通常成人每小时不得超过0.5g/kg 体重。 根据年龄、症状及体重等不同情况可酌量增减。 【不良反应】 1.严重肝功能障碍和严重肾功能障碍的患者; 2.电解质代谢异常的患者: 1)高钾血症(尿液过少、肾上腺皮质机能减退、严重灼伤及氮质血症等)患者; 2)高钙血症患者; 3)高磷血症患者; 4)高镁血症患者。 3.遗传性果糖不耐受患者。 【注意事项】 一、以下患者必须谨慎给药 1)肾功能不全的患者; 2)心功能不全的患者; 3)因闭塞性尿路疾病引起尿量减少的患者; 4)有肝功能障碍和肾功能障碍的患者; 5)糖尿病患者。 二、使用的注意事项 1.对于只能通过使用胰岛素控制血糖的患者(胰岛素依赖性糖尿病),建议使用葡萄糖制

剂。 2.配置时:磷酸根离子及碳酸根离子会产生沉淀,所以不能混入含有磷酸盐及碳酸盐的制剂。 3.给药前:(1)尿液量最好在每天500ml或每小时20ml以上;(2)寒冷季节应注意保持一定体温后再用药;(3)包装启封后立刻使用,残液绝不能使用。 【孕妇及哺乳期妇女用药】未进行该项实验且无可靠参考文献。 【儿童用药】未进行该项实验且无可靠参考文献。 【老年患者用药】通常高龄者的生理功能降低,易于引起水分、电解质异常及高血糖,所以应减慢给药速度,并密切观察。 【药物相互作用】未进行该项实验且无可靠参考文献。 【药物过量】未进行该项实验且无可靠参考文献。 【药理毒理】 (1)使用禁食白兔进行的试验表明,本品与7.5%葡萄糖电解质输液比较,其血液总酮体明显降低,肝脏糖原显著升高,本品中混合的葡萄糖,果糖及木糖醇在体内均可有效地被利用。同时,一次性水分平衡为正,电解质平衡系维持或减轻到负平衡。 (2)使用手术侵袭负荷中等程度糖尿病大鼠的试验表明,本品与10%葡萄糖电解质输液比较,手术后的血液葡萄糖浓度及尿液中总糖份排泄率明显降低,即使在耐糖作用降低时糖份的利用也很良好。 【药代动力学】根据文献资料: 本品以3.9ml/kg/hr速度,静脉滴注4位成年男子8小时,在此期间血糖水平有轻微升高,在末期时,血糖浓度又逐渐降低,需在治疗后2小时恢复到治疗前水平。果糖和木糖醇最高血液浓度各为8.5mg/dL和6.8mg/dL,但输液后1小时就无法检测。葡萄糖肾代谢量为0.1%,果糖为0.8%,木糖醇为14.2%,总计2.3%混合糖被代谢。 将用14C标记的混合糖电解质注射液以5ml/kg.hr和10ml/kg.hr的剂量分别通过静脉注射入正常小鼠和手术导致的中度糖尿病小鼠。放射性迅速分布全身,在肝部和脑部尤为 约为58%。 集中,放射活性物质主要通过呼出气体排出,24小时总共排出的14CO 2 转化糖电解质注射液说明书 【成份】本品为复方制剂,其组份为每500ml含:葡萄糖25g,果糖25g。氯化钠0.73g,氯化钾0.93g,氯化镁0.143g,磷酸二氢钠0.375g,乳酸钠1.40g,渗透压为726mOsmo/L。辅料为:亚硫酸氢钠、盐酸、药用炭、注射用水。 【性状】本品为无色至微黄色的澄明液体。 【适应症】适用于需要非口服途径补充水分或能源及电解质的患者的补液治疗。 【规格】500ml:葡萄糖25g与果糖25g与氯化钠0.73g与氯化钾0.93g与氯化镁0.143g 与磷酸二氢钠0.375g与乳酸钠1.40g。 【用法用量】用法:静脉滴注,在医生指导下使用。 用量:用量视病情需要而定,成人用量为每次250ml-1000ml,滴注速度应低于0.5g/kg/hr(以果糖计)。根据患者年龄、体重、临床情况和实验室检测结果调整剂量。 【不良反应】 据报道。本药可能会引起脸红、风疹、发热等过敏反应。大剂量、快速输注可能导致乳酸中毒和高尿酸血症。长期单纯使用可引起电解质紊乱。有文献报道肝病患者输注果糖后出现乳酸中毒。若出现不良反应。应终止输注。 【禁忌】 遗传性果糖不耐受患者禁用,痛风和高尿酸血症患者禁用。

胰岛素调控葡萄糖转运蛋白4转位的研究进展_于海佳

DOI:10.3969/cmba.j.issn.1673-713X.2015.01.011· 综述·胰岛素调控葡萄糖转运蛋白4转位的 研究进展 于海佳 胰岛素抵抗和糖代谢异常是 II 型糖尿病的主要病理特征。机体在正常情况下通过胰岛素等相关激素能够非常精准地调控血液中的葡萄糖。伴随着能量摄入,升高的血糖水平会刺激胰岛β细胞分泌胰岛素。血液中过量的葡萄糖被快速地转运至细胞内,从而使机体维持正常的血糖水平。胰岛素调控葡萄糖摄取主要是通过葡萄糖转运蛋白4(glucose transporter 4,GLUT4)从细胞内转位到质膜上来实现的。有关胰岛素是如何介导 GLUT4 转位和葡萄糖摄取的研究对于治疗糖尿病和发展疾病早期诊断方法具有重要的意义。本文综述了近年来在胰岛素信号调控下 GLUT4 转位方面的相关研究进展。 1 GLUT4 与糖稳态调控 GLUT4 是由 SLC2A4 基因编码的糖转运蛋白,能够以不依赖于 ATP、协助运输的方式运送葡萄糖穿过细胞质膜。GLUT4 具有 12 次跨膜蛋白结构域,广泛分布于骨骼肌和脂肪组织等胰岛素响应性组织中[1-2]。除了 GLUT4 外,这些组织还表达其他的一些糖转运蛋白,例如 GLUT1。与其他糖转运蛋白不同的是,GLUT4 在细胞内的分布受到胰岛素的调控。GLUT1 等其他糖转运蛋白主要在基础状态(血糖水平低)下介导细胞对葡萄糖的摄取,而 GLUT4 在基础状态主要存在于胞内的各种膜结构中,只有少于 5% 的 GLUT4 位于细胞膜上。当机体进食后血糖水平快速升高,葡萄糖会促进胰岛素分泌增加。胰岛素促使 GLUT4 从胞内膜结构转移到细胞膜表面上,细胞表面上的 GLUT4 浓度在胰岛素的刺激下可以增加到其在基础状态时的 5 ~ 30 倍[3]。GLUT4 通过摄取和清除血液中的葡萄糖来维持血糖平衡。当胰岛素浓度降低时,GLUT4 通过胞吞作用回到细胞内,细胞表面的 GLUT4 重新恢复到基础状态时的水平。 GLUT4 在机体糖稳态调控过程中发挥着重要作用,在II 型糖尿病患者的脂肪组织中,GLUT4 在 mRNA 和蛋白质表达水平上都有明显减少[4]。在小鼠模型中,GLUT4 蛋白表达水平降低使小鼠产生胰岛素抵抗和糖尿病[5]。GLUT4 在肌肉组织和脂肪组织中过量表达可以改善小鼠的血糖控制和糖耐受不良[6-7]。在细胞水平上,肌肉组织和脂肪组织中减少 GLUT4 的表达会引起肌肉细胞和脂肪细胞对葡萄糖的摄取减少并产生胰岛素抵抗[8]。2 胰岛素调控 GLUT4 转位的信号通路 对于胰岛素调控骨骼肌和脂肪组织的葡萄糖摄取,目前研究者们认为主要是通过磷酸肌醇 3 激酶(PI3K)信号通路来实现的(图1)。胰岛素从胰岛β细胞分泌后,首先结合细胞表面上的跨膜胰岛素受体(IR)并激活胰岛素受体酪氨酸激酶。这会促使胰岛素受体底物蛋白(IRS)酪氨酸磷酸化,激活 PI3K。PI3K 与二磷酸肌醇(PIP2)发生作用,使 PIP2 转化为三磷酸肌醇(PIP3)[9]。PIP3 的水平升高激活了含有 PH 结构域的丝氨酸/苏氨酸激酶 PDK1 和mTORC2,并随后激活蛋白激酶 AKT。 AKT 有 3 个异构体,但是只有 AKT2 在胰岛素刺激GLUT4 转运过程中起关键作用。George 等[10]报道在胰岛素抵抗和糖尿病中发现了 AKT2 突变。AS160(又称为TBC1D4,分子量 160 kD)是 AKT2 的一个重要底物,在脂肪和肌肉组织中过量表达 AS160 磷酸化位点突变体能抑制胰岛素依赖的 GLUT4 转位和葡萄糖摄取,敲除 AS160 和其类似功能蛋白 TBC1D1,可显著减少胰岛素刺激的葡萄糖运输[11]。一份最新的报道发现格陵兰人近年来持续升高的 II 型糖尿病发生率正是由于 AS160 发生了突变。研究人员证实了在 2575 个调查个体中有 17% 的 AS160 等位基因存在 p.Arg684Ter 突变,同时伴随有胰岛素抵抗和血糖升高[12]。AS160 含有一个 GTP 酶激活蛋白(GAP)结构域,其能特异地作用于 G 蛋白 Rab。Rab 是一类能促进囊泡运输的 GTP 结合蛋白,通过与 GDP 结合的失活状态向其活化状态转化来催化膜运输。作为一个负调控因子,AS160 在基础状态下处于去磷酸化状态,能通过 GTP 酶将 GTP 转化成 GDP。这使 Rab 蛋白处于失活状态,从而抑制了 GLUT4 囊泡在细胞内的运输。在胰岛素刺激下,AS160 的五个氨基酸残基 Ser318、Ser570、Ser588、Thr642 和 Ser751 被 AKT2 磷酸化而丧失了 GAP 活性[13],使Rab 蛋白可以与 GTP 结合,促进 GLUT4 囊泡运输和GLUT4 的膜转位。在基础状态下的脂肪细胞中敲低 AS160 的表达,会使部分 GLUT4 囊泡运输至细胞表面,从而增加了细胞表面的 GLUT4 水平[14]。Rab10 是 AS160 一个重要下游结合 Rab 蛋白。在脂肪细胞中敲低 Rab10 的表达会抑制胰岛素引起的 GLUT4 转位。在敲低 AS160 的同 作者单位:80309 美国,科罗拉多大学博尔德分校分子细胞发育生物学系,Email:haijia@https://www.wendangku.net/doc/f715822161.html, 收稿日期:2014-08-18

葡萄糖酸钠检测方法

吴江市汇通化工有限公司https://www.wendangku.net/doc/f715822161.html,/company.asp 葡萄糖酸钠检测方法 1.1 非水滴定 1.1.1 溶液的配制 高氯酸标准溶液(0.1mol):喹哪啶红指示液:取喹哪啶红0.1g,加甲醇100mL使溶解,即得。变色范围ph1.4~3.2(无色~红)。 1.1.2 标准曲线的绘制: 准确称取1.940 0 g 于105 ℃下烘至恒重的葡萄糖酸钠,用冰醋酸微热溶解,冷却,用冰醋酸定容至500 mL。分别取5,10,20,30,40,50 mL 葡萄糖酸钠的冰醋酸溶液,用冰醋酸定容至50 mL,用电位滴定仪以0.10 mol/L HClO4 标准溶液为滴定剂滴定葡萄糖酸钠冰醋酸溶液,记录消耗的高氯酸溶液的毫升数,绘制标准曲线。也可以用喹哪啶红指示剂,终点红色消失。 1.1.3 样品的测定 准确称取2.0g于105 ℃下烘至恒重的样品葡萄糖酸钠,用冰醋酸微热溶解,冷却,用冰醋酸定容至100mL。取10mL葡萄糖酸钠的冰醋酸溶液,用冰醋酸定容至50 mL,用电位滴定仪以0.10 mol/L HClO4 标准溶液为滴定,记录消耗的高氯酸溶液的体积。 也可以:准确称取0.15g 葡萄糖酸钠于250m l 三角瓶中加入75m l冰醋酸,加热,使之溶解。冷却,加入喹哪啶红指示剂,用0. 1 mol的高氯酸标准溶液滴至无色为终点。每毫升0. 1mol 高氯酸标液相当于21. 81 mg 葡萄糖酸钠。该法快速准确,不足之处是以冰醋酸为溶剂,冬天易结晶,给分析操作带来一定不便。 吴江市汇通化工有限公司https://www.wendangku.net/doc/f715822161.html,/company.asp

氨基葡萄糖盐酸盐标准

氨基葡萄糖盐酸盐标准标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

食品添加剂氨基葡萄糖盐酸盐3结构式、分子式和相对分子量 结构式: 分子式:C 6H 13 NO 5 .HCl 相对分子量:215.63 4要求 4.1性状 产品为白色或类白色结晶粉末。 4.2理化指标 应符合表1的规定。 表1 应符合表2的规定。 表2 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T6682中规定的水。 5.1感官 将样品置于清洁、干燥的白瓷盘中,在自然光线下,观察其色泽和状态。 5.2氨基葡萄糖盐酸盐(C 6H 13 NO 5 .HCl)含量 5.2.1仪器设备 5.2.1.1液相色谱仪;

5.2.1.2氨基柱(4.6mm×25cm,5μm); 5.2.1.310μL定量环; 5.2.1.4电子分析天平(万分之一)。 5.2.2分析要求 5.2.2.1鉴别:在含量测定项下记录色谱图,对照品溶液的主峰保留时间与样品溶液的主峰保留时间应一致; 5.2.2.2系统适应性:拖尾因子≤2,理论塔板数≥1500,RSD≤2%。 5.2.3色谱条件 5.2.3.1流速:1.5mL/min; 5.2.3.2色谱柱温度:35℃; 5.2.3.3检测器:紫外检测器; 5.2.3.4检测器波长:195nm; 5.2.3.5进样量:10μL; 5.2.3.6运行时间:20分钟; 5.2.4溶液制备 5.2.4.1流动相溶液制备 流动相A:乙腈; 流动相B:称取3.5g磷酸氢二钾,加入0.25ml的氨水,用水定容至1L,混匀,用磷酸调节PH至7.5; 流动相A:流动相B=75:25。 蒸馏水和所用试剂均使用色谱级,流动相要用0.45μm的有机相滤膜过滤后并超声15分钟,待用。 5.2.4.2稀释液的配制 乙腈:水=50:50,蒸馏水和乙腈均使用色谱级,流动相要用0.45μm的有机相滤膜过滤后并超声15分钟,待用。 5.2.4.3对照品液 精确称取对照品三份0.38g(精确至0.0002g)置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 5.2.4.4供试品液 精确称取烘干的供试品两份0.38g(精确至0.0002g)置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 样品与对照品溶液需要通过0.45μm有机相滤头过滤后进样。 5.2.5操作步骤 5.2.5.1系统适应性 按液相色谱仪检验操作规程,开启仪器并使仪器达到稳定状态后,用相同体积的进样针将三个对照品溶液按顺序依次注入色谱(定量环10μL),每个对照品分别进两针,共计六针,分别计算校正因子f1……f6,利用校正因子按下式计算得:RSD≤2%。 相对标准偏差计算公式: 式中: RSD——相对标准偏差; f i——第i针工作对照品的校正因子,是相应工作对照品的重量与面积的比值; f——工作对照品的平均校正因子; n——连续取了n针工作对照品校正因子。 5.2.5.2测定 按样品溶液的配制,在系统适应性验证的基础上,先用样品溶液清洗进样针和进样器后,将样品溶液以相同的方法注入色谱(定量环10μL),每个样品分别进两针平行样,最后再进2针对照液,以验证对照液相应是否漂移,具体按附表1进样顺序进样。

植物组织中钾、钠、钙、镁的测定

植物组织中钾、钠、钙、镁的测定 [方法要点] 样品经硝酸-高氯酸混合酸处理、制备的溶液,可用原子吸收分光光度计同时测定钾、钠、钙、镁。 硝酸是强酸同时又是氧化剂,沸点86℃,它与有机质作用产生大量的N0(无色)和NO2(棕色),加热时反应更激烈。高氯酸也是强酸强氧化剂,沸点130℃,它不但能使有机质分解,又能使二氧化硅脱水。当样品中的碳全部被氧化后,过量的硝酸与混合酸中大量的H+,能生成NH4及无色的NO,故在消化试剂空白时无棕色气体发生。 [试剂] 硝酸(d=1.42,GR);高氯酸(70%,GR);盐酸(d=1.19,GR)。 硝酸-高氧峻(5:1)混合,按体积比混合。 5%氯化铯溶液:将5g CsCl溶于100ml无离子水中。 5%氯化镧溶液:将13.4g氯化镧(LaCl3·7H2O,GR)溶于100ml 无离子水中。 100μg/ml钾标准溶液:将0.1907g氯化钾(KCl,GR)溶于无离子水中,加入10ml盐酸,用无离子水稀至1升。 l00μg/ml钠标准溶液:将0.2542g 氯化钠(NaCl,GR,105℃烘4h)溶于无离子水,加l0ml盐酸,用无离子水稀至lL。 100μg/ml钙标准溶液:将0.2497g 碳酸钙(CaCO3,GR,105℃烘干)溶于1L 0.2 mol/L盐酸溶液中。

100μg/ml镁标准溶液:将0.1658g氧化镁(MgO,GR,105℃烘干),用10%盐酸溶解,用1%盐酸溶液稀至1L。 [仪器] 原于吸收分光光度计;钾、钠、钙、镁空心阴极灯;可调六联电炉;植物粉碎机。 [样品处理] 将植物组织在70℃烘干,用植物粉碎机磨细过lmm筛,准确称取l-5g(叶lg,皮2g,木材5g)置于250ml三角瓶内,加入30ml硝酸-高氯酸(5:1)混合酸,瓶口放一只弯颈漏斗,静置过夜。第二天,在通风柜内用六联可调电炉控温消煮。保持微沸状态,这时放出大量棕色N02气体。当棕色气体消失,升高炉温使SiO2脱水至冒白烟为止。如果溶液不清白,可加入5m1硝酸继续消煮,直至溶液变清并冒白烟为止。 冷却后,加入20ml无离子水,用定量滤纸过滤到250ml容量瓶内,用热的1%盐酸溶液洗涤三角瓶和滤渣,直至无Fe3+反应为止。用无离子水定容,摇匀,作为待测溶液。

葡萄糖转运蛋白与肺癌

!!作者单位" #,"""#杭州#浙江大学医学院附属第一医院呼吸科葡萄糖转运蛋白与肺癌 钟秀君!周建英 !!肿瘤细胞无法调控的增殖是肿瘤细胞最主要特征#而细胞数的增多导致细胞耗氧量不断增加#造成肿瘤缺氧#这在人实体瘤中表现尤其明显’肿瘤在适应缺氧时#葡萄糖摄入增多以提供所需的能量#此方式通过葡萄糖转运蛋白%@?I 9<;237/:;T <7327#[?I 3&合成增加来实现’[?I 3是介导细胞葡萄糖摄取的主要载体#与正常细胞$组织及良性病变相比#恶性肿瘤细胞对葡萄糖的代谢率增加’而糖代谢的增高与[?I 3及基因的异常表达有关’本文就[?I 3及其同肿瘤的关系作一综述’ !!H ;<9的分类和在组织中的分布细胞不能通过简单的弥散方式吸收葡萄糖#它必须借助一种特殊蛋白质#即葡萄糖转运蛋白’由于不同组织对葡萄糖需求不同#故可能有不同的葡萄糖转运蛋白’目前用基因探针方法# 已发现了’种不同的葡萄糖转运蛋白%[?I 3,\-$[?I 3*\0& ’[?I 3,在人类所有组织中均存在#它对葡萄糖具有很高的亲和力#可调节葡萄糖摄取’[?I 3!出现在能释放葡萄糖入血的器官中#如肠$肝$肾$及胰腺的/细胞#对葡萄糖亲和力极低#似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能’[?I 3#在脑神经元中被发现# 存在于人类所有组织中’对葡萄糖分子也有高亲和性’[?I 3(是肌肉和脂肪细胞主要的转运蛋白# 一般情况下#不能起转运葡萄糖的作用#仅在胰岛素的信号刺激下#能促进饭后葡萄糖进入上述组织中储存起来’[?I 3-主要存在于小肠及肾脏#主要作为果糖转运体’[?I 3.基因是一个假基因#不在蛋白水平表达’[?I 3*是肝微粒体[?I 3#与[?I 3!有.’)序列一致性’[?I 3’是主要表达于睾丸及受胰岛素调控的组织中’[?I 30在脾$外周白细胞$脑组织中表达’这’种葡萄糖转运蛋白转运葡萄糖都是按浓度梯度进行的’还有一种是钠离子依赖的协同转运蛋白%$[&H &#它逆浓度主动转运葡萄糖#是耗能过程#有$[&H ,%在小肠中表达明显#肾$肝$肺中少量表达&和$[&H !%肾中表达高#小肠中少&两种’ -!H ;<9与肿瘤 -"!![?I 3表达与肿瘤的生物学行为!各种葡萄糖转运蛋白在不同类型肿瘤中作用可能各不相同#[?I 3,可能是大多数肿瘤中表达的主要角色’其在 各部位肿瘤中表达(, )大致如下’头颈部"见于基底上皮细胞癌和口腔癌*胰腺"和G Q [%!\脱氧氟代\Q \葡萄糖&表达正相关*结肠"增强的表达与不良的预后有关*阴茎"在增生的病变处表达增强*胃食道"胃中高度表达#与M /77233食管有关*肾$膀胱"高度表达但与肿瘤分级无关*甲状腺"仅在恶性肿瘤中表达*肺"仅在恶性肿瘤中表达#在肿瘤中心表达更高#是非小细胞肺癌的预兆*乳腺"过度表达但与肿瘤大小$受体$淋巴结状态无关*脑"[?I 3,比[?I 3#表达低#且与星形细胞瘤分级相关*卵巢"过度表达#且与 肿瘤分级有关*皮肤"表达提示增生性病变’国外( !)亦有报道[?I 3,在肺癌$结直肠癌$乳腺癌等多种肿瘤中均有过度表达#而且其表达水平与肺癌及结直肠癌的临床分期$ 转移和预后密切相关’-"!"!![?I 3表达与癌发生的关系!在一些恶性肿 瘤中[?I 3表达与癌的形成无关#如在胃癌(# )中用免疫组织化学方法检测发现胃腺瘤$ 癌前病变$早期胃癌中检测不到[?I 3,表达#而只在易浸润$发生转移的胃癌中检测到#[?I 3,表达并不随着胃癌的发展而 逐渐增高’而对胆囊癌(()的免疫组织化学实验发 现#[?I 3,的表达与胆囊癌的形成及进展高度相关’-"!"-![?I 3异常表达与癌分化程度的关系! Y

氨基葡萄糖盐酸盐标准

食品添加剂氨基葡萄糖盐酸盐 3结构式、分子式和相对分子量 结构式: 分子式: 相对分子量: 4要求 性状 产品为白色或类白色结晶粉末。 理化指标 应符合表1的规定。 表1 微生物指标 应符合表2的规定。

表2 5试验方法 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T6682中规定的水。 感官 将样品置于清洁、干燥的白瓷盘中,在自然光线下,观察其色泽和状态。 氨基葡萄糖盐酸盐()含量 仪器设备 液相色谱仪; 氨基柱×25cm,5μm); μL定量环; 电子分析天平(万分之一)。 分析要求 鉴别:在含量测定项下记录色谱图,对照品溶液的主峰保留时间与样品溶液的主峰保留时间应一致;系统适应性:拖尾因子≤2,理论塔板数≥1500,RSD≤2%。 色谱条件 流速:min; 色谱柱温度:35℃; 检测器:紫外检测器; 检测器波长:195nm; 进样量:10μL; 运行时间:20分钟; 溶液制备 流动相溶液制备 流动相A:乙腈; 流动相B:称取磷酸氢二钾,加入的氨水,用水定容至1L,混匀,用磷酸调节PH至; 流动相A:流动相B=75:25。 蒸馏水和所用试剂均使用色谱级,流动相要用μm的有机相滤膜过滤后并超声15分钟,待用。 稀释液的配制 乙腈:水=50:50,蒸馏水和乙腈均使用色谱级,流动相要用μm的有机相滤膜过滤后并超声15分钟,待用。

对照品液 精确称取对照品三份(精确至置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 供试品液 精确称取烘干的供试品两份(精确至置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 样品与对照品溶液需要通过μm有机相滤头过滤后进样。 操作步骤 系统适应性 按液相色谱仪检验操作规程,开启仪器并使仪器达到稳定状态后,用相同体积的进样针将三个对照品溶液按顺序依次注入色谱(定量环10μL),每个对照品分别进两针,共计六针,分别计算校正因子f1……f6,利用校正因子按下式计算得:RSD≤2%。 相对标准偏差计算公式: 式中: RSD——相对标准偏差; f i——第i针工作对照品的校正因子,是相应工作对照品的重量与面积的比值; f——工作对照品的平均校正因子; n——连续取了n针工作对照品校正因子。 测定 按样品溶液的配制,在系统适应性验证的基础上,先用样品溶液清洗进样针和进样器后,将样品溶液以相同的方法注入色谱(定量环10μL),每个样品分别进两针平行样,最后再进2针对照液,以验证对照液相应是否漂移,具体按附表1进样顺序进样。 表进样顺序 注1:当只有一批样品时,进完该批样品最后一针后还要进两针序号6的对照品,该两针对照品与样品前面的四针对照品一起计算f的RSD≤2%。 注2:当有多批样品时,每批样品之间要按序号6要求进2针对照品溶液,该样品之前的最后6针对照液的校正因子的平均值参与样品结果计算,f的RSD≤2%。 注3:每批批检验记录均要附有所有参与计算的图谱,图谱上要有编号,图谱上要有签名。 按外标法以峰面积计算。 计算公式: 式中: fi——对照品的校正因子; M对照品——对照品的质量; S对照品——对照品的主峰峰面积。 式中: f——对照品的平均校正因子; f1~f6——对照品的校正因子。 式中: r u——样品溶液的峰面积; r s——标准溶液的峰面积;

对葡萄糖转运蛋白的讨论

对葡萄糖转运蛋白的讨论 关键词:葡萄糖转运蛋白糖尿病胰岛素释放障碍胰岛素抵抗 葡萄糖转运蛋白是细胞转运葡萄糖的 载体。研究发现,葡萄糖转运蛋白是一个蛋白家族,包括多种蛋白,它们在体内的公布以及与葡萄糖分子的亲合力差异显着。其中GLUT2和GLUT4尤为重要。GLUT2是胰岛B 细胞膜上的转运蛋白,在血糖浓度升高时,促进GLUT2对葡萄糖的转运功能,继而刺激胰岛素释放。GLUT4在脂肪细胞和肌细胞中表达,胰岛素刺激GLUT4在脂肪细胞和肌细胞或表达,胰岛素刺激GLUT4分子转移到细胞膜上,促进葡萄糖分子的转运过程。GLUT2和GLUT4分子的研究对于糖尿病的胰岛素释放障碍和胰岛素抵抗有重要意义。 1GLUT的分类 除了肾和肠道有能量依赖性的钠-葡萄糖协同转运外,其它大多数细胞都有非能量依赖的转运体存在。它们将葡萄糖分子从高

浓度向低浓度载过细胞膜。现已发现至少存在五种这样的转运蛋白,它们对葡萄糖的转运有各自不同的特点,分为GLUT1、GLUT2、GLUT3、GLUT4和GLUT5。 GLUT1分子在人类所有组织中均存在, 它调节葡萄糖摄取。它对葡萄糖分子有很高的亲合力,因此在相对低浓度葡萄糖的状态下也能转运葡萄糖分子。由于这个原因,GLUT1是一种重要的脑血管系统成分,保证 足够血浆葡萄糖分子转运进入中枢神经系统。 与GLUT1不同,GLUT2分子对葡萄糖亲合力极低,似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能。例如饭后,胰岛B细胞和肝细胞中起葡萄糖转运功能的分子就是GLUT2。这种生理功能抑制了正常状态或饥饿条件下肝脏对葡萄糖分子的摄 取和胰岛素不正常分泌。OgawaY等人研究发现,对于Ⅱ型、Ⅰ型早期糖尿病人和胰腺移植失败的病人,在血糖浓度升高时,普通B 细胞中GLUT2分子的表达有所下降。因此他们得出结论:对于上述病人,高血糖通过对

硫酸软骨素含量测定方法研究进展

硫酸软骨素含量测定方法的研究进展 摘要:综述了硫酸软骨素含量测定方法的研究进展。含量测定方法包括比色法、色谱法、电泳法、原子吸收法、比浊法、配位滴定法及免疫法等。硫酸软骨素的测定方法按其测定指标主要分为软骨素二糖、氨基己糖、葡萄糖醛酸、硫酸基和阴性基团5类。对各种含量测定方法的原理和特点进行了介绍。 关键词:硫酸软骨素高效液相色谱醋酸纤维素薄膜电泳法 硫酸软骨素(chondroitin sulfate,CS)系从动物软骨组织中提取、纯化所得的酸性黏多糖,具有降血脂、抗肿瘤、抗衰老、治疗关节炎、促进溃疡愈合、耳呜症及神经痛等多种作用,无明显的毒副作用。在临床具有广阔的应用前景。近年来,CS大量出口美国及欧洲,已成为出口量最大的生化医药产品之一。 CS的含量测定方法有许多种,每种含量测定方法均有其特点,但测定原理均是基于其组成的糖单位(D-葡糖醛酸和N-乙酰-D-氨基半乳糖)、硫酸基以及酸性黏多糖的大分子性质。在分子结构上,CS由D-葡萄糖醛酸和N-乙酞-D-氨基己糖以1, 3糖苷键连接形成重复二糖,二糖单位之间以1, 4糖苷键连接形成糖链,氨基己糖糖环的4位C或6位C可硫酸化,硫酸化后分别形成硫酸软骨素A(CS-A)和硫酸软骨素C(CS-C)。本文对CS的含量测定方法进行综述,以便对不同CS测定方法及特点有一较全面的了解。 1.测定硫酸软骨素的指标物质 根据CS的分子结构特点,研究出以CS某一化学成分为测定指标的多种方法,这些指标包括软骨素二糖、氨基己糖、葡萄糖醛酸、硫酸基、阴性基团等5类。 1.1 以葡萄糖醛酸为指标的测定方法 在酸性条件下降解CS,生成与其软骨素二糖单位摩尔数相等的葡萄糖醛酸,再加入咔唑、间苯三酚和4-氨基-3-肼基-5-巯基-1, 2, 4,-三唑(AHMT)等色原物质与葡萄糖醛酸显色,最后测定反应液特定波长处吸收值,以葡萄糖醛酸或CS标准品为对照制作标准曲线,转换为葡萄糖醛酸含量,根据葡萄糖醛酸与软骨素二糖之间的分子量之比换算成CS含量。 1.2 以硫酸基为指标的测定方法 CS 中硫酸基的测定方法主要有离子色谱法和间接原子吸收法等。这两种方法首先以强酸降解CS生成游离硫酸基,前者以离子色谱检测经分离的反应液中的硫酸基与软骨素二糖的分子量之比计算CS含量;后者以已知过量的钡离子与降解CS产生的游离硫酸基反应,再通过原子吸收光谱法测定过量的钡离子,换算出CS样品中硫酸基含量,然后计算CS含量。 1.3 以氨基己糖为指标的测定方法 测定氨基己糖的经典方法是Elson-Morgan法,该方法以盐酸氨基己糖作对照品,利用盐酸水解CS释放出氨基己糖,而氨基己糖在碱性条件下先与乙酞丙酮缩合,其产物与对二甲氨基苯甲醛的醇溶液结合后显红色,于特定波长处测定吸光值,计算样品中氨基己糖含量,再根据氨基己糖与软骨素二糖单位之间的分子量之比换算成CS含量。 1.4 以软骨素二糖为指标的测定方法 在超声波作用下或在软骨素酶作用下使CS降解成软骨素二糖单位,记录软骨素二糖溶液经过色谱柱的洗脱曲线,将样品的出峰时间和峰面积(或峰高)与标准品比较,以此确定其含量(软骨素二糖是CS的基本组成单位,理论上其含量与

对葡萄糖转运蛋白的讨论

关键词:葡萄糖转运蛋白糖尿病胰岛素释放障碍胰岛素抵抗葡萄糖转运蛋白是细胞转运葡萄糖的载体。研究发现,葡萄糖转运蛋白(后简称GLUT)是一个蛋白家族,包括多种蛋白,它们在体内的公布以及与葡萄糖分子的亲合力差异显著。其中GLUT2和GLUT4尤为重要。GLUT2是胰岛B细胞膜上的转运蛋白,在血糖浓度升高时,促进GLUT2对葡萄糖的转运功能,继而刺激胰岛素释放。GLUT4在脂肪细胞和肌细胞中表达,胰岛素刺激GLUT4在脂肪细胞和肌细胞或表达,胰岛素刺激GLUT4分子转移到细胞膜上,促进葡萄糖分子的转运过程。GLUT2和GLUT4分子的研究对于糖尿病的胰岛素释放障碍和胰岛素抵抗有重要意义。1GLUT的分类除了肾和肠道有能量依赖性的钠-葡萄糖协同转运外,其它大多数细胞都有非能量依赖的转运体存在。它们将葡萄糖分子从高浓度向低浓度载过细胞膜。现已发现至少存在五种这样的转运蛋白,它们对葡萄糖的转运有各自不同的特点,分为GLUT1、GLUT2、GLUT3、GLUT4和GLUT5。GLUT1分子在人类所有组织中均存在,它调节葡萄糖摄取。它对葡萄糖分子有很高的亲合力,因此在相对低浓度葡萄糖的状态下也能转运葡萄糖分子。由于这个原因,GLUT1是一种重要的脑血管系统成分,保证足够血浆葡萄糖分子转运进入中枢神经系统。与GLUT1不同,GLUT2分子对葡萄糖亲合力极低,似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能。例如饭后,胰岛B细胞和肝细胞中起葡萄糖转运功能的分子就是GLUT2。这种生理功能抑制了正常状态或饥饿条件下肝脏对葡萄糖分子的摄取和胰岛素不正常分泌。OgawaY等人研究发现,对于Ⅱ型、Ⅰ型早期糖尿病人和胰腺移植失败的病人,在血糖浓度升高时,普通B细胞中GLUT2分子的表达有所下降。因此他们得出结论:对于上述病人,高血糖通过对GLUT2的下调作用减少葡萄糖诱导的胰岛分泌,加重病情。虽然,GLUT2分子是葡萄糖刺激胰岛素分泌的一个关键因子,但其他环节如糖激酶异常,ADP-核糖生成障碍等均与胰岛素分泌障碍有关,因此上述实验只能说明GLUT2分子在胰岛B细胞的葡萄糖转运中起着重要作用,其它结论还有待研究。GLUT3分子在所有组织中均已发现,主要作为神经元表面的葡萄糖转运体,它对葡萄糖分子也有高亲合性,负责将葡萄糖从脑脊液转运至神经元细胞。GLUT4主要存在于骨骼肌、脂肪细胞的胞浆中,一般情况下,不能起转运葡萄糖的作用,仅在胰岛素的信号刺激下,才能通过易位作用转运到细胞膜上,促进饭后葡萄进入上述组织中储存起来。GLUT5在人类小肠刷状缘上表达,主要作为果糖转运体,在肝脏也高度表达。2GLUT4分子是研究的一个热点糖尿病的发病机制归纳而言无外乎两个方面,一是胰岛素分泌不足,二是胰岛素抵抗。胰岛素抵抗的结果,血浆中胰岛素水平虽高,但血糖浓度还是比正常情况高。葡萄糖转运机制障碍是胰岛素抵抗的一个重要方面,也是现今研究的一个热点。在骨骼肌和脂肪细胞,胰岛素刺激葡萄糖转运过程如下:首先胰岛素与细胞膜上的受体结合,然后通过至今仍不明确的信号传递过程使含有GLUT4分子的囊泡从胞内池移动到细胞膜,然后与膜融合,将GLUT4分子固定在细胞膜上,从而发挥转运葡萄糖等C1-C3位置有相同结构的其它糖分子(如L-阿拉伯糖、D-木糖、半乳糖)的作用。 [!--empirenews.page--] 胰岛素抵抗虽然包括GLUT4转运活性的下降,但这种缺陷是否是GLUT4分子数量不足引起的呢?GarveywT等人研究证实,无论是在糖尿病人还是非糖尿病患者,只要存在胰岛素抵抗,GLUT4的数量并无明显减少,但GLUT4的易位作用发生了障碍,它们在高密度膜区异常积累,但不能转移到细胞膜上。这种现象在骨骼肌细胞和脂肪细胞中均已被发现。所以胰岛素抵抗的机制之一可能是GLUT4分子易位障碍,而不是合成、释放不足。既然GLUT4分子在葡萄糖转运过程中如此重要,它是如何发挥作用的呢?GLUT4分子镶嵌在细胞膜的脂质分子双层中,通过构象改变将葡萄糖分子运进细胞内,而不是借助蛋白本身的运动。即所谓的“ping pong”机制。这种构象改变可能与GLUT4分子的磷酸化、去磷酸化有关。JE-Reusch等人在脂肪细胞培养液中加入PTH,发现GLUT4磷酸化程度明显增加,而胰岛素刺激的去磷酸化作用显著降低。同时,PTH对GLUT4分子在细胞内分布没有影响。磷酸化的GLUT4分子在内在活性明显降低,可能与其构象改变障碍有

相关文档
相关文档 最新文档