文档库 最新最全的文档下载
当前位置:文档库 › 任意角的概念与弧度制

任意角的概念与弧度制

任意角的概念与弧度制
任意角的概念与弧度制

任意角的概念与弧度制

1、角的概念的推广:

角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制

1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.

正角:按逆时针方向旋转所形成的角.

负角:按顺时针方向旋转所形成的角.

零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.

要点诠释:

角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.

2.终边相同的角、象限角

终边相同的角为

角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.

要点诠释:

(1)终边相同的前提是:原点,始边均相同;

(2)终边相同的角不一定相等,但相等的角终边一定相同;

(3)终边相同的角有无数多个,它们相差的整数倍.

3、终边相同的角与象限角:

与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.

知识点二:弧度制

弧度制

(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).

(2)弧度与角度互换公式:

1rad=≈57.30°=57°18′,1°=≈0.01745(rad)

(3)弧长公式:(是圆心角的弧度数),

扇形面积公式:.

要点诠释:

(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正

角的弧度数是

一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.

(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.

3、弧度制的概念及换算:

规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写.

在半径为的圆中,弧长为的弧所对圆心角为,则

所以,rad,(rad),1(rad).

4、弧度制下弧长公式:

;弧度制下扇形面积公式.

类型一:象限角

1.已知角;

(1)在区间内找出所有与角有相同终边的角;

(2)集合,,那么两集合的关系是什么?

解析:(1)所有与角有相同终边的角可表示为:,

则令,

解得,从而或

代回或.

(2)因为表示的是终边落在四个象限的平分线上的角的集合;

而集合表示终边落在坐标轴或四个象限平

分线上的角的集

合,从而:.

总结升华:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.

2.已知“是第三象限角,则是第几象限角?

思路点拨:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴

的正向的上方起,依次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并循环一周,则原来是第

几象限的符号所表示的区域即为(n∈N*)的终边所在的区域.

解法一:因为是第三象限角,所以,

∴,

∴当k=3m(m∈Z)时,为第一象限角;

当k=3m+1(m∈Z)时,为第三象限角,

当k=3m+2(m∈Z)时,为第四象限角,

故为第一、三、四象限角.

解法二:把各象限均分3等份,再从x轴的正向的上方起依

次将各区域标上I、Ⅱ、Ⅲ、Ⅳ,并依次循环一周,

则原来是第Ⅲ象限的符号所表示的区域即为的终边

所在的区域.

由图可知,是第一、三、四象限角.

总结升华:

(1)要分清弧度制与角度制象限角和终边在坐标轴上的角;

(2)讨论角的终边所在象限,一定要注意分类讨论,做到不重不落,尤其对象限界角应引起注意.

举一反三:

【变式1】集合,,则( )

A、B、C、D、

【答案】C

思路点拨:( 法一) 取特殊值-1,-3,-2,-1,0,1,2,3,4

(法二)在平面直角坐标系中,数形结合

(法三)集合M变形,

集合N变形,

是的奇数倍,是的整数倍,因此.

【变式2】设为第三象限角,试判断的符号.

解析:为第三象限角,

当时,此时在第二象限.

当时,此时在第四象限.

综上可知:

类型二:扇形的弧长、面积与圆心角问题

3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?

解:设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是依题意,得

≈≈

总结升华:弧长和扇形面积的核心公式是圆周长公式和圆面积公式

,当用圆心角的弧度数代替时,即得到一般的弧长公式和扇形面积公式:

举一反三:

【变式1】一个扇形的周长为,当扇形的圆心角等于多少弧度时,这个扇形的

面积最大?并求出这个扇形的最大面积.

思路点拨:运用扇形的面积公式和弧长公式建立函数关系,运用函数的性质来解决最值

问题.

解:设扇形的半径为,则弧长为,

于是扇形的面积

当时,(弧度),取到最大值,此时最大值为.

故当扇形的圆心角等于2弧度时,这个扇形的面积最大,最大面积是.

总结升华:求扇形最值的一般方法是根据扇形的面积公式,将其转化为关于半径(或圆心角)的函数表达式,进而求解.

1、角度制与弧度制的互化:(1);(2).

解:为第三象限;为轴上角

为第二象限;为第三象限角小结:[1]用弧度表示角时,“弧度”两字不写,可写“”;

[2]角度制化弧度时,分数形式,且“”不取近似值.

2、用角度和弧度分别写出分别满足下列条件的角的集合:

(1)第一象限角;(2)锐角;(3)小于的角;

(4)终边与角的终边关于轴对称的角;(5)终边在直线上的角.

解:(1)或;

(2)或;

(3)或;

(4)分析:因为所求角的终边与角的终边关于轴对称,可以选择代表角,

因此问题转化

为写出与角的终边相同的角的集合即;

(5)或.

注意:角度制与弧度制不能混用!

3、若是第二象限角,则是第几象限角?反之,是第二象限角,是第几象限角?

解:若是第二象限角,则,

两边同除以2,得

当为奇数时,是第三象限角;当为偶数时,是第一象限角

反之,若是第二象限角,则

两边同乘以2,得

所以是第一或第二象限角或终边在轴正半轴上的轴上角.

注意:数形结合.

任意角的概念与弧度制

任意角的概念与弧度制 1、角的概念的推广: 角可以看作平面内一条射线绕端点从一个位置(始边)旋转到另一个位置(终边)形成的图形.规定按照逆时针方向旋转而成的角叫做正角;按照顺时针方向旋转而成的角叫做负角:射线没有旋转时称零角.任意角的概念与弧度制 1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角. 零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释: 角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义. 2.终边相同的角、象限角 终边相同的角为 角的顶点与原点重合,角的始边与轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 要点诠释: (1)终边相同的前提是:原点,始边均相同; (2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差的整数倍. 3、终边相同的角与象限角: 与角终边相同的角构成一个集合,;顶点与坐标原点重合,始边与轴正半轴重合,角的终边在第几象限,就把这个角叫做第几象限的角.知识点二:弧度制 弧度制 (1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单

位可以省略不写). (2)弧度与角度互换公式: 1rad=≈°=57°18′,1°=≈(rad) (3)弧长公式:(是圆心角的弧度数), 扇形面积公式:. 要点诠释: (1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地, 正角的弧度数是 一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定. (2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径. 3、弧度制的概念及换算: 规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.弧度记作rad.注意在用弧度制时,“弧度”或“rad”可以略去不写. 在半径为的圆中,弧长为的弧所对圆心角为,则 所以,rad,(rad),1(rad). 4、弧度制下弧长公式: ;弧度制下扇形面积公式. 类型一:象限角 1.已知角; (1)在区间内找出所有与角有相同终边的角;

(完整版)任意角与弧度制题型小结

任意角与弧度制 【知识梳理】 1.按旋转方向分 2. (1)角的终边在第几象限,则此角称为第几____;(2)角的终边在__上,则此角不属于任何一个象限. 3. 所有与角α终边相同的角,连同角α在内,可构成一个集合S=_________________,即任一与角α终边相同的角,都可以表示成角α与__________的和. 【常考题型】 题型一、象限角的判断 【例1】已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角. (1)-75°;(2)855°;(3)-510°. 【类题通法】象限角的判断方法 (1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角. (2)根据终边相同的角的概念.把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角. 【对点训练】 在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角. (1)360°;(2)720°;(3)2 012°;(4)-120°. 题型二、终边相同的角的表示 【例2】(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来. (2)分别写出终边在下列各图所示的直线上的角的集合.

(3)写出终边落在图中阴影部分(包括边界)的角的集合. 【类题通法】 1.终边相同的角常用的三个结论 (1)终边相同的角之间相差360°的整数倍. (2)终边在同一直线上的角之间相差180°的整数倍. (3)终边在相互垂直的两直线上的角之间相差90°的整数倍. 2.区域角是指终边落在坐标系的某个区域的角,其写法可分三步 (1)先按逆时针方向找到区域的起始和终止边界; (2)由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角; (3)用不等式表示区域内的角,组成集合. 【对点训练】 已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围. 题型三、确定n α及 n α 所在的象限 【例3】 若α是第二象限角,则2α,α 2 分别是第几象限的角? 【类题通法】 1.n α所在象限的判断方法 确定n α终边所在的象限,先求出n α的范围,再直接转化为终边相同的角即可. 2.αn 所在象限的判断方法

弧度制与任意角知识梳理

弧度制与任意角知识梳理

第四章三角函数(基本初等函数(Ⅱ)) §4.1弧度制及任意角的三角函数

1.了解任意角的概念. 2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角三角函数(正弦、余弦、正切)的定义. 本节内容是整个三角函数部分的基础,主要考查三角函数的概念,三角函数值在各象限的符号,利用三角函数线比较三角函数值的大小等,一般不单独设题,主要是与三角函数相关的知识相结合来考查.

1.任意角 (1)角的概念 角可以看成平面内一条____________绕着端点从一个位置旋转到另一个位置所成的图形.我们规定:按____________方向旋转形成的角叫做正角,按____________方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个____________. (2)象限角 使角的顶点与____________重合,角的始边与x 轴的____________重合.角的终边在第几象限,就说这个角是第几象限角. ①α是第一象限角可表示为 ?????? ????α|2k π<α<2k π+π2,k ∈Z ;

②α是第二象限角可表示为; ③α是第三象限角可表示为; ④α是第四象限角可表示为. (3)非象限角 如果角的终边在上,就认为这个角不属于任何一个象限. ①终边在x轴非负半轴上的角的集合可记作{α|α=2kπ,k∈Z}; ②终边在x轴非正半轴上的角的集合可记作 _____________________________________ ____; ③终边在y轴非负半轴上的角的集合可记作 _____________________________________ ____; ④终边在y轴非正半轴上的角的集合可记作 _____________________________________

高中数学必修四 任意角与弧度制 知识点汇总(教师版)

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 例1、若ο ο13590<<<αβ,求βα-和βα+的范围。(0,45) (180,270) 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 例2、(1)时针走过2小时40分,则分针转过的角度是 -960 (2)将分针拨快10分钟,则分针转过的弧度数是 3 π . 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、30? ;390? ;-330?是第 象限角 300? ; -60?是第 象限角 585? ; 1180?是第 象限角 -2000?是第 象限角。 例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).

①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B ) A .B=A∩C B .B ∪C= C C .A ?C D .A=B=C 例3、写出各个象限角的集合: 例4、若α是第二象限的角,试分别确定2α,2 α 的终边所在位置. 解 ∵α是第二象限的角, ∴k ·360°+90°<α<k ·360°+180°(k ∈Z ). (1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2 α <k ·180°+90°(k ∈Z ), 当k =2n (n ∈Z )时, n ·360°+45°< 2 α <n ·360°+90°; 当k =2n +1(n ∈Z )时, n ·360°+225°<2 α <n ·360°+270°. ∴ 2 α 是第一或第三象限的角. 拓展:已知α是第三象限角,问3 α是哪个象限的角? ∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°< 3 α <90°+k ·120°. ①当k =3m (m ∈Z )时,可得 60°+m ·360°<3 α <90°+m ·360°(m ∈Z ). 故 3 α 的终边在第一象限. ②当k =3m +1 (m ∈Z )时,可得 180°+m ·360°<3 α <210°+m ·360°(m ∈Z ). 故 3 α 的终边在第三象限. ③当k =3m +2 (m ∈Z )时,可得 300°+m ·360°< 3 α <330°+m ·360°(m ∈Z ).

任意角及弧度制知识点总结

任意角及弧度制知识点总结 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表 示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z π α=∈.如α 的终边与6 π 的终边关于直线x y =对称,则α=____________。 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象 限角,则2 α 是第_____象限角 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。三角 函数值只与角的大小有关,而与终边上点P 的位置无关。如

必修4-任意角和弧度制-练习题整理

1、下列六个命题:其中正确的命题有 . ①时间经过3小时,时针转过的角是90°②小于90°的角是锐角③大于90°的角是钝角④若α 是锐角,则α 的终边在第一象限 ⑤若α 的终边在第二象限,则α 是钝角⑥若α 的终边在第四象限,则α 是负角 2、练习:角度与弧度互化: 0°= .;30° ;45° ;3π ;2π ;120° ;135° ;150° ; 54π ,-43π 、310 π 、-210° 、75° ,0330 ,0900 23π- ,405° , -280° , 1680° , π411- ,5π ,67π 780° ,-1560° ,67.5° ,π310- , 12π ,4 7π 3、在0°~360°间,找出与下列角终边相同角:(将下列角化成0360()k k Z α?+∈的形式) -150° 、1040° 、-940° .0 300 01125 0660- -1050° 01485- 4、下列各对角中终边相同的角是( ) A.πππk 222+-和(k ∈z ) B.-3π和322π C.-97π和911π D. 9 122320ππ和 5、用弧度制表示下列角的集合。 (1)x 轴上的角; (2)第四象限角; (3)与 6 π的终边关于x 轴对称的角; (4)终边在直线y=x 上。 (5) 终边落在一、三象限角平分线上 6、写出角的终边在下图中阴影区域内角的集合(包括边界). 7、若α 是第二象限的角,则2 α所在的象限是( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第二、三象限 8、若角α是第三象限角,则2 α角的终边在 . 9、若α是第四象限角,则π-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、已知:α是第三象限角,求(1)2α (2) 2α (3) 3 α终边所在的位置

任意角与弧度制知识点汇总

任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α ∠可以简记成α。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、“象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。例1、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、

B 、 C 关系是( ) A .B=A∩C B .B∪C= C C .A ?C D .A=B=C 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。 (2)所有与?终边相同的角连同?在内可以构成一个集合 {}Z k k S ∈?+==,360| αββ 即:任何一个与角?终边相同的角,都可以表示成角?与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若θ角的终边与 58π角的终边相同,则在[]π2,0上终边与4 θ 的角终边相同的角为 。 (2)若βα和是终边相同的角。那么βα-在 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1) 210-; (2)731484'- . 例3、求θ,使θ与 900-角的终边相同,且[] 1260180, -∈θ.

高中数学人教版必修4任意角和弧度制教学设计

1.1 任意角和弧度制 1.1.1 任意角 整体设计 教学分析 教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务. 学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义. 三维目标 1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念. 2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义. 3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础. 重点难点 教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合. 教学难点:用集合来表示终边相同的角. 课时安排 1课时 教学过程 导入新课 图1 思路 1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题 一、基础小题 1.已知角α的终边与单位圆交于点? ?? ?? -45,35,则tan α=( ) A .-43 B .-45 C .-35 D .-3 4 2.sin2cos3tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( ) A .23 B .32 C .23π D .32 π 4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α= 2 4 x ,则x =( ) A . 3 B .±3 C .-2 D .- 3 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ |tan θ| 的值为( ) A .1 B .-1 C .3 D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π 3 ,则sin α=( ) A .- 32 B .32 C .-12 D .12 9.给出下列命题: ①第二象限角大于第一象限角; ②三角形的内角是第一象限角或第二象限角; ③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;

任意角与弧度制教案

任意角与弧度制 【基础再现】 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角,记作:角或 可以简记成。 注意: (1)“旋转”形成角,突出“旋转” (2)“顶点”“始边”“终边”“始边”往往合于轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 【重点、难点、考点】 ααα∠αx x

一、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 2、终边在坐标轴上的点: 终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ 3、终边共线且反向的角: 终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ )(Z k k ∈{}Z k k S ∈?+==,360| αββ

弧度制与任意角

第九周周二练习(弧度制与任意角) 班别 姓名 座号 一、选择题 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ ππ B .)(3k 3Z k k ∈± πππ与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6 Z k k k ∈± + π ππ π与 3.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3π B .-3π C .6π D .-6 π 4.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2Z k ∈-=βπα B .)()2 1 2(Z k k ∈-+=βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 5.集合A={},32 2|{},2|Z n n Z n n ∈±=?∈=ππααπαα, B={},2 1 |{},32|Z n n Z n n ∈+=?∈=ππββπββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B 6.某扇形的面积为12 cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2° B .2 C .4° D .4 7.下列说法正确的是 ( ) A .1弧度角的大小与圆的半径无关 B .大圆中1弧度角比小圆中1弧度角大 C .圆心角为1弧度的扇形的弧长都相等 D .用弧度表示的角都是正角 8.若α角的终边落在第三或第四象限,则2 α 的终边落在 ( ) A .第一或第三象限 B .第二或第四象限 C .第一或第四象限 D .第三或第四象限 二、填空题 9.已知βαπ βαππβαπ-2,3 ,34则-<-<-< +<的取值范围是 . 10.已知α是第二象限角,且,4|2|≤+α则α的范围是 . 11.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . ≠ ≠ ≠

任意角和弧度制知识点和练习

知识点一:任意角 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

必修4-任意角和弧度制-练习题整理

1、下列六个命题:其中正确的命题有 . ①时间经过3小时,时针转过的角是90°②小于90°的角是锐角③大于90°的角是钝角④若α 是锐角,则α 的终边在第一象限 ⑤若α 的终边在第二象限,则α 是钝角⑥若α 的终边在第四象限,则α 是负角 2、练习:角度与弧度互化: 0°= .;30° ;45° ;3π ;2 π ;120° ;135° ;150° ; 54π ,-43π 、310 π 、-210° 、75° ,0330 ,0900 23π- ,405° , -280° , 1680° , π411- ,5π ,67π 780° ,-1560° ,67.5° ,π310- , 12π ,4 7π 3、在0°~360°间,找出与下列角终边相同角:(将下列角化成0360()k k Z α?+∈的形式) -150° 、1040° 、-940° .0 300 01125 0660- -1050° 01485- 4、下列各对角中终边相同的角是( ) A.πππk 222+-和(k ∈z ) B.-3π和322π C.-97π和911π D. 9 122320ππ和 5、用弧度制表示下列角的集合。 (1)x 轴上的角; (2)第四象限角; (3)与 6 π的终边关于x 轴对称的角; (4)终边在直线y=x 上。 (5) 终边落在一、三象限角平分线上 6、写出角的终边在下图中阴影区域内角的集合(包括边界). 7、若α 是第二象限的角,则2 α所在的象限是( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第二、三象限 8、若角α是第三象限角,则2 α角的终边在 . 9、若α是第四象限角,则π-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10、已知:α是第三象限角,求(1)2α (2) 2α (3) 3 α终边所在的位置

1.1-任意角和弧度制-教学设计-教案

1.1-任意角和弧度制-教学设计-教案

教学准备 1. 教学目标 1、知识与技能 (1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念. 2、过程与方法 通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示. 3、情态与价值 通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物. 2. 教学重点/难点

重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示. 3. 教学用具 多媒体 4. 标签 任意角 教学过程 【创设情境】 思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应 当如何将它校准?当时间校准以后,分针转了多少度? [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】 1.初中时,我们已学习了角的概念,它是如何定义的呢? [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点. 2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

(完整版)必修四_任意角与弧度制__知识点汇总(教师版)

美博教育任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。 2、角的分类: 由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、 零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。 (2)所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈?+==,360|οαββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 注意: 1、Z ∈k 2、α是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角 有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4 θ的角终边相同的角为 。 若θ角的终边与8π/5的终边相同 则有:θ=2kπ+8π/5 (k 为整数) 所以有:θ/4=(2kπ+8π/5)/4=kπ/2+2π/5 当:0≤kπ/2+2π/5≤2π 有:k=0 时,有2π/5 与θ/4角的终边相同的角 k=1 时,有9π/10 与θ/4角的终边相同的角 (2)若βα和是终边相同的角。那么βα-在 例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)ο210-; (2)731484'-ο. 例3、求θ,使θ与ο900-角的终边相同,且[] οο1260180,-∈θ. 2、终边在坐标轴上的点: 终边在x 轴上的角的集合: {}Z k k ∈?=,180|οββ 终边在y 轴上的角的集合:{}Z k k ∈+?=,90180|οοββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90|οββ 3、终边共线且反向的角: 终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180|οοββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180|οοββ 4、终边互相对称的角: 若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk

任意角及弧度制知识点总结备课讲稿

任意角及弧度制知识 点总结

精品文档 收集于网络,如有侵权请联系管理员删除 任意角及弧度制知识点总结 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线 上)?2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z πα=∈.如α的终边与6 π的终边关于直线x y =对称,则α=____________。 4、α与2 α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2 α是第_____象限角 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度(1rad)57.3≈o . 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。如 (1)已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。 (2)设α是第三、四象限角,m m --=432sin α,则m 的取值范围是_______

任意角和弧度制练习题

§ 任意角和弧度制 班级 姓名 学号 得分 一、选择题 1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α 2.终边与坐标轴重合的角 α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z} 3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z) ( ) (A) α+β=π (B) α-β=2π (C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧 度数为 ( ) (A)3π (B)32π (C)3 (D)2 5.将分针拨快10分钟,则分针转过的弧度数是

( ) (A)3π (B)-3π (C)6 π (D)-6 π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题: ①A =B =C ②A ?C ③C ?A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题 7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2 α角的终边在 ,2α角的终边在 . 三.解答题 11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中

任意角和弧度制及任意角的三角函数教案

第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数 页 (对应学生用书(文)、(理)40~41页) 1. (必修4P15练习6改编)若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限. 答案:四

解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限. 2. 角α终边过点(-1,2),则cos α=________. 答案:-55 3. 已知扇形的周长是6cm ,面积是2cm 2,则扇形的圆心角的弧度数是________. 答案:1或4 4. 已知角α终边上一点P(-4a ,3a)(a<0),则sin α=________. 答案:-35 5. (必修4P 15练习2改编)已知角θ的终边经过点P(-x ,-6), 且cos θ=-513,则sin θ=____________,tan θ=____________. 答案:-1213 125 解析:cos θ= -x x 2+36=-513,解得x =52.sin θ=-6? ????-522+(-6)2 =-1213,tan θ=125. 1. 任意角 (1) 角的概念的推广

① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角 终边与角α相同的角可写成α+k·360°(k ∈Z ). (3) 弧度制 ① 1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角. ② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的 弧度数为零,|α|=l r ,l 是以角α作为圆心角时所对圆弧的长,r 为半 径. ③ 弧度与角度的换算:360°=2π弧度;180°=π弧度. ④ 弧长公式:l =|α|r . 扇形面积公式:S 扇形=12lr =12|α|r 2. 2. 任意角的三角函数 (1) 任意角的三角函数定义 设P(x ,y)是角α终边上任一点,且|PO|=r(r >0),则有sin α=y r , cos α=x r ,tan α=y x ,它们都是以角为自变量,以比值为函数值的函数. (2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示 ?????正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角 知识点二:象限角的范围 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

任意角的概念与弧度制教案

任意角的概念与弧度制教案 课 学数 授程课时数课授间 时第章第 7.7.1 节 12 意角的任概 念课授法方课授班级授讲法海乘 1061/机 16轮0 1 识知目:⑴标了角的解念概广的实际背景意义推;⑵ 理解任意角、象限、角界角限、终相同边的的概角念. 教学 目的 能目力标:1(会判断)所在的角限象;()2求会定指范内与围已角终边知相同角;的 (3)培养观能力和计算技能察.学重教点和难点复习提与问作业布 置点重:终边同相的概念角难.点终边:相同的角示和确定.表 P6 习练2 预习 教学思路、方法手、段 (1)丰以的富生活例实为例,引入学习引新念概—角的—推广(;)2演示在——察——思维探究活动中,使观学生认、理解识终边相的同角;(3)在练—习—论讨中深、 巩化知固识,养培能力;()在反4思交中流总,知结,识品学习味方.法 教学备 教学品课、学习演件示具用(两个硬条一个纸钉)扣 .【

学过教程 】 1 教过 *揭 课示题 学 程 教 师生学学教行为时为意行图间 用利介绍了解际实问题引起质疑思学生的考好提问求解奇心求和欲知 .7 1意任角的念概弧与制度 *创情景设兴导入趣问题 1游场的乐摩轮天每,一个厢挂在一轿个臂上旋小明,小与华两人同登时摩上天轮,臂转旋过一圈后小明,下了摩天轮,小华继乘坐续圈.一么,小华那下走时,来臂转旋过的角是度多呢?少问题 2 用活扳络手松旋母,当扳螺手按逆针时向由方AO旋到转 BO 置时,位形就一个成角在扳;由 OA手时逆旋转一 生针活讨论说明例实有助于学流总交理解结生理解角的推广的义 10意 周的过 程,中就形成了°0到36° 之间0的角扳手继续;转下去旋就形成,大于的.角果如用手旋紧扳螺母就需将,扳手按的角 .顺时 针向方旋,转形与成上述方向归纳 通 上过的三个实例面,现仅发锐用或角°0 360°范围的,已经角能不反映生产、生中活的一些际问题实需,对要的角念概行推进广 *动.脑思探考新索概念知一射线由条来原位置的 AO,绕它的着点端,按O逆时(针或顺针时)方旋转向到另位一 O 置B 形就成角旋.开始位转的射置线O A 叫角的始边,终位止的射置线OB 叫角做的终边端,点O 叫做角的点顶.规:定按时针逆方向旋所转形成角的做正叫角(图如() 1 ,)按顺针时向旋方所转成的角形叫负做角如图(2)).当(线射有没作何旋转任,时认也形为了成一角个,这个叫角做角零.

相关文档
相关文档 最新文档