文档库 最新最全的文档下载
当前位置:文档库 › Resonant Raman Scattering of Interacting Two-Channel Quantum Wires

Resonant Raman Scattering of Interacting Two-Channel Quantum Wires

Resonant Raman Scattering of Interacting Two-Channel Quantum Wires
Resonant Raman Scattering of Interacting Two-Channel Quantum Wires

a r X i v :c o n d -m a t /0106336v 1 [c o n d -m a t .s t r -e l ] 18 J u n 2001

Resonant Raman Scattering of Interacting Two-Channel Quantum Wires

Hyun C.Lee

BK21Physics Research Division and Institute of Basic Science,Sung Kyun Kwan University,Suwon,440-746Korea

Resonant Raman scattering of degenerate interacting two-channel quantum wire is studied.All collective excitations of two-channel quantum wire are shown to give rise to peaks in the polarized Raman spectra near resonance.If there exist certain symmetries among interactions,a resonant peak can also appear in the depolarized Raman spectra,in constrast to the single-channel case studied by Sassetti and Kramer.We also calculate the explicit form of the scattering cross-section away from the peaks.The above features may be experimentally veri?ed in armchair carbon nanotube systems.

PACS numbers:71.27.+a,71.10.pm,78.30.-j

I.INTRODUCTION

Raman spectroscopy is a very powerful tool in inves-tigating the physical properties of one-dimensional (1D)electron system.Especially,it can directly measure the dispersion of collective excitations [1,2].Away from res-onance,depending on the relative polarizations of the in-cident and the scattered light,the charge density excita-tion (CDE,parallel polarization,polarized spectra)and the spin density excitation (SDE,perpendicular polariza-tion,depolarized spectra)can be identi?ed in the Raman spectra [1–3].Near resonance,additional structures have been detected in both polarized and depolarized spec-tra [3],and they were termed ”single particle excitation”(SPE).Sassetti and Kramer pointed out that the SPE in polarized spectra could be understood in terms of the spin density collective excitation in depolarized spectra within the theory of 1D interacting single-channel electron gas in Luttinger liquid approximation.They also predicted a broad incoherent structure in depolarized spectra near resonance,which appears due to the simultaneous propa-gation of CDE and SDE (in other words,spin-charge sep-aration).Thus,the resonant Raman spectra can provide many experimental veri?cations of anomalous non-Fermi liquid behaviours of 1D interacting electrons [4].

Two-channel quantum wires attracted much attention recently motivated by the carbon nanotubes and the spin-ladder system [5,6].It is natural to explore the implications of Raman scattering on two-channel quan-tum wire in the perspective of the above discussions.We have extended the analysis by Sassetti and Kramer to the degenerate (See Eq.(1))two -channel quantum wires,and have found some new features which are qualitatively dif-ferent from the single-channel ones.Our ?ndings are:(a)all collective excitations of the system give rise to peaks in the resonant polarized Raman spectra.(b)If some of the collective excitations have the identical velocitites owing to symmetries among interactions,a peak appears in the resonant depolarized Raman spectra,which is contrast to the prediction in the single-channel quantum wire.Our predictions may be checked experimentally in the car-

bon nanotubes,as will be shown below.The above re-sults should be compared with those by E.Mariani et al..[7]They have studied the resonant Raman spectra of non-degenerate two-channel quantum wires (i.e.a ?nite energy gap between two sub-bands).Their results show that only collective inter-band spin excitations with posi-tive group velocity,apart from the charge excitation,can appear in resonant polarized spectra and that only broad features exist in resonant depolarized spectra.Because our system is degenerate there is no distinction between intra-and inter-band modes apart from the renormaliza-tion due to interactions.

In Section II,we describe a model of two-channel quan-tum wires and review some results in the standard Ra-man spectroscopy.In Section III,we calculate the res-onant Raman cross-section and discuss the implications of the results.

II.MODEL AND FORMULATION

As a representative model of the two-channel quantum wires,we study the ”forward scattering charge model”(FSCM)of (N,N )armchair carbon nanotubes proposed by Kane,Balents,and Fisher [8]and its slightly general-ized model.FSCM neglects the backward and umklapp scatterings,and as a result the Luttinger liquid descrip-tion of FSCM holds above a certain gap scale [8].Such a condition is implicitly assumed to be met.We regard FSCM as a model of typical two-channel quantum wires in Luttinger liquid universality class rather than as a mi-croscopic model of carbon nanotubes.

With the above reservations,we describe the model.A discrete quantized transverse momenta leads to two 1D metallic bands with the same Fermi velocity.Following the notations of Kane,Balents,the two metallic bands can be described by the Hamiltonian H 0=

i,α

dxv F

ψ?Riαi?x ψRiα?ψ?

Liαi?x ψLiα ,(1)

where i =1,2labels the two bands,

and

α=↑,

↓the

elec-

tron

spin.

The Hamiltonian (1)can be bosonized in a standard way [4],

H 0(θ,φ)= iα

dx

v F

2,

(4)

with similar de?nitions for φ.De?ne also

θμ,±=(θ1μ±θ2μ)/

g ?1a (?x θa )2+g a (?x φa )2 ,

(6)

v ρ+= v F (v F +(8e 2/πˉh )ln(R s /R )) 1/2

>v σ+,g ρ+=v F /v ρ+.(7)v ρ?=v σ+=v σ?=v F ,g ρ?=g σ+=g σ?=1.

(8)

The Eq.(8)speci?es the symmetry of FSCM.For generic interaction,such a symmetry is not expected.We have deliberately written the Hamiltonian in a more general form to take other cases into account.In the following,we will use the general notations assuming no special relations like Eq.(8).When the relation Eq.(8)plays a crucial role,such a case will be treated separately.The propagators of boson ?elds in imaginary frequency are

θa (k,iω)θb (?k,?iω) =δab

πv a g

v 2a

k 2+ω2, θa (k,iω)φb (?k,?iω) = φa (k,iω)θb (?k,?iω)

=δab

?iπkω

d ?dω

=

e 2

ωI

n ω+1

D (k )

c ?iα(k +q )c iα(k ),

(10)

where n ω=

1

E G ?ˉh ωI γ0e I ·e

F ρ(q )+iγ1|e I ×e F |σ(q )

,

ρ(q )=

i =1,2

ρi ↑(q )+ρi ↓(q )

,σ(q )=

i =1,2

ρi ↑(q )?ρi ↓(q )

.(12)

Depending on the relative polarizations (parallel or per-pendicular)of the incident and scattered photons,only the charge or spin channel contributes to the Raman cross section,respectively.This is the classical selection rule of Raman spectra of quantum wires and dots,which is

valid in the lowest order of ˉh v F q

|E G ?ˉh ωI |.Close to

the resonance such that ˉh ωI ≈E G +ˉh v F q ,the momen-tum dependence of D (k )should be taken into account.Following

Sassetti and Kramer [1,9,10]we expand the

1

(E G ?ˉh ωI )2

i,α,k

×γαv F (rk ?k F )ψ(r )?

iα(k +q )ψ(r )

iα(k ),δN (r )

2(q )=?

η2v F q 2π

δq +q ′,0,and then can

be bosonized.The bosonized form of δN 1,2(q )= r δN (r )

1,2(q )are given by

δN 1(q )=

?η12πv F

i (q ?p )

(E G ?ˉh ωI )2

2iq

E G ?ˉh ωI ,

only

the total charge density operator contributes to the cor-relation function χ(q,ω)(See Eq.(12)).The correlation function can be computed easily.

Im χ(0)

pol (q,ω)

L γ2

0q

(E G ?ˉh ωI )4

a

(g 2a +g ?2

a +2)

q 32v a

(ω/v a )2?q 2

.

(17)

The most notable feature of Eq.(17)is the appearance

of the peaks corresponding to all of the collective exci-tations (the ?rst term in the bracket).The last term in the bracket is some background negligible near the peak,which was not explicitly evaluated by Sassetti and Kramer.The dependence the peaks on the photon energy and the momentum are identical with those of Sassetti and Kramer’s results on the single-channel case.Inter-estingly,the background disappears for non-interacting electrons ,i.e.all g a =1.Thus,the magnitude of the background can give some measure of interactions.At ?nite temperature,the peak intensity q 3of (17)becomes

q (q 2+T 2/v 2

σ+),which is also identical with that of single-channel case [10].

Next consider the depolarized spectra with e I ·e F =

0,|e I ×e F |=1.In the lowest order of ˉh

v F q

(E G ?ˉh ωI )2

g σ+δ(ω?v σ+q ).(18)

Near resonance,the contributions from the correction

δN 1should be included.Recall that we did not impose any special relations among velocities v a and Luttinger parameters g a .The contribution reads (ω,q >0)

Im χ(1)

dep (q,ω)

Lv 2F γ21η22

(v ρ+?v σ+)3

,G 2=

(g ρ+g σ++g ?1ρ+g ?1

σ+

?2)(v ρ??v σ?)3

×Θ(ω?v σ?q )Θ(qv ρ??ω)(ω?v σ?q )(qv ρ??ω).(20)When

Eq.(20)is treated carefully in the limit [11]v ρ?→v σ?,g ρ?→g σ?,it becomes

q 3

[1]M.Sassetti and B.Kramer,Phys.Rev.Lett.80,1485

(1998).

[2]F.A.Blum,Phys.Rev.B 1,1125(1970);M.V.Klein,

in Light Scatteirng in Solids ,edited by M.Cardona (Springer-Verlag,Berlin,1975).

[3]A.R.Goni,A.Pinczuk,J.S.Weiner,J.M.Calleja,B.S.

Dennis,L.N.Pfei?er,and K.W.West,Phys.Rev.Lett.67,3298(1991);A.Schmeller,A.R.Goni,A.Pinczuk,J.S.Weiner,J.M.Calleja,B.S.Dennis,L.N.Pfei?er,and K.W.West,Phys.Rev.B 49,14778(1994).[4]J.Voit,Rep.Prog.Phys.57,977(1995).

[5]M.Bockrath,D.H.Cobden,J.Lu,A.G.Rinzler,R.E.

Smalley,L.Balents,and P.L.McEuen,Nature 397,598(1999);N.Hamada,S.Sawada,and A.Oshiyama,Phys.Rev.Lett 68,1579(1992).

[6]E.Dagotto,J.Riera,and D.Scalapino,Phys.Rev.B

45,5744(1992);T.M.Rice,S.Gopalan,and M.Sigrist,Europhys.Lett.23,445(1993).

[7]E.Mariani,M.Sassetti,and B.Kramer,Europhys.Lett.

49,224(2000).

[8]C.Kane,L.Balents,and M.P.A.Fisher,Phys.Rev.

Lett.79,5086(1997).

[9]B.Kramer and M.Sassetti,Phys.Rev.B 62,4238(2000).[10]We have neglected the e?ect of ?nite range of interac-tions.For the discussion on the interactions with ?nite range,see the work by Kramer and Sassetti [9].

[11]In case v ρ?=v σ?,it is simplest to calculate the correla-tion function from the outset assuming such relation.

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

建构主义理论

建构主义理论 建构主义理论认为,知识是由人主动建构的,而不是被动接受的。 一、基本原理 1、知识是个体主动的建构,不是被动接受或吸收; 2、认知的功能在于用来组织经验的世界,不是用来发现本体的现实; 3、知识是个人与别人经由磋商与和解的社会建构。 二、建构主义基本理论观点 (一)建构主义的知识观 传统的客观主义知识观认为,知识是客观世界的本质反映,是对客观事物的准确表征,知识只有在正确反映外部世界的情况下才被认为是正确的,客观知识就是真理。大多数建构主义对知识的客观性和确定性提出了质疑,认为知识不是对现实的准确表征,它只是一种解释、一种假设,并无最终答案。相反,随着人们认识的发展会不断出现新的假设,所以知识并不能精确地概括世界的法则,而是需要针对具体情境进行再创造。如珠穆朗玛峰的高度、鸟的起源等问题。另外,建构主义认为,知识不可能以实体的形式存在于具体个体之外,尽管人们通过语言符号赋予知识一定的外在形式,甚至这些命题还得到了较为普遍的认可,但这并不意味着学习者会对这些命题有同样的理解,因为这些理解只能由基于个人的经验背景而建构起来,它取决于特定情境下的学习历程。在具体的问题解决中,学习者需要针对具体问题的情境对原有知识进行再加工和再创造。

建构主义的这种知识观尽管有些激进,但它向传统的教学和课程理论提出了巨大挑战。按照这种观点,知识不是通过教师传授得到的,而是学习者在一定的情境即社会文化背景下,借助他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过意义建构的方式而获得的。课本知识仅仅是一种关于各种现象较为可靠的假设,而不是解释现实的“模板”。虽然有些科学知识包含真理,但并非绝对正确,只是对现实的一种较为正确的解释罢了。因此,在对课程知识的教学上,建构主义认为,就个体所获得的知识而言,(1)并非预先确定的,更不可能绝对正确;(2)只能以自己的经验、信念为背景;(3)需要在具体情境的复杂变化中不断加以深化。 (二)建构主义的学习观 1.学习是认知结构的改变过程 学习过程并非简单的信息输入、存储和提取,而是新旧经验或经验之间的相互作用过程,这主要涉及到同化和顺应两种机制。也就是说,建构主义认为个体的学习是双向建构的过程。学生不仅需要从头脑中提取与新知识一致的旧有经验作为同化新知识的固着点,而且也要关注到与当前知识不一致的已有经验,看到新旧知识之间的冲突,并设法通过调整来解决这些冲突,有时需要改变原有的错误观念。学生原有的知识经验,会由于新知识经验的进入而发生调整和改变。因此,学习不仅是理解和记忆新知识,而且要分析其合理性、有效性,从而 形成学习者本人对事物的观点和思想;另一方面,学习不仅是新

光谱分析

碱土光谱分析:从图中不难看出,从380nm~430nm随波长增加而逐渐上升,但反射率很低,反射率在0.5以下;430nm~780nm反射率呈平稳上升趋势,在近可见光波段反射率已达0.8;在近红外波段反射率增长趋势更显趋缓 水的光谱分析:清水的反射率在各个波段均较低(<%2).380nm~430nm随波长的增加反射率迅速增加,即紫光波段透射能力较弱,之后随波长的增加反射率逐渐减小,至760nm的近红外波段反射率几乎为零。 绿叶光谱分析:总体看来呈现五谷四峰的状态,450nm处于低谷处于蓝色光波段、670nm处于低谷处于红色波段(低谷的原因在于绿色植物在这两个波段的吸收率比较大,故反射率较低);500nm处反射率较高,原因是绿色反射率较高,非叶绿色吸收带;700~130nm反射率较高,其原因是其细胞结构(细胞质、细胞壁等结构);其后的三谷两峰是水的吸收带(绿叶饱含水分)。 枯叶光谱分析:枯叶的光谱反射率很显然在各个波段均低于绿叶,尤其在可见光(紫光、蓝光、红光)段其反射率几乎为零,原因在于对红光和蓝光的吸收率更大了,没有了叶绿素;700~1300nm反射率也低于绿叶,原因在于其细胞结构也不再完整,对可见光的反射能力也下降了;接下来的三谷两峰也较低于绿叶,原因是含水量明显减少(几乎为零)。 红叶光谱分析:红叶在可见光波段(红色波段除外),反射率几乎为零,究其原因:没有叶绿素,对任何波段的可见光都有很强的吸收能力,唯独强烈反射红色波段。近红外波段,随波长的增加反射率呈现出缓慢上升的情况,原因:有其细胞结构,反射率挺高的。 正常植被土:反射率非常低,也没有明显的峰谷和峰谷,近乎为零。原因是土颜色呈现出灰黑色,且还是粘土,光泽度较低,有机质含量较高含水量也很大。

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

拉曼光谱

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

结构设计原理课后习题答案

结构设计原理课后习题答案 1 配置在混凝土截面受拉区钢筋的作用是什么? 混凝土梁的受拉能力很弱,当荷载超过c f 时,混凝土受拉区退出工作,受拉 区钢筋承担全部荷载,直到达到钢筋的屈服强度。因此,钢筋混凝土梁的承载能 力比素混凝土梁提高很多。 2解释名词: 混凝土立方体抗压强度:以边长为150mm 的混凝土立方体为标准试件,在规定温 度和湿度下养护28天,依照标准制作方法,标准试验方法测得的抗压强度值。 混凝土轴心抗压强度:采用150*150*300的混凝土立方体为标准试件,在规定温 度和湿度下养护28天,依照标准制作方法和试验方法测得的混凝土抗压强度值。 混凝土抗拉强度:采用100*100*150的棱柱体作为标准试件,可在两端预埋钢筋, 当试件在没有钢筋的中部截面拉断时,此时的平均拉应力即为混凝土抗拉强度。 混凝土劈裂抗拉强度:采用150mm 立方体试件进行劈裂抗拉强度试验,按照规定的试验方法操作,按照下式计算A F A F 673.02f ts ==π 3 混凝土轴心受压的应力—应变曲线有何特点?影响混凝土轴心受压应力—应 变曲线有哪几个因素? 完整的混凝土轴心受压的应力-应变曲线由上升段OC ,下降段CD,收敛段DE 组成。 0~0.3fc 时呈直线;0.3~0.8fc 曲线偏离直线。0.8fc 之后,塑性变形显著 增大,曲线斜率急速减小,fc 点时趋近于零,之后曲线下降较陡。D 点之后,曲 线趋于平缓。 因素:混凝土强度,应变速率,测试技术和试验条件。 4 什么叫混凝土的徐变?影响徐变有哪些主要原因? 在荷载的长期作用下,混凝土的变形随时间增长,即在应力不变的情况下, 混凝土应变随时间不停地增长。这种现象称为混凝土的徐变。 主要影响因素:混凝土在长期荷载作用下产生的应力大小,加载时龄期,混 凝土结构组成和配合比,养生及使用条件下的温度和湿度。 5 混凝土的徐变和收缩变形都是随时间而增长的变形,两者有和不同之处? 徐变变形是在长期荷载作用下变形随时间增长,收缩变形是混凝土在凝结和 硬化的物理化学反应中体积随时间减小的现象,是一种不受外力的自由变形。 6 普通热轧钢筋的拉伸应力-应变关系曲线有什么特点?《公路桥规》规定使用 的普通热轧钢筋有哪些强度级别?强度等级代号分别是什么? 答:屈服钢筋从试验加载到拉断共四个阶段:弹性阶段,屈服阶段,强化阶 段,破坏阶段 按屈服强度分为:235MPa ,300MPa ,335MPa ,400MPa ,500MPa 代号:HPB235(R235),HRB335,HRB400,RRB400(KL400) 7 什么是钢筋和混凝土之间粘结应力和粘结强度?为保证钢筋和混凝土之间有 足够的粘结力要采取哪些措施? (1)由于变形差(滑移)沿混凝土与钢筋接触面上产生的剪应力称为粘结应力。 (2)在拔出试验失效时的最大平均应力作为粘结强度。dl πτF = (3)主要措施:提高混凝土强度,调整钢筋布置位置,调整钢筋间距,增加保 护层厚度,使用带肋钢筋。

拉曼光谱仪的工作参数介绍

拉曼光谱仪的工作参数介绍 当开始进行样品测试时,需注意选择正确的工作参数和条件。 激光器的功率要随不同测试样品而改变,对固体或液体等不易分解的可用较强功率激发,生物样品等应选较低功率激发。 积分时间可在开始时选择10s一次,正式测量时可根据信噪比的情况而定,信噪比高的积分时间可稍短,反之可采用较长时间积分。 狭缝宽度的选择可根据所测光谱是否需要高分辨或高共焦模式来决定大小。 为保证给出的拉曼光谱图,可在光路调校好之后用快速扫描模式进行一次预扫描; 然后根据测定要求和预扫描情况设定扫描范围、步长、积分时间、狭缝宽度、激发功率和扫描次数等进行正式测定。 若样品易于光解,除降低激光功率外,还可更换测试点实施分段扫描。 完成测试后,应在显微镜下检查样品足否已经损伤(光解、热解、脱落或变性等)。 拉曼光谱仪在中草药研究中的应用包括: 1、中药的优化 对于中草药及中成药和复方这一复杂的混合物体系,不需任何成分分离提取直接与细菌和细胞作用;

利用拉曼光谱无损采集细菌和细胞的光谱图,观察细菌和细胞的损伤程度,研究其药理作用,并进行中药材、中成药和方剂的优化研究。 2、中草药化学成分分析 薄层色谱(TLC)能对中草药进行有效分离但无法获得各组份化合物的结构信息; 而表面增强拉曼光谱(SERS)具有峰形窄、灵敏度高、选择性好的优点,可对中草药化学成分进行高灵敏度的检测。 利用TLC的分离技术和SERS的指纹性鉴定结合,是一种在TLC原位分析中草药成分的新方法。 3、中草药的无损鉴别 由于拉曼光谱分析,无需破坏样品,因此能对中草药样品进行无损鉴别,这对名贵中中草药的研究特别重要。 4、中草药的稳定性研究 利用拉曼光谱仪动态跟踪中草药的变质过程,这对中草药的稳定性预测、监控药材的质量具有直接的指导作用。 拉曼光谱仪使用的注意事项 (1)激发光使用好预热一下,拉曼光谱仪的话还要注意拉曼探头端面的清洁,如果窗口片脏掉的话会影响测试效果了。 (2)在打开拉曼光谱仪之前,先把拉曼探头的盖子打开且探头禁止对着人。

结构设计原理名词解释

1预应力混凝土结构:由配置预应力钢筋再通过张拉或其他办法建立预应力的结构。 2.混凝土的徐变:在荷载长期作用下,混凝土的应变随时间而增加的现象。 3?消压弯矩:由外荷载产生,使构件下边缘混凝土的预压应力恰好被抵消为零时的弯矩。 4?双筋截面:在拉压区都配置受力钢筋的截面。 5?短暂状况:指桥涵施工过程中承受临时性作用的状况。 6.部分预应力混凝土结构:在作用短期效应组合控制的正截面的受拉边缘可出现拉应力的预应力混凝土结构,即 1 >入〉0。 7?混凝土立方体抗压强度:按照规定的标准试件和标准试验方式得到的混凝土强度基本代表值。(或用试验方法标准描述) &可变作用:在结构使用期间,其量值随时间变化,或其变化值与平均值相比较不可忽略的作用 9.配箍率:衡量钢筋混凝土受弯构件箍筋数量的一种指标,r sv=A s V「bS v 10?张拉控制应力:锚下控制应力,张拉结束锚固时张拉力除以力筋的面积。有锚圈损失的要扣除。 11. 换算截面:将钢筋和受压区混凝土两种材料组成的实际截面换算成一种拉压性能相同的假想材料组成的匀质截面。 12. 剪跨比:m二M「Vh o,实质是反映了梁内正应力与剪应力的相对比值。 13?承载力极限状态:结构或构件达到最大承载力或不适合于继续承载的变形或变位的状 ^态。14?预应力混凝土:事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝土。 15?条件屈服强度:对没有明显流幅的钢筋定义的名义屈服强度,取残余应变为0.2%时的应力作为屈服点。 16. T梁翼缘的有效宽度:为便于计算,根据等效受力原则,把与梁肋共同工作的翼缘宽度限制在一定范围内,称为翼缘的有效宽度。 17?钢筋混凝土梁的界限破坏:指受拉钢筋屈服的同时受压混凝土压碎的状态。 18.预应力度:由预加应力大小确定的消压弯矩M与外荷载产生的弯矩M的比值, ■= M 0. M s 19?混凝土的收缩:混凝土凝结和硬化过程中体积随时间推移而减小的现象。(不受力情况下的自由变形) 20. 单向板:长边与短边的比值大于或等于2的板,荷载主要沿单向传递。 21. 最小配筋率:少筋梁与适筋梁的界限配筋率。 22. 有效预应力:扣除预应力损失后,钢筋中实际存余的预应力值。 23. 作用效应:结构对多所受作用的反应。 24. 钢筋混凝土结构:由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构。 25?抵抗弯矩图:沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵抗弯矩的图形,即各表示各正截面所具有的抗弯承载力。 26. 后张法:先浇注混凝土,等混凝土强度达到设计所要求的值,再张拉钢筋,靠锚具来传递和保持预加应力。 27. 轴心受压构件的稳定系数:钢筋混凝土轴心受压构件计算中,考虑构件长细比增大的附加效应使构件承载力降低的计算系数。 28. 结构的可靠度:结构在规定的时间内,在规定的条件下,完成预定功能的概率。 29. 双向板:当板为四边支承,但其长边12与短边11的比值°门1时,称双向板。板沿 两个方向传递弯矩,受力钢筋应沿两个方向布置。 30. 轴向力偏心距增大系数:考虑再弯矩作用平面内挠度影响的系数称为轴心力偏心距增大系数。 31. 局部承压:指在构件的表面上仅有部分面积承受压力的受力状态。 32. 材料强度的标准值:设计结构或构件时采用的材料强度的基本代表值。

简述建构主义理论

一、简述建构主义理论的主要观点及对教育技术的影响。 主要观点:(P33) ①学习是学习者主动地建构内部心理表征的过程,它不仅包括结构性的知识,而且包括大量的非结构性的经验背景; ②学习过程同时包含两方面的建构,即对新知识的意义建构和对旧知识的重组; ③学习者以自己的方式建构对于事物的理解,不同人看到的是事物的不同方面,不存在唯一的标准的理解。 对教育技术的影响:(P36) 1.自上而下的教学设计: a.自上而下的展开教学进程 b.知识结构的网络化概念 为教学设计提供了非线性、网络化的设计思想,更符合人类学习特征。 2.情境化教学:使得教学形式做到以学生为中心,进行自主学习。 3.重视社会性互动:建构主义的合作学习、交互式学习在教学中广为采用。 二、简述经验之塔理论的主要内容和基本观点。(P48) 主要内容:戴尔的“经验之塔”理论概述(三大类十个层次) 1、做的经验:有目的的直接的经验;设计的经验;参与演戏; 2、观察的经验:观摩示范;野外旅行;参观展览;电影和电视;录音广播和静态图像; 3、抽象的经验:视觉符号;言语符号; 基本观点: ①塔”中最底层的经验,是最直接最具体的经验,越住上升,则越趋于抽象。 ②教育应从具体经验入手,逐步过渡到抽象。 ③教育不能只满足于获得一些具体经验,而必须向抽象化发展,使具体经验普遍化,最后形成概念。 ④在学校中,应用各种教育、教学工具,可以使得教育更为具体、直观,从而去获得更好的抽象。 ⑤位于经验之塔中层的视听教具,比用言语、视觉符号更能为学生提供较具体的和易于理解的经验,它能冲破时空的限制,弥补学生直接经验的不足 三、简述常用的视听媒体及其教学应用方式(P70,79) 常用的视觉类教学媒体设备:光学投影仪、照相机、视频实物展示台、大屏幕电子投影仪等。听觉类教学媒体:录音机、CD唱机与CD光盘等。 视听类教学媒体:电视系统和电视机、录像机、摄像机、VCD与DVD等。 教学应用方式 1利用视觉媒体辅助教学常用的方式有:图示讲授法、实物实验演示法、录音配合教学法2利用听觉媒体辅助教学主要作用于应用方式是:扩大教育规模和范围、提供标准典型的声音示范、提供个别化学习的听觉自学材料。 3利用视听媒体辅助教学常用的方式有:主体式教学、补充式教学、示范式教学、个别化教学 四、简述计算机辅助教学的基本模式及其特点。(P87) 模式1.操练与练习。主要用于实现教学过程中学生练习阶段的功能。 特点:及时反馈信息;能够以多媒体方式有效地激励学生;将学生成绩及时保存。 模式2.个别指导。由计算机扮演老师,目的在于向学生传授新的知识或技能。

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

结构设计原理

1.桥梁结构功能、可靠性1)结构能承受正常施工和正常使用期间可能出现的各种荷载、外加变形、约束变形等作用——安全性;2)结构在正常使用条件下具有良好的工作性能——适用性;3)结构在正常使用和正常维护下,在规定时间内,具有足够的耐久性——耐久性;4)在偶然荷载作用下或偶然条件下发生时和发生后,结构仍能保持整体稳定性,不发生倒塌——安全性。结构可靠度:结构在规定时间内、规定条件下完成预定功能的概率 2.结构的设计基准期和使用寿命有何区别?设计基准期是进行结构可靠性分析时,考虑持久设计状况下各项基本变量与实践关系所采用的基准时间参数,可参考使用寿命的要求适当选定。两者是有联系的,而又不完全等同,当结构使用年限超过设计基准期,表明它失效的概率会增大不能保证其目标可靠指标,但不等于结构丧失所要求的功能。一般使用寿命长,设计基准期可以长一些,使用寿命短设计基准期短,设计基准期小于寿命期。 3.极限状态、两类结构极限状态当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,称此特定状态为极限状态。分为承载能力极限状态和正常使用极限状态。 4.作用:指结构产生内力、变形、应力和应变的所有原因。直接作用:指施加在结构上的集中力或分布力。间接作用:指引起结构外加变形和约束变形的原因。结构抗力:指结构构件承受内力和变形的能力。 5.结构设计哪三种状况?1)持久状况,承受自重,车辆荷载等作用持续时间很长的状况。进行承载能力极限状态和正常使用极限状态计算。2)短暂状况,承受临时性作用的状况,一般只进行承载能力极限状态计算,必要时才做正常使用极限状态计算3)偶然状况,偶然出现的状况,只需进行承载能力极限状态计算。 6.结构承载能力极限状态和正常使用极限状态设计计算的原则承载能力极限状态设计原则:作用效应最不利组合的设计值必须小于或等于结构抗力的设计值。以塑性理论为基础。正常使用极限状态设计原则:利用作用的短期效应组合,长期效应组合或短期效应组合并考虑长期效应组合的影响,对构件抗裂、裂缝宽度和挠度进行验算,并使各项值不超过规定的各相应限值。 7.材料强度的标准值和设计值?标准值——有标准试件按标准试验方法经数理统计以概率分布的0.05分位值确定强度值,取值原则是符合规定质量的材料强度实测的总体中,材料的强度标准度应具有不少于95%的保证率。设计值——材料强度标准值除以材料性能分项系数后的值(另外,按照标准方法制作和养护边长150mm立方体试件,28天龄期用标准试验方法测得的用有95%保证率的抗压强度成砼立方体抗压强度标准值) 8.作用分为几类,什么是作用的标准值,可变作用准永久值,可变作用频遇值?作用分三类:永久作用,可变作用,偶然作用。作用的标准值:结构或结构构件设计时,采用的各种作用的基本代表值。可变作用准永久值:设计基准期内可变作用超越的总时间约为设计基准期一半的作用值。可变作用频遇值:设计基准期内可变作用超越的总时间为规定的较小比率,或超越次数为规定次数的作用值。结构上较频繁出现且量值较大荷载作用取值。9.钢筋砼板和梁钢筋布置特点板:单向板,主筋设于受拉区,可沿板高中心纵轴线1/4~1/6计算跨径处按30度~45度弯起,但通过支承而不弯起主筋,每米板宽不少于3根,并不少于主筋截面积1/4.按设计规范规定按一定间距设置垂直于板受力钢筋的分布钢筋,置于受力钢筋上侧,主筋弯折处应设置分布钢筋。梁:常采用骨架形式,有绑扎钢筋骨架、焊接钢筋骨架。绑扎钢筋骨架对主钢筋净距和层间净距有要求,焊接钢筋骨架竖向不留空隙,用焊缝连接,不宜超过6层。弯起钢筋按规定设置,斜传力至专门设置的由计算确定,沿纵向配置箍筋。架立筋是附设的纵筋,由梁尺寸决定。水平纵向钢筋设置于箍筋外侧,作用是减小侧面砼裂缝宽度,架立筋和水平纵筋属梁内构造钢筋。10.什么叫受弯构件纵向受拉钢筋的配筋率?h0含义是什么?配筋率是指所配置的钢筋截面面积与规定的砼截面面积的比值。h0指截面有效高度,h0=h-as,受压边缘到钢筋全部截面重心的距离。 11.为什么钢筋要有足够的砼保护层厚度?钢筋的最小砼保护层厚度的选择应考虑哪些因素?为了保护钢筋不直接受到大气的侵蚀和其他环境因素作用,为了保证钢筋和砼有良好的粘结。最小保护层厚度考虑钢筋的公称直径和附表1-8规定的环境条件和构件类别影响值 12.规定各主筋横向净距和层间竖向净距的原因? 13.钢筋砼少筋梁、适筋梁、超筋梁,破坏形态,少筋梁和超筋梁称为脆性破坏?少筋梁,梁配筋率很小,砼受拉区开裂,受拉钢筋到达屈服点,并迅速经历整个流幅而进入强化阶段,梁仅出现一条集中裂缝,宽度大,沿梁高延伸很高。此时受压区砼还未压坏,裂缝宽度已经很款,挠度过大,钢筋甚至被拉断。破坏很突然,属于脆性破坏。适筋梁,梁的受拉区钢筋首先达到屈服强度,其应力保持不变,应变显著增大,直到受压区边缘砼应变达到极限压应变,受压区出现纵向水平裂缝,随之因砼压碎而破坏。梁破坏前,梁裂缝急剧开展,挠度较大,梁截面产生较大塑性变形,有明显破坏预兆,塑性破坏。超筋梁,受压区砼抗压强度耗尽,而钢筋抗拉强度没有充分发挥。破坏前梁挠度及截面曲率曲线没有明显转折点,受拉区裂缝开展不宽,延伸不高,破坏是突然的,无明显预兆,脆性破坏。 14.钢筋砼适筋梁当受拉钢筋屈服后能否再增加荷载?少筋梁?可以,受拉钢筋屈服后应变开始增加直至受压区砼应变达到极限值才破坏,此阶段可增加荷载。少筋梁,当受拉钢筋屈服后很快进入强化阶段破坏,故不能增加荷载。 15.钢筋砼受弯构件正截面承载力计算有基本假定?其中的“平截面假定”与均质弹性材料受弯构件计算的平截面假定情况有何不同?1)平截面假定2)不考虑砼抗拉强度3)材料应力应变物理关系砼受拉区,裂缝产生

光谱分析

光谱分析 根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。 由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来. 光谱分析在科学技术中有广泛的应用.检查半导体材料硅和锗是不是达到了高纯度的要求时,帮助人们发现了许多新元素.研究天体的化学组成. 复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。例如,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱。红色到紫色,相应于波长由7,700—3,900埃的区域,是为人眼所能感觉的可见部分。红端之外为波长更长的红外光,紫端之外则为波长更短的紫外光,都不能为肉眼所觉察,但能用仪器记录。 因此,按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。原理 发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。 吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律: A= -lg I/I o= -lgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。

相关文档