文档库 最新最全的文档下载
当前位置:文档库 › ansys稳定性分析屈曲分析例子

ansys稳定性分析屈曲分析例子

ansys稳定性分析屈曲分析例子
ansys稳定性分析屈曲分析例子

abaqus压杆屈曲分析

a b a q u s压杆屈曲分析 Revised by Petrel at 2021

压杆屈曲分析1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus对一定截面不同长细比下的H型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性:,, 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为,长细比取值及杆件长度见表1: 表1 50 60 80 100 120 150 180 (m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析

ABAQUS非线性屈曲分析的方法有riks法,generalstatics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1buckle分析 1在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示 图4-1 2定义材料特性及截面属性并将其赋予单元。材料定义为弹塑性,泊松比0.3,屈服强度,弹性模量;腹板和翼缘板为壳单元,厚度分别为0.008和0,01。材料定义见图4-2

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

最新ansys屈曲分析练习模型

ansys屈曲分析练习模型: 边界条件:底端固定 几何:长为100mm,截面:10mm×10mm 惯性矩:Izz=833.333 材料性质:E=2.0e5MPa,v=0.3 分析压力的临界值 分析过程:特征值屈曲分析方法: 1、建立关键点1(0 0 0),2(0 100 0) 2、在关键点1、2之间建立直线 3、定义单元类型(Beam3) 4、定义单元常数 5、定义材料属性

6、定义网格大小,指定单元边长为10 7、划分网格 (首先此处应该做一次模态分析,有模态数据文件,后出来才可以看屈曲模态。) 8、定义分析类型(static) 9、激活预应力效应。要进行屈曲分析,必须激活预应力效应。 10、施加位移约束(关键点1固定) 11、施加集中荷载,Fy=-1N 12、求解 13、结束求解, 14、重新定义分析类型(Eigen Buckling) 15、设置屈曲分析选项,提取1阶模态(菜单路径:Solution-->Analysis Type-->Analysis options 16、求解,结束后退出

17、解的展开 1)设置expansion pass “on” 2)设置展开模态为1(Load Step Options>ExpansionsPass>Single Expand>Expand Modes 3)重新求解 18、查看结果(临界载荷和屈曲模态等) 二、非线性分析方法 前8步与上述过程相同 9、设置分析控制(主要黄色高亮部分区域需要修改) 10、施加位移约束(关键点1固定) 11、施加集中荷载,Fy=-50000N,Fx=-250N 12、求解

采用ABAQUS进行屈曲后屈曲和破坏分析

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Day 1 ?Lecture 1Basic Concepts and Overview ?Workshop 1Buckling and Postbuckling Analyses of a Crane Structure ?Lecture 2 Finite Element Formulation ?Lecture 3Finite Element Implementation in Abaqus ?Lecture 4Eigenvalue Buckling Analysis ?Workshop 2Eigenvalue Buckling of a Ring Subjected to External Pressure ?Workshop 3 Elastic Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus Day 2 ?Lecture 5 Regular and Damped Static Solution Procedures for Postbuckling Analyses ?Workshop 4Nonlinear Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure ?Workshop 5Static Buckling Analysis of a Circular Arch ?Lecture 6Modified Riks Static Solution Procedure for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Lecture 7Dynamic Analysis Solution Procedures for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Workshop 6Tube Crush Dynamic Analysis ?Lecture 8Putting It All Together… ?Workshop 7Capstone Workshop: Lee’s Frame Buckling Problem ?Workshop 8 Buckling and Postbuckling Analyses of a Stiffened Panel | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Legal Notices The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license. This documentation and the software described in this documentation are subject to change without prior notice. Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation. No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.? Dassault Systèmes, 2011. Printed in the United States of America Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries. Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.11 Release Notes and the notices at: https://www.wendangku.net/doc/f617915363.html,/products/products_legal.html.

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

abaqus压杆屈曲分析78112

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际 2 压杆截面尺寸(单位:m) 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取

值及杆件长度见表1: 表1 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1 buckle分析 1 在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示

ansys屈曲分析

ansys做屈曲分析的全部过程及示例 (2011-08-10 21:47:07) 转载▼ 标签: 杂谈 分析过程说明: 屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。ANSYS提供两种结构屈曲荷载和屈曲模态分析方法:非线性屈曲分析和特征值屈曲分析。 非线性屈曲分析是在大变形效应开关打开的情况下的一种非线性静力学分析,该分析过程一直进行到结构的极限荷载或最大荷载。非线性屈曲分析的方法是,逐步地施加一个恒定的荷载增量,直到解开始发散为止。尤其重要的是,要一个足够小的荷载增量,来使荷载达到预期的临界屈曲荷载。若荷载增量太大,则屈曲分析所得到的屈曲荷载就可能不准确,在这种情况下打开自动时间步长功能,有助于避免这类问题,打开自动时间步长功能,ANSYS程序将自动寻找屈曲荷载。 特征值屈曲分析步骤为:1.建模 2.获得静力解:与一般静力学分析过程一致,但必须激活预应力影响,通常只施加一个单位荷载就行了 3.获得特征屈曲解: A.进入求解 B.定义分析类型 C.定义分析选项 D.定义荷载步选项 E.求解 4.扩展解 之后就可以察看结果了 示例1: !<ansys 7.0 有限元分析实用教程> !3.命令流求解 !ANSYS命令流: !Eigenvalue Buckling

FINISH !这两行命令清除当前数据 /CLEAR /TITLE,Eigenvalue Buckling Analysis /PREP7 !进入前处理器 ET,1,BEAM3 !选择单元 R,1,100,833.333,10 !定义实常数 MP,EX,1,200000 !弹性模量 MP,PRXY,1,0.3 !泊松比 K,1,0,0 !创建梁实体模型 K,2,0,100 L,1,2 !创建直线 ESIZE,10 !单元边长为1mm LMESH,ALL,ALL !划分网格 FINISH !退出前处理 !屈曲特征值部分 /SOLU !进入求解 ANTYPE,STATIC !在进行屈服分析之前,ANSYS需要从静态分析提取数据PSTRES,ON !屈服分析中采用预应力 DK,1,ALL !定义约束 FK,2,FY,-1 !顶部施加载荷 SOLVE !求解 FINISH !退出求解 /SOLU !重新进入求解模型进行屈服分析 ANTYPE,BUCKLE !屈服分析类型 BUCOPT,LANB,1 !1阶模态,子空间法

ansys桁架屈曲分析实例

一、桁架结构屈曲分析实例 命令流 !步骤一前处理 /TITLE,buckling of a frame /PREP7 ET,1,BEAM4 R,1,2.83e-5,2.89e-10,2.89e-10,0.01,0.01, , RMORE, , , , , , , MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,1.5e11 MPDATA,PRXY,1,,0.35 RPR4,3,0,0,86.6025e-3, VOFFST,1,1, , /VIEW,1,1,1,1 /ANG,1 /REP,FAST VDELE, 1 FLST,2,5,5,ORDE,2 FITEM,2,1 FITEM,2,-5 ADELE,P51X LPLOT FLST,5,3,4,ORDE,2 FITEM,5,7 FITEM,5,-9 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,20, , , , ,0 FLST,5,6,4,ORDE,2 FITEM,5,1 FITEM,5,-6 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,3, , , , ,0 FLST,3,6,4,ORDE,2 FITEM,3,4 FITEM,3,-9

LGEN,15,P51X, , , , ,1, ,0 /PLOPTS,INFO,3 /PLOPTS,LEG1,1 /PLOPTS,LEG2,1 /PLOPTS,LEG3,1 /PLOPTS,FRAME,1 /PLOPTS,TITLE,1 /PLOPTS,MINM,1 /PLOPTS,FILE,0 /PLOPTS,LOGO,1 /PLOPTS,WINS,1 /PLOPTS,WP,0 /PLOPTS,DATE,2 /TRIAD,LTOP /REPLOT NUMMRG,KP, , , ,LOW NUMCMP,KP NUMCMP,LINE FLST,2,93,4,ORDE,2 FITEM,2,1 FITEM,2,-93 LMESH,P51X FINISH !步骤二获得静力解/SOL ANTYPE,0 NLGEOM,0 NROPT,AUTO, , LUMPM,0 EQSLV, , ,0, PRECISION,0 MSAVE,0 PIVCHECK,1 PSTRES,ON TOFFST,0, /PNUM,KP,0 /PNUM,LINE,0 /PNUM,AREA,0 /PNUM,VOLU,0 /PNUM,NODE,1 /PNUM,TABN,0 /PNUM,SVAL,0 /NUMBER,0 /PNUM,ELEM,0

abaqus压杆屈曲分析63758

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性: E =2.0×1011 N m 2? ,μ=0.3 , f y =3.45×108N m 2? 压杆截面尺寸(单位:m)

图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取值及杆件长度见表1: 表1 λ50 60 80 100 120 150 180 ι(m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程

ANSYS命令流学习笔记8-特征值屈曲分析

!ANSYS命令流学习笔记8 -特征值屈曲分析 --案例来自于公众号:ansys学习与应用!学习重点: !1、熟悉beam单元的建模 !2、何为特征值屈曲分析Eigen Buckling 增加轴向载荷(F)时, 一个理想化的端部固定的柱体将呈现下述行为。 分叉点是载荷历程中的一点,,在理想化情况下, 临界载荷(Fcr)作用时, 柱体可向左或向右屈曲。当F < Fcr时, 柱体处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 柱体将返回到它的初始位置。当F > Fcr时, 柱体处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时, 柱体处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !3、特征值屈曲分析的理论计算及有限元计算 !理论解,根据Euler公式。其中μ=1。临界载荷为44.342。 F cr=π2EI 2 !有限元方法, 结构弹性矩阵为K e,在屈曲载荷P0作用下,产生位移{U0},预应力{σ0} P0=K e{U0} 结构同时由于预应力{σ}发生刚度变化,此时刚度矩阵为K e(σ),增量平衡方程为: ΔP=(K e+K eσ){ΔU} 线性条件下,屈曲行为是外载荷的线性函数则有 K eσ=λK eσ0;P=λP0;σ=λ{σ0} 增量平衡方程又表示为: ΔP=(K e+λK eσ0){ΔU} 临界载荷时达到不稳定状态,即使ΔP≈0,{ΔU}仍有数值,此时必须有: det K e+λK eσ0=0

Ansys12.0 Mechanical教程-6线性屈曲分析

Workbench -Mechanical Introduction Introduction 第七章 线性屈曲分析

简介 Training Manual ?本章将介绍线性屈曲分析。 ?内容: A.屈曲的背景知识 B B.屈曲分析步骤 C.Workshop 7-1 ?本章所述的功能,一般可用于ANSYS DesignSpace Entra及以上版本的许可。 –本章讨论的某些选项可能需要更高级的许可,但这些都指出相应的许可。

A. 屈曲的背景知识 Training Manual ?需要评价许多结构的稳定性。在薄柱,压缩部件,和真空罐的例子中,稳定性是重要的。 ?失稳(屈曲)的结构,负载基本上没有变化(超出一个小负载扰动)会有失稳曲的结构负载基本上有变化超出个小负载扰动会有一个非常大的变化位移{Δx} 。 F F 稳定的不稳定的

…屈曲的背景知识 Training Manual ?特征值或线性屈曲分析预测理想线弹性结构的理论屈曲强度。 ?此方法相当于教科书上线弹性屈曲分析的方法。 此方法相当于教科书上线弹性屈曲分析的方法 –用欧拉行列式求解特征值屈曲会与经典的欧拉解一致。 缺陷和非线性行为使现实结构无法与它们的理论弹性屈曲强度一致线性?缺陷和非线性行为使现实结构无法与它们的理论弹性屈曲强度致。线性屈曲一般会得出不保守的结果。 ?线性屈曲无法解释的问题 –非弹性的材料响应。 –非线性作用。 –不属于建模的结构缺陷(凹陷等)。

…屈曲的背景知识 Training Manual ?尽管不保守,线性屈曲有多种优点: –它比非线性屈曲计算省时,并且可以作第一步计算来评估临界载荷(屈曲开始时的载荷). ?在屈曲分析中做一些对比可以体现二者的明显不同 具 –线性屈曲分析可以用来作为确定屈曲形状的设计工具. ?结构屈曲的方式可以为设计提供向导

基于ABAQUS复合材料薄壁圆筒的屈曲分析

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为P0。,幅值大小为λ,结构内力为Q,则静力平衡方程应为 λP0=λQ 进一步考察结构在(λ+△λ)P0载荷作用下的平衡方程,得到 {[K E]+[K S(S+λ△S)]+[K G(u?+λu?)]}△u?=△λP0由于结构达到保持稳定的临界载荷时有△λ,代入上式得 {[K E]+λ[K S△σ]+K G(△u?)}△u?=0 该方程对应的特征值问题为 det{[K E]+λ[K S△σ]+K G(△u?)}=0 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 det{[K E]+λ[K S△σ]}=0 该方程即为求解线性屈曲的特征值方程。λ为屈曲失稳载荷因子,(△u?)为结构失稳形态的特征向量。

ANSYS屈曲分析总结

《ANSYS屈曲分析总结》 很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。 1. 非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。 特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。 2. 由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。 这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu> Preprocessor> Modeling> Update Geom 中完成。 3. 上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。 4. 后处理,主要是看节点位移和节点反作用力(力矩)的

变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。 特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。它的缺点主要是:不能得到屈曲后路径,不能思忖初始缺陷如初始的变形和应力状态,不能思忖材料的非线性。 非线性分析比较好的是能够得到结构和构件的屈曲后特性,可以思忖初始缺陷还有材料的非线性包括边界的非线性性能。但是在分析的时候最好是在线性特征值的基础上,因为这种方法的结果依赖所加的初始缺陷,如果所加的几何缺陷不是最低阶,可能得到高阶的失稳模态。 第一类稳定问题:是指完善结构的分支点屈曲和极值点屈曲。 第二类稳定问题:有初始缺陷的发生极值点屈曲 屈曲又称失稳,是指结构和构件保持原有构形的能力,可分为分支点失稳和极值点失稳,前者是没有缺陷的情况下发生的,后者是实际有缺陷情况下发生的,求屈曲关键是想求其失稳荷载及模态。数学公式能表达的屈曲很有限,典型的是轴心受压杆件的欧拉临界荷载公式Pcr=π2EI/l2 问题一 在思忖恒载和活载时的屈曲分析中(一圆弧拱,跨中受一竖向单位集中力)

ANSYS WORKBENCH 11.0线性屈曲分析

ANSYS WORKBENCH 11.0培训教程(DS)

第七章 线性屈曲分析

本章概述 ?在本章中将讲述DS中的线性屈曲分析的应用. –在DS中,进行线性屈曲分析类似于应力分析. –假设用户在此之前已经讨论过第四章线性静力结构分析的内容. ?本章所讨论的性能通常适用于ANSYS DesignSpace Entra licenses及更高licenses. –许多本章当中所讨论的选项需要更高级别的 licenses,但这些都没有直接的指出. –简谐和非线性静态结构分析在此没有讨论,但是在相关章节当中会有介绍.

屈曲分析的背景 ?许多结构需要估计结构的稳定性。细长柱、压缩部件、以及真空容器都是需要考虑稳定性的例子.?在不稳定(屈曲)开始时,结构在本质上没有变化的载荷作用下(超过一个很小的动荡)在x方向上的位移{?x}会有一个很大的改变. F F Stable Unstable

…屈曲分析的背景 ?特征值或线性屈曲分析预测的是理想线弹性结构的理论屈曲强度(分歧点). ?特征值方程决定了结构的分歧点.教科书上相应的方法近似于线弹性屈曲分析方法. –Euler柱的特征值屈曲方法与经典的Euler方法匹配.

…屈曲分析的背景 ?然而,非理想和非线性行为阻止许多真实的结构达到它们理论上的弹性屈曲强度。线性屈曲通常产生非保守的结果, 应当谨慎使用. –把屈曲当成苏打水罐: ?材料响应是非弹性的。需要考虑几何非线性的影响,接触 也是需要的。因此这些类型的非线性行为都不被考虑. ?在苏打水罐上的小的瑕疵,例如一个小的缺陷,将会影响响 应并且使模型不对称.然而,这些小的瑕疵在线性屈曲分析 中不予考虑.

ABAQUS非线性屈曲分析步骤

ABAQUS6.7非线性屈曲分析步骤 riks法,或者general statics法(加阻尼),或者动力法 一共三种方法, 【问】在aba中能实现非线性屈曲分析吗?在step中选定line- perturbation下的各项,其Nlgeom都为Off,是不是意味着是进行不了啊? 【答】 line-perturbation应该是特征值屈曲分析,只能是线性的,要想进行非线性屈曲分析要引入初始缺陷 ABAQUS中非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已经初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 no.1:利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load),且需要在inp 文件中,作如下修改 *node file,global=yes *End Step 此修改目的在于:在下一步后屈曲分析所需要的初始缺陷的节点输出为.fil文件。no.2:其次,就是所谓的后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始确定,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段,除了采用位移控制以及弧长法设定外,需在所得到的inp文件中,嵌入no.1中的.fil节点数据。修改如下: *IMPERFECTION(缺陷), FILE=results_file(此文件名为.fil), STEP=step(特征

ANSYS 圆管屈曲分析实验报告1

圆管屈曲分析实验报告 1、问题描述 图1为一薄壁圆管,壁厚为0.216m,直径为4m,高度为21.6m。圆管的材料弹性模量为210Gpa,泊松比为0.3。圆管两端面受约束,试分析此薄壁圆管侧壁四周受压情况下的屈曲临界载荷。 图1 薄壁圆管模型 2、问题分析 2.1、什么是模态及本题的模态阶数选取 模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。通过模态分析可以得出物体在某一易受影响的频率 范围内各阶主要模态的特性,就可以预知结构在此频段内,在外部或内 部各种振源作用下实际振动反应。因此,模态分析是结构动态设计及设 备的故障诊断的重要方法。 一个物体有很多固有振动频率(理论上是无穷多个),按照从小到大的顺序,第一个就叫一阶固有频率,以此类推。模态的阶数对应固有频 率阶数。一般,低阶模态刚度相对比较弱,在同样量级的激励作用下, 响应会相对所占的权值大一些,所以工程上低阶模态比较受关注,理论 上低阶模态理论也相对成熟。且用有限元进行模态分析计算,阶数越高,误差越大。 此题中分析对象比较简单,所以选取前5模态进行分析已经满足工程需要。 2.2、网格单元的选取 此薄壁圆管由于壁厚远远小于直径,均匀壁厚,材料结构简单,所以单元类型可以选用shell 93—八节点结构壳单元。 2.3、网格划分类型的选取 有限元分析的精度和效率与单元的密度和几何形状有密切关系,按

照相应的误差准则和网格疏密程度,应该避免网格的畸形,因此,划分 网格时,应尽量采用映射网格模式划分。本题中,圆管形状规则,采取 映射网格进行划分。 3、解题步骤 3.1、建立工作文件名及工作标题 选择Utility Menu→File→Change Jobname ,出现Change Jobname对话框,在Enter new jobname输入栏中输入工作文件名Tube, 点OK完成 设置。选择Utility Menu→File→Change Title,出现Change Title对话框,在输入栏中输入Buckling of a tube, 点OK, 完成设置。 3.2、定义单元类型 选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete,出现Element Type对话框,单击Add按钮,出现Library of Element Types对 话框,在Library of Element Types列表框中选择Structural Shell→Elastic 4node 63,点OK完成设置。 3.3、定义实常数 选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete,出现Real Constants对话框,单击Add按钮,出现Element Type for Real Constants对话框。单击OK按钮,出现Real Constants Set Number 1 for SHELL63对话框,在Shell thickness at node TK(I)、TK(j)、TK(K)三栏 中输入0.216,点OK完成设置。 3.4、定义材料性能参数 选择Main Menu→Preprocessor→Material Props→Material Models,出现Define Material Model Behavior对话框。在Material Models Available 一栏中依次选择Structural→Linear→Elastic→Isotropic选项,在EX栏中输 入21E10,在PRXY栏中输入0.3,点OK完成设置。 3.5、创建几何模型 选择Main Menu→Preprocessor→Modeling→Create→Keypoints→In Active CS,在弹出的对话框中的NPT Keypoint number栏中输入1,在X,Y,Z 输入栏中输入0,0,0,单击Apply;如此依次创建以下关键点及编号:2(2,0),3(2,21.6),4(0,21.6); 选择Main Menu→Preprocessor→Modeling→Create→Lines→Lines→Straight Line,出现Create Straight Line 拾取菜单,选取点2和点3,OK,做一条直线。选择Main Menu→Preprocessor→Modeling→Operate→ Extrude→Lines→About Axis命令,出现Sweep Lines about axis对话框,选 择通过2,3点建立的直线,点击Apply;再选取点1,和点4,单击OK, 形成一个圆柱面。如图2所示。

ANSYS结构稳定性分析

第三章几何非线性与屈曲分析 3.1 几何非线性 3.1.1 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a) )。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。 相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM ,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这种效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。 图3-1 大应变和大转动 大应变过程对单元所承受的总旋度或应变没有理论限制。(某些ANSYS单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可用〔NSUBST ,DELTIM ,AUTOTS 〕命令自动实现(通过GUI路径Main Menu>Solution>Time/Frequent)。无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 3.1.2 应力-应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l 0 ) 。对于响应的小应变区,真实应变和工程应变基本上是一致的)。要从小工程应变转换成对数应变,使用ε Ln=Ln(l+ε eng )。要从工程应力转换成真实应力,使用σ true=σ eng(1+ε eng ) (这种应力转化仅对不可压缩塑性应力─应变数据是有

相关文档
相关文档 最新文档