文档库 最新最全的文档下载
当前位置:文档库 › 高中数学建模

高中数学建模

高中数学建模
高中数学建模

高中数学建模的三种教学形式

问题的提出

数学建模的教学实践在我国己有十多年的探索了,新的国家课程标准和新的教材都将

数学建模内容列入学生必修内容。在探究性学习的探索中,一些学校选择了数学建模做为突破口;在进行数学课题学习的教学实践中,数学建模是其中的一种重要形式。对数学建模教学进行了积极的探索,针对人为地将数学建模教学与曰常课堂教学相割裂、教师和学生对数学建模这种具有多样性、新奇性的学习形式存在的畏难心理等困难。

研究方法和过程

一、常规课堂教学中的数学建模教学广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型,“用…二分法?求方程的一个近似解”也是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。譬如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形

成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具

体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。

二、教师提供问题的数学建模教学教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历

建模的全过程。经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建

模教学中,主要是加强以下几个方面的教学。1.提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。2.在“教师给定问题型”的数学建模的实践中,学生将经历建模的全过程,其中在模型的求解这一环节,往往需要借助计算机选择一个合适的数学软件平合,通过数学实验来求解模型。通过使学生精通一种软件的使用,再介绍学生自己钻研其它几种数学软件的使用,从而为学生正确求出模型的解,铺平了道路。3.在近几年对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。4.在“教师给

定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式进行了专门的辅导,一般地说,中学生的数学建模论文格式,应当具有以下的形式。(一) 论文摘要:做什么?用什么方法?借助什么工具?得出什么结论?为什么用这个工具?所得结果还有何推广应用? 关键词:用以体现论文主要特色的几个词汇。(二) 问题的重述:用自己的语言将问题重述一遍,有自己的理解。(三) 必要的假设或假定:(1)根据实际情况假定,要合乎常理,简化原始问题;(2)变量的定义和声明。(四) 问题分析:变量之间会有什么关系?已知了什么?需在数学上解决什么? (五) 模型:能够写成数

学表达式的一定要写,可用几种不同的模型。(六) 模型求解:用各种手段、包括借助计算器和计算机得出结论。(七) 问题的讨论:模型及使用的工具的优缺点(准确性、局限性),所得结论和所用方法可否延伸到其他领域。(八) 附录:引用的原始资料,编写的程序等。从以上八个方面对学生进行辅导,提出要求,将会有效保证学生正确用论文表达自己的研究结果。

三,学生自选问题的数学建模教学。有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。

魏江

2015.1208

高中数学建模论文精选

关于北京市按机动车尾号限行的合理性 北京四中初一年级:胡思行 摘要 本论文就奥运会后,市政府颁布的机动车限行措施,通过数据整理,用函数来表示出限行对环境的好处,对节约能源的好处,另外还有因限行导致的汽油收入的减少。通过函数比较、数据举例,从环保和经济的角度,阐述限行的合理性。 关键词:减少车辆、减少排放、汽油减收。 正文 1、背景:从奥运会前夕开始,北京市实行了单双号限行政策。从效果来看,奥运会期间,北京蓝天比例达到了100%,交通状况明显改善,这些是显而易见的。当然,在限行背后,部分开车族的出行受到了限制,北京市加油站的收入也有所下降。奥运会后,北京继续实施尾号限行措施。这究竟是有利还是无利呢?利显然是有的,而不利也不能忽视。在到达利最大时,也应该尽量减小不利,这才是最佳的决策。 2、提出问题:如何限行,才能既考虑到节能环保,又考虑到经济?政府为什么这样限行? 3、论文概述:用一次函数y=ax+b ,表示出污染物排放与限制车辆数量的关系,汽油减少量与限制车辆数量的关系,汽油收入的减少与限制车辆数量的关系。再在直角坐标系中表示出各个函数,讨论如何限行最好。 4、研究 设减少行驶的车辆数是C ,减少污染物排放量是G ,减少汽油使用量是P ,减少汽油收入是M ;限行比例是x ;油价是P 0元/升。 (1)奥运期间 背景:奥运会期间,北京市共有机动车335万辆,其中公车60万辆、公交车2万多辆,出租车4万多辆。 限行措施:公车减少50%,社会车辆按尾号单号在单日行驶、双号在双日行驶。公交车、出租车、紧急车辆不受限制。 C 日≈50%×60+50%×(335-60-2-4)=164.5(万辆) 相关资料:“好运北京”体育赛事空气质量测试结果昨天公布。专家组经过测算,8月17日至20日采取的交通限行措施,对氮氧化物、一氧化碳、可吸入颗粒物排放的削减量,平均每天减排量分别为87吨、1362吨、4.8吨,这意味着4天限行减排污染物约5815吨。 平均每辆每天汽车排放污染物G 0=5815吨÷50%(298-60-2-4)÷4≈1.25(千克) G 日≈G 0C=1.25×164.5=205.625(万千克) 1.29620100 9 5.1641000=??==S P C P 日(万升) 相关调查: 车型:奥拓都市贝贝 在市区内行驶是5.5L /100 km 城市里6 L /100 km 夏季使用空调在市区内行驶大概9-10 L /100 km ” 普遍百公里油耗量:大概5.5升到7升左右 车型:吉利豪情 在高速路上行驶6.8L /100km

数学建模-赛题-微分方程竞赛试题

高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题 SARS的传播 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: (1)对附件1所提供的一个早期的模型,评价其合理性和实用性。 (2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。 (3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。 (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 附件1: SARS疫情分析及对北京疫情走势的预测 2003年5月8日 在病例数比较多的地区,用数理模型作分析有一定意义。前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。希望这种分析能对认识疫情,安排后续的工作生活有帮助。

重点高中生数学建模

重点高中生数学建模

————————————————————————————————作者:————————————————————————————————日期:

关于水车上任意一点距离水面的高度与水流速 的关系的研究 1.问题的提出 水车又称孔明车,是我国最古老的农业灌溉工具,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产。相传为汉灵帝时华岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,至今已有1700余年历史。 现代,水车作为一种古老而独具智慧的艺术品出现在我们的生活中,人们在惊异古老智慧的同时,是否想过它身上所蕴含的数学问题? 图1 比如:水车上一点距离水面的高度与水流速有何关系? 由图1 可知,水车的高度具有一定的周期性,故,此模型应为研究周期现象的模型。在研究过程中,不考虑其他影响水车转速或水流速的因素。

为了更好地学习数学知识,并将它充分运用到实际生活中,我对此问题想做进一步的研究。 2.问题的分析 问题的条件有两点: 1.题目中要求建立数学模型来研究水车上一点距离水面的高度与水流速的关系,属于周期现象。 2.研究过程中不需要考虑其他因素对水流速与转速的影响。 3.模型的假设与符号说明 假设水流速为恒定值。 符号说明 h 水车上一点距离水面的高度 v 水流速 w 水车的角速度 r 水车的半径 t 时间 b 水车圆心与水面的距离

α水车上一点转过的角度 4.模型建立 图2 如图2,水车半径为r,其中心O距离水面距离为b,规定水流速为v,向左为正方向,任意一点P点距离水面的高度为h。 求h与v的函数解析式。 5.模型求解

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

在高中数学中如何进行数学建模教学

在高中数学中如何进行数学建模教学 专题1 从列方程解应用题到数学建模 专题2 韩信点兵的数学模型 专题3 函数建模——容器中小的深度与注水时间的关系 专题4 几何建模(一)——飞机飞行的最短路径 专题5 几何建模(二)追截走私船问题 专题6 有关复利的数学模型 专题7 最值模型 专题8 “命运的数学公式” 专题9 中奖概率 专题10 对策模型——嫌疑犯的选择 专题11 水污染治理方案的比较 专题12 “连环送”中的折扣问题 专题13 水库中鼻坝高度与挑角的确定 专题14 双瓶输液中的深度问题 附录数学建模与中学数学 在高中数学中如何进行数学建模教学 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何进行高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,要求学生学完后尝试解决这一类问题。 (1)、一个木材贮运公司,有很大的仓库,用于贮运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分贮存起来以后出售。已知:该公司仓库的最大贮藏量为20万立方米,贮藏费用为:(a+bu)元/万立方米,其中: a=70,b=100,u为贮存时间(季度数)。已知每季度的买进、卖出价及预计的销售量为: 季度买进价(万元/立方米)卖出价(万元/立方米)预计销售量(万立方米) 冬410 425 100 春430 440 140 夏460 465 200 秋450 455 160 由于木材不易久贮,所有库贮木材于每年秋季售完。确定最优采购计划.(由于不能粘贴数学符号图片,所以没有解题) 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 二.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

上传高中数学建模竞赛试题

高中数学建模竞赛试题 竞赛时间共120分钟,总分150分 高20 级 班 姓名 一、选择题(每题只有一个选项正确,将正确的选择项填入题后的括号内8×7): 1、三个框中,一个装有苹果,另一个装有柑子,第三个框装有苹果和柑子,装好分别标上“苹果”“ 柑子”“混装”三个标签。后查全都装错了,现在只能打开一个框来纠正三个标签,应该打开哪个框?( D ) A 、“苹果”标签 B 、“ 柑子”标签 C 、“混装”标签 D 、都可以 2、一批旅游者决定分乘几辆大汽车旅游,每车乘22人时有一人坐不上车;若开走一辆空车,所有的旅游车刚好平均分配到余下的车;而每车最多载32人。则旅游者的人数和汽车的辆数各为( B ) A 、441,20 B 、529,24 C 、331,15 D 、414,19 3、某县所建水库最大容量为:1.28×5 10立方米,据监测,在山洪暴发中注入的水量n S 与天数n 的关系式为:n S =5000)24( n n 。水库原有水量为8×4 10立方米,泄水闸每天泄水量4×3 10立方米,那么多少天后堤坝有危险(水容量超过最大容量为危险)( B ) A 、15天 B 、9天 C 、6天 D 、12天 4、下列哪个事件不能构成数学建模的案例?( C ) A 、学生的作业完成情况。 B 、城市饮用水消费情况。 C 、学生养成中的违纪案例。 D 、老师讲解测量实践案例。 5、一商品进价为80元,销售价为100元;为增加销量,采用每卖出一个商品就赠送一个价值1元的小商品的方法,结果销量增加10%;在实践中,若礼品的价值为n+1元比礼品为n 元时销量增加10%。请设计礼品价值为多少元时,利润最大。( D ) A 、8元 B 、9元 C 、10元 D 、9或10元 6、机器人每前进一步就向左转0 30,则下列哪一次机器人会回到起点?( B ) A 、10次 B 、36次 C 、42次 D 、55次 7、有一个摊主用4个白子和4个黑子作赌,其摸彩规定:从袋子里8个子中摸4个,要交 A 、 35 8 B 、701 C 、83 D 、43 8、从宣汉到达州的公路两旁有许多的景点,但总是投入不赚钱,你认为应该从下列哪个方 向投入为最佳方案( B ) A 、追加景点 B 、打造亮点 C 、政府命令 D 、广告投入 二、填空(把每题的最后答案填入后面的横线上2×7) 1、老王向银行贷款3万元发展产业,并按银行贷款月利为0.01,且为复利。若半年还完,则每月还款 5176.4510013264426078741354282726 元(等额还款法)。 2、32位学生中仅一个患有阴性基因的传染病,最少用 5 次可找到这位病人。

高中数学建模教学研究

高中数学建模教学研究 摘要:随着“数学应用意识”教育的不断深入,以社团的形式开展“高中数学建模竞赛”活动也日益得到广泛的注重,它作为“数学应用意识”教育的突破口和出发点,促进数学素质教育的发展,已是历史的必然。 关键词:数学建模;社团;美国;高中数学;建模竞赛 一、核心概念界定 “数学建模”是把实际生活中的问题加以提炼,概括为数学模型,然后用数学的方法解决该模型,接着去检验模型的合理性,并用该数学模型的解答来解释实际生活中的问题。数学建模是一种数学的思维,是通过抽象、数据的拟合而建立起的能解决实际生活问题的一种强劲的数学手段。“数学建模社团”是一个学习、合作、交流、分享的学习天地。是一个建立在有教师辅导并参加竞赛而成立的社团,以全新的态度看待数学学习和学科应用,使学生更加集中、高效地学习数学理论、数学应用,培养学生的创新思维和准备参赛的能力,进一步展现和锻炼他们在数学、英语、计算机、自然科学、社会经济等诸多方面的综合能力。 二、研究意义及研究价值 在新课改背景下,应用数学已经积极地向一切新的生活化和社会化的领域渗透,数字网络技术的飞速发展,迫使数学建模越来越被人们所重视,在一些机械、电机、土木、水利等工程技术中,数学的基本模型已极其普遍;在通讯、航天、微电子、自动化等高新技术领域,数学建模几乎是必不可少的工具,在一些经济、人口、生态、地质等新领域,用数学建模方法从事定量分析时,效果显著。目前,国际数学中开始通过开展高中数学建模活动,推广使用现代化技术来推动数学教育改革。发达国家都非常重视数学建模活动的开展。把大学数学建模向高中数学建模转移是国际数学近年来发展的一种趋势。 三、如何构建高中数学建模 为培养学生的建模意识,一线的中学数学教师首先要不断提高自身的数学建模意识和素养。也就意味着需要在中学教学内容上发生较大的变化,还意味着教育教学思想和观念也需要大的改变。高中数学教师需要学习数学科学的发展,还需要学习一些新的数学建模思维,并需要学习把中学数学课本知识应用于生活中

高中数学建模之一

高中数学建模之一 以 函 数 为 模 型 的 应 用 题 南平市高级中学 林奕生 函数主要研究两个变量间的变化规律,它在现实生活中有着非常广泛的应用。以函数为模型的应用题是中学数学中最重要的内容之一,也是高考考查的热点之一。而从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一。问题世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决. 例1: 某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为α ,tan α=1/2试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高) (2005年天津卷,第20题) 解:如图所示,建立平面直角坐标系, 则)0,200(A ,)220,0(B ,)300,0(C . 直线l 的方程为αtan )200(-=x y ,即2 200-=x y . 设点P 的坐标为),(y x ,则)2 200,(-x x P (200>x ) 由经过两点的直线的斜率公式 x x x x k PC 2800300 2200 -= --= ,x x x x k PB 2640220 2 200 -=--= . 由直线PC 到直线PB 的角的公式得 640160288642640280012160 1tan 2 ?+-=-? -+= +-= x x x x x x x x k k k k BPC PC PB PC PB

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

高中数学新教材中的数学建模

高中数学新教材中的数学建模 摘要:数学建模作为沟通数学世界与现实世界的桥梁,近年来逐渐成为数学教育界所讨论的热点。各国与各地区的数学课程改革都将学生数学建模思想的形成及数学建模能力的培养作为数学教育的重要目标之一。2017年我国正式颁布了《普通高中数学课程标准(2017年版)》,将“数学建模”列为六大数学核心素养之一,并将数学建模活动与数学探究活动设置为高中数学课程内容的主线之一,要求其贯穿于必修与选修课程中。鉴于此,文章结合笔者多年工作经验,对高中数学新教材中的数学建模提出了一些建议,仅供参考。 关键词:高中数学;新教材;数学建模 引言 在新的课程体系中,数学建模是重要的板块内容,要求重视学生数学建模活动,引导学生解决实际问题,理解数学知识和生活之间的联系,体会数学在生活中的价值。数学建模实现数学知识的有效扩展,对抽象内容进行概括总结。加强高中数学建模教学,强化学生数学思维,有效解答数学问题,促使问题有效转化,深层次分析和解决数学问题,实现数学模型构建,提高课堂活动有效性。因此,作为高中数学教师,需要以数学新教材作为基础,优化建模教学活动,实现课堂教学任务和目标。 一、数学建模与数学应用题的差异 数学建模的特点:问题来源于现实生活,原汁原味;因为现实生活的复杂性,为了简化模型,往往需要提出一些合理的假设;模型多样化,可以不断地优化完善;得到的结果需要返回现实情境中进行检验。应用题是编者根据现实情境进行合理简化后编制而成的,有浓厚的“人为编制”的味道。另外,应用题的解答流程与建模问题的解答流程并不完全一致,往往应用题都有明确的答案,模型也较为单一。 二、高中数学新教材建模教学得意义 (一)建立学生的数学应用意识 在高中数学教学过程中,教师应让学生依照现实生活的实际问题出发,通过建立数学模型帮助学生利用以前学习过的知识解决遇到的新问题。在数学建模过程中,教师要使学生意识到学习数学的重要性,让学生明白数学来源于生活,用于生活,提高学生对数学的使用意识。教师还可以从学生的日常生活中选取一些与数学知识点有关的问题,并通过数学建模思想与学生进行交流沟通,帮助学生更好地理解数学和运用数学。 (二)培养学生综合能力 在面对数学教学中的实际问题时,教师可以采用数学建模思想进行教学,然而有些数学实际问题并没有固定的标准解答方式,导致所要解答的问题没有唯一结论。为此,高中数学教师应培养学生具有敏锐的观察力,通过逻辑推理对问题进行大胆猜测,以此提高学生的创新能力。只有这样,我们才能在数学建模过程中提高学生的综合能力。 三、高中数学新教材建模教学要点 (一)几何课堂活动的建模教学

高中开设数学建模课程的意义与定位_1

高中开设数学建模课程的意义与定位 开设高中数学建模课程有利于推动高中数学课程的教学改革和发展,下面是小编搜集的一篇探究高中数学建模课程建设的论文范文,欢迎阅读查看。 1、高中开设数学建模课程的背景 在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。 要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。 国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。 第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应

用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。 第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。当前的高中数学课程就是教师讲基本的数学知识,学生记忆、计算、生搬硬套的过程,造成高中学生知识面窄,思维不够发散,与高中数学教学的任务严重不符,脱离了真正数学教学的轨道。 第三,一些高中数学教师教学方法单一,纯粹就是黑板粉笔授课,实行满堂灌,不仅缺乏多媒体等现代化教学手段教学,更是没有所谓的数学实验课程。这样的教学方法造成学生被动学习,无法理解,无法应用,导致大批学生产生厌学情绪。教师讲解基本的数学内容,要求学生记住公式,然后利用公式和常用的方法去做题,其目的是去应对高考。对高中学生进行问卷调查发现,当前的高中学生中有80% 多的学生普遍认为数学很难学,不能理解,更不用说去应用。当前的高中数学教学模式使得学生更加反感数学学习,从而使得高中数学教

高中数学建模与教学设想

高中数学建模与教学设想 "text-align:center;"> [摘要]为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应 用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。 论文关键字:数学建模数学应用意识数学建模教学 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中, 一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻 辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21 世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济 和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。 目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我 国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通 高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本 身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多 重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学 建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必 要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题 的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建 模活动,将有效地培养学生的能力,提高学生的综合素质。 数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多 学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性"; "数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对 于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推

2016年全国大学生数学建模竞赛题

2001高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) C题基金使用计划 某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。当前银行存款及各期国库券的利率见下表。假设国库券每年至少发行一次,发行时间不定。取款政策参考银行的现行政策。 校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果: 1.只存款不购国库券; 2.可存款也可购国库券。 3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多

摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题. 关键词:超限归纳法;排除定理;仓恩定理 1问题重述 某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策. 表1 存款年利率表 校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果: ①只存款不购国库券; ②可存款也可购国库券. ③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%. 2模型的分析、假设与建立 2.1模型假设 ①每年发放的奖金额相同; ②取款按现行银行政策; ③不考虑通货膨胀及国家政策对利息结算的影响; ④基金在年初到位,学校当年奖金在下一年年初发放; ⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费; ⑥到期国库券回收资金不能用于购买当年发行的国库券. 2.2符号约定 K——发放的奖金数; ri——存i年的年利率,(i=1/2,1,2,3,5); Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10); U——半年活期的年利率; 2.3模型的建立和求解 2.3.1情况一:只存款不购国库券(1)分析

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

高中数学建模课程建设研究

龙源期刊网 https://www.wendangku.net/doc/ff13260466.html, 高中数学建模课程建设研究 作者:尹德俊 来源:《中国教育技术装备》2015年第15期 摘要开设高中数学建模课程具有重要意义,有利于合格人才的培养,有利于实际问题的解决,提高学生运用数学知识解决实际问题的能力。 关键词高中数学;数学建模;课程建设 中图分类号:G633.6 文献标识码:B 文章编号:1671-489X(2015)15-0091-02 1 高中开设数学建模课程的背景 在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。 国家教育部制定的高中数学课程标准,重点强调:“要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。”但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。 第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。 第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。当前的高中数学课程就是教师讲基本的数学知识,学生记忆、计算、生搬硬套的过

2019-2020年高中数学 数学建模综合测试 新人教A版选修4

2019-2020年高中数学数学建模综合测试新人教A版选修4数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容。数学建模可以通过以下框图体现: 数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。 要求 1. 在数学建模中,问题是关键。数学建模的问题应是多样的,应来自于学生的日常生活、现实世界、其他学科等多方面。同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系。 2. 通过数学建模,学生将了解和经历上述框图所表示的解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。 3. 每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。 4. 学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息。 5. 学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。 6. 高中阶段至少应为学生安排1次数学建模活动。还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来。 我们不对数学建模的课时和内容做具体安排。学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间。例如,可以结合统计、线性规划、数列等内容安排数学建模活动。 说明与建议 1. 学校和学生可根据各自的实际情况,确定数学建模活动的次数和时间安排。数学建模可以由教师根据教学内容以及学生的实际情况提出一些问题供学生选择;或者提供一些实际

高教社杯全国大学生数学建模竞赛题目A题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A题CT系统参数标定及成像 CT(Computed Tomography)可以在不破坏样品的情况下,利用样品对射线能量的吸收特性对生物组织和工程材料的样品进行断层成像,由此获取样品内部的结构信息。一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。X射线的发射器和探测器相对位置固定不变,整个发射-接收系统绕某固定的旋转中心逆时针旋转180次。对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸收衰减后的射线能量,并经过增益等处理后得到180组接收信息。 CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。 请建立相应的数学模型和算法,解决以下问题: (1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸收强度,这里称为“吸收率”。对应于该模板的接收信息见附件2。请根据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。 (2) 附件3是利用上述CT系统得到的某未知介质的接收信息。利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何形状和吸收率等信息。另外,请具体给出图3所给的10个位置处的吸收率,相应的数据文件见附件4。 (3) 附件5是利用上述CT系统得到的另一个未知介质的接收信息。利用(1)中得到的标定参数,给出该未知介质的相关信息。另外,请具体给出图3所给的10个位置处的吸收率。 (4) 分析(1)中参数标定的精度和稳定性。在此基础上自行设计新模板、建立对应的标定模型,以改进标定精度和稳定性,并说明理由。 (1)-(4)中的所有数值结果均保留4位小数。同时提供(2)和(3)重建得到的介质吸收率的数据文件(大小为256×256,格式同附件1,文件名分别为和)

相关文档
相关文档 最新文档