文档库 最新最全的文档下载
当前位置:文档库 › buck降压和Boost升压电路原理介绍

buck降压和Boost升压电路原理介绍

buck降压和Boost升压电路原理介绍

buck 降压和Boost 升压电路原理介绍

本文主要讲了buck 降压和Boost 升压电路原理,电路图、占空比、电感

量、输出电容以及工作原理、假设及参数计算,下面就随小编来看看吧。

一、boost 电路工作原理

boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)原

理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。

基本电路图见图一。

假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都

处于理想状态,电容电压等于输入电压。

下面要分充电和放电两个部分来说明这个电路

充电过程

在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极

管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。

由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟

电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程

如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极

管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,

而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能

DC-DC升降压电路的几种个人方案

DC-DC升降压电路的几种解决方案 (成都信息工程学院科技创新实验室) WOODSTOCK 前一段时间,本着学习的态度参加了TI杯校赛,做了其中的一个直流升降压的题,作品没做的很好,但是在准备期间,我对各种可行电路都做了尝试,一些心得拿出来与大家分享,也望各路大侠对不妥之处不吝赐教。 我们在实际应用中,经常会出现系统中各个模块供电不统一,或者供电电源的电压时变化的(比如汽车中的电池电压受温度影响而变化),在只有一个电源提供供电的时候,同时 可以升压或降压的电路就变得非常有用。下面,来看一下我想到的几种升降压问题的解决方 案。 非隔离式开关电源的基本电路一般有三种:Buck降压电路、Boost升压电路、Buck-boost 极性反转升降压电路。要实现同时升降压功能,首先想到的肯定是Buck-Boost极性反转电 电路。 图表1 极性反转电路原理示意 这种拓扑结构的电路能够输出与输入相反的、可以比输入电压更高或者更低的电压,并且整 体的效率也很高。但缺点也很明显:一就是极性相反,当输入电压是正压且要求输出也是正的时候,我们还要对输出电压进行反向,这就是一件很麻烦的事;但是,有时我们需要的就 是负压的时候,这个缺点又会有一种很大的用处。缺点二就是,这种拓扑结构电路的电流脉 动值很大,输出滤波不好处理。在实际制作中,我选择了用TI的Buck型降压芯片TPS5430

来做开关管以及驱动的部分,更方便控制,简化了电路。还有一个缺点是,这种电路不方便 数控,而且没法直接用AD采输出电压。下面这个是我做的一个控制TPS5430反馈的电路。 常见的来解决这个问题的还有另外一种电路,就是把boost电路和buck电路结合起来。 但是怎样结合?方法有很多种。 第一种,直接拼接。比如输入电压时5-12V,输出电压要10V,那么我们就可以使用升压 电路将输入电压统一升到13V,然后再使用电压可调节的降压电路来提供输出电压。在做这个方案时,我升压用了TI的TPS61175输入范围是3-18V,输出范围是3-65V,最大输出电流时3A。降压同样用了TPS543O 图表3 TPS5430降压电路

Buck-Boost电路建模及分析

题目:Buck-Boost电路建模及分析 摘要:作为研究开关电源的基础,DC-DC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而Buck-Boost电路作为DC-DC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck-Boost电路进行了稳态分析和小信号分 析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式, 并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公 式;接着推导了状态空间模型,以在MATLAB中进行仿真;而最后仿真得到的电感电流、输 出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表 达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制 波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一 致。 关键词:Buck-Boost;稳态分析;小信号分析;MATLAB仿真

1.概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC-DC变换器。 作为研究开关电源的基础,DC-DC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DC-DC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压-升压(Buck-Boost) [1],如图1-1所示。其中Buck-Boost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) Buck型电路结构 (b) Boost型电路结构 (c) Buck-Boost型电路结构 图1-1 DC-DC变换器的三种电路结构 本课题针对Buck-Boost变换器的建模分析进行深入研究,以优化开关电源的性能和提高设计效率。

boost 升压芯片 ap3015

MICRO POWER STEP-UP DC-DC CONVERTER AP3015/A 1 Aug. 2006 Rev. 1. 0 BCD Semiconductor Manufacturing Limited General Description The AP3015/A are Pulse Frequency Modulation (PFM) DC/DC converters. These two devices are func-tionally equivalent except the switching current limit.The AP3015 is designed for higher power systems with 350mA current limit, and the AP3015A is for lower power systems with 100mA current limit.The AP3015/A feature a wide input voltage. The oper-ation voltage is ranged from 1.2Vto 12V (1V to 12V for AP3015A). A current limited, fixed off-time con-trol scheme conserves operating current, resulting in high efficiency over a broad range of load current.They also feature low quiescent current, switching cur-rent limiting, low temperature coefficient, etc. Fewer tiny external components are required in the applications to save space and lower cost.Furthermore, to ease its use in differnet systems, a dis-able terminal is designed to turn on or turn off the chip. The AP3015/A are available in SOT-23-5 package. Features ·Low Quiescent Current In Active Mode (Not Switching): 17μA Typical In Shutdown Mode: <1μA ·Low Operating V IN 1.2V Typical for AP3015 1.0V Typical for AP3015A ·Low V CESAT Switch 200mV Typical at 300mA for AP3015 70mV Typical at 70mA for AP3015A ·High Output V oltage: up to 34V ·Fixed Off-Time Control ·Switching Current Limiting 350mA Typical for AP3015 100mA Typical for AP3015A ·Operating Temperature Range: -40o C to 85o C Applications ·MP3, MP4 ·Battery Power Supply System ·LCD/OLED Bias Supply ·Handheld Device · Portable Communication Device Figure 1. Package Type of AP3015/A SOT-23-5

Buck-Boost变换器的设计与仿真

1 概述 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。本文将对Buck/Boost升降压斩波电路进行详细的分析。

V E U L C U O V i 1 i 2i L R VD L V E U L C U O V i 1 i 2 i L R VD L V E U L C U O V i 1 i 2 i L R VD L 2 主电路拓扑和控制方式 2.1 Buck/Boost 主电路的构成 Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。开关管也采用PWM 控制方式。Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。 图2-1 Buck/Boost 主电路结构图 电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。 (a )V 导通 (b )V 关断,VD 续流 图2-2 Buck/Boost 不同模态等效电路

buck降压升压电路知识

Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。

Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。 LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。

BuckBoost电路建模及分析

题目:BuckdBoost电路建模及分析 摘要:作为研究开关电源的基础,DCTC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而BucMoost电路作为DCTC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck^oost电路进行了稳态分析和小信号分析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式,并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公式;接着推导了状态空间模型,以在M ATLAB中进行仿真;而最后仿真得到的电感电流、输出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一致。 关键词:BuckHBoost;稳态分析;小信号分析;MATLAB仿真

1 ?概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC4)C变换器。 作为研究开关电源的基础,DCTC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DCTC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压THE (BuckdBoos 泌],如图1-1所示。其中BucMoost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) B uck型电路结构 (b) Boost型电路结构 (c) B uckHB oost型电路结构 图1-1 DCTC变换器的三种电路结构

BOOST升压电路原理简单介绍

B O O S T升压电路原理 简单介绍 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

升压电路介绍 boost 升压电路,开关直流升压电路(即所谓的boost 或者step-up 电路)the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高,基本电路如下: 1.1BOOST升压电路工作原理 假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程: 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处 用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程: 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止) 时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 2.提高转换效率 ①尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能; ②尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低; ③尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量;

Boost升压斩波电路要点

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

BUCK电路工作原理分析

BUCK电路工作原理分析 测试电路如下图4.5所示,改变驱动信号占空比,观察输入与输出关系。 通道2,输出波形 通道1,驱动波形 (a)BUCK测试电路(b)输出波形(c)输出波形 图4.5 BUCK升压电路(multisim) BUCK电路是一种降压斩波器,降压变换器输出电压平均值U o总是小于输入电压U d。 一、BUCK电路工作原理 Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D反偏。等效电路如图5.7(b)所示; Q1关断期间(t off):电力开关器件断开,电感释能,二极管D导通续流。等效电路如5.7 (c)所示; 由波形图5.7 (b)可以计算出输出电压的平均值为: ) ( 1 ) ( 1 0? ? ?? + ? = =S on on S T t t d S T S dt dt u T dt t u T U 则: d d S on DU U T t U= = ,D为占空比。 忽略器件功率损耗,即输入输出电流关系为: d d O d O I D I U U I 1 = =。

图4.6 BUCK电路工作过程 二、电感工作模式分析 下图4.7为BUCK电路中电感流过电流情况。 图4.7电感电流波形图 电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。 1.电感电流i L连续模式:

⑴在t on 期间:电感上的电压为 dt di L u L L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成 on L on O d t I L t I I L U U ?=-=-12 O d L on U U L I t -?= )( 式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。 ⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有 off L O t I L U ?= 则,O L off U I L t ?= 可求出开关周期TS 为 ) (1 O d O d L off on S U U U LU I t t f T -?= +== fL D D U fLU U U U I d d O d O L ) 1()(-= -= ? 上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。电感电流一周期内的平均值与负载电流I O 相等,即 2 1 20I I I += 则)1(201D D L T U I I S d -- = 2.电感电流i L 临界连续状态 变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L T U I I S d --=,可得维持电流临界连续的电感值L 0为:

BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。

LDO的特点: ①非常低的输入输出电压差 ②非常小的内部损耗 ③很小的温度漂移 ④很高的输出电压稳定度 ⑤很好的负载和线性调整率 ⑥很宽的工作温度范围 ⑦较宽的输入电压范围 ⑧外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:】 (1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。 其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

降压型(BUCK)DC-DC电路的设计与制作设计报告

课题三:降压型(BUCK)DC-DC电路的设计与制作 姓名:学号:得分: 一、实验目的 1). 学习和了解DC-DC变换电路的特点; 2). 掌握降压型(BUCK)DC-DC电路的结构和工作原理; 3). 熟悉强、弱电电路的隔离应用; 4). 培养电子电路的设计能力和基本应用技能。 二、课题任务 1)设计参数要求: =12V; ① DC-DC主电路输入电压V I ②输出电压: V =5V; O =1A; ③输出电流:I O ④输出电压纹波峰-峰值 V ≤50mV,即纹波≤1%; pp =5W。 ⑤额定输出功率P O 2)PWM驱动信号: =20kHz; ① PWM驱动信号频率f S ② PWM驱动信号占空比可调; 3)驱动电路: 驱动电路应为单端输入、双端浮地输出。 5)撰写完整的实习报告。 三、实验原理 BUCK电路就是降压电路,开关S闭合的时候,VD二极管承受负压关断,电感充电,电流正向流动,电流值呈现指数上升趋势。开关S断开的时候,VD 二极管起续流作用,电感开始放电,电流逐渐下降,通过负载和二极管回到电感另外一端,短暂供电。这样电压就能降低。实际使用的时候,S开关是通过MOSFE 或者IGBT实现的,输出电压等于输入电压乘以PWM波的占空比。 开关电源总的来分有隔离型和非隔离型电路。所谓非隔离型电路是根据电路形式的不同,可以分为降压型buck电路、升压Boost型电路、升降压Buck-Boost 型电路、Cuk型丘克电路、Sepic型电路、Zeta型电路。我们这里主要分析降压型DC-DC转换器的工作原理,Buck电路如图1所示。图中功率MOSFET为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件;开关截止时,二极管VD可保持输出电流连续,所以通常称为续流二极管。控制电路输出信号使开关管VT导通时,滤波电感L中的电流逐渐增加,因此贮能也逐渐增大,电容器C开始充电。忽略MOSFET的导通压降,MOSFET源极电压应为Uin。

Buck-boost变换器建模及仿真

Buck-boost 变换器建模及仿真 1、Buck-boost 变换器平均开关模型 利用平均开关网络法推导buck —boost 变换器的平均开关模型,Buck-boost 变换器电路图如图1所示,这里开关管的导通电阻为 ,二极管的前向导通压降为0.8v 。 g V )(t v 图1 Buck-boost 变换器电路 图中,虚线框内为开关网络,它是一个二端口网络,共有 、 、 和 四个变量,选定其中两个变量作为输入变量,则余下两个变量可以由输入 变量表示出来。在此,我们选择 和 作为输入变量。接下来我们要求出 这四个变量的在一个周期内的平均值,首先根据图1画出它们在一个周期内的波形图,如图2所示。 ) (1t v s dT s T (1i s dT s )(1t i )(2t i )(1t v on R )(2t v )(1t i )(2t v

图2 开关网络电压电流的曲线图 根据图2,写出)(1t i 、)(2t i 、)(1t v 、)(2t v 在一个周期内平均值: (1) (2) (3) (4) 由式(3)与(4)得 (5) 将公式(1)与(5)代入(3)中得 (6)将公式(6)中两边的)(1t v 合并得到下面式子: (7) 由(1)与(2)得 (8) ])([) () (')()()(211D T T on T V t v t d t d t i t d R t v s s s +><+><=><= ><)()()(')(12 (2v D (2t i s s s T T t i t d t i ><=><)()()(1s s T T t i t d t i ><=><)()(')(2))()((')()()(11s s s T C D g on T T t V V V t d R t i t d t v ><-++><=><-><-=><-=><+><)()()(121)2111)()()((')()(D T T on T T V t v t v t d R t i t v s s s s +><+><+>=<><

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

升降压电路原理分析

BUCK BOOST电路原理分析 电源网讯 Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。 图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。 Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式 Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。 Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。 LDO的特点:

① 非常低的输入输出电压差 ② 非常小的内部损耗 ③ 很小的温度漂移 ④ 很高的输出电压稳定度 ⑤ 很好的负载和线性调整率 ⑥ 很宽的工作温度范围 ⑦ 较宽的输入电压范围 ⑧ 外围电路非常简单,使用起来极为方便 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 DC-DC分为BUCK、BUOOST、BUCK-BOOST三类DC-DC。其中BUCK型DC-DC只能降压,降压公式:Vo=Vi*D BOOST型DC-DC只能升压,升压公式:Vo= Vi/(1-D) BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)* D/(1-D) D为充电占空比,既MOSFET导通时间。0

BuckBoost和Cuk电路仿真分析.docx

Buck_Boost和Cuk电路仿真分析 一、Buck_Boost电路仿真 仿真电路图如下图所示: 电路参数如下: Vs=5V,L=0.5mH,C=100μF,R=5Ω,f S=10kHz,D=0.8。 IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V, 二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。 理论计算结果如下所示: 仿真结果如下所示: 对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。 波形图如下所示,其中图1上半部分为I O,下半部分为V O,图二为I L,图三为I D,图4为V C。

图1 图2 图3图4

二、Cuk电路仿真 仿真电路图如下: 电路参数如下: Vs=5V,L1=L2=0.5mH,C1=C2=100μF,R=5Ω,f S=10kHz,D=0.8。 IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V, 二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。 理论计算结果如下所示: V OΔV OΔV C1I O I D(I L1)ΔI L1ΔI L2 -20V0.1V 3.2V-4A16A0.8A0.8A 仿真结果如下所示: V OΔV O V C1ΔV C1I OΔI O I D(I L1)ΔI L1I L2ΔI L2 -19.5V0.1V24.5V 3.1V-3.92A0.02A16.4A0.8A-3.9A0.8A 对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。 波形图如下图所示: 图1

boost电路分析

图一 boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率

线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 图三 如图三,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!

在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压. 怎样选择电感型升压转换器IC电路的输入电容? 升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。如果转换器输入与源输出相差很小,也可选小体积电容。如果要求电路对输入电压源纹波干扰很小,就可能需要大容量电容,并(或)减小等效串联电阻(ESR)。

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

buck电路参数

标签:BUCK 电源设计之BUCK电路-2 偶是电源方面的菜鸟,继续考虑与分析,希望能够把这部分知识给牢固掌握,并涉及最主要的点,难免有不好错误和遗漏的地方,请各位电源高手不惜指教。首先把设计需要的信息输入到我们定义参数中,如下图所示: 初步确认占空比和电感电流范围:

这里需要交代的是,我们在设计BUCK电路过程中,在需要确保负载电流范围需要保证负载不进入断续模式,按照示意图所示中,当进入断续模式时,会产生Ring的情况。 继续扩展,连续与断续的分界线为: 采用电路的特征参量去分析,确实简洁,但是并没有体现出输入电压与输出电流之间的关系 特征产量的三个参量为 1.PWM周期 2.电路的主电感量 3.电路输出负载

以上反应的关系实质上是指输出电流与占空比的关系,而输出电压一般是确定的,因此等同于输入电压与输出电流之间的关系,以上的式子并没有清晰的反应 出来,以下的推导可直观的表示出来:

可发现,如果电感选择过小,则会导致在设计电流范围内,电路进入了断续模式,而且在正常的电流变化过程中,电路在两种模式中不断变化,存在临界点,这是 不能接受的,通过选择电感后,可得到以下图形: 因此我们在选择电感和电容的初步选择,需要满足以下的关系:

电容的计算式子: 电容与电感量是有关系的,因此先选择电感量是关键。 电感和电容都是按照标准值选取的,偶找到TDK和适当的电容后贴上: 电感和电容值都要参考标准值来选取,通过以上的选取后,需要对目前的电路参 数进行验证。

电感的确定 负载电流3A,峰值电流为Ipeak为有效电流Irms的2-3倍, 电感可以这样估算,L=(Vin-Vdsat-V out)*Ton/Ipeak; Vdsat为PMOSFET的导通压降,Ton为导通时间,可见电感 愈小,峰值电流愈大,同时还要考虑电感磁芯饱(Core Saturation) 电容的取值和你要求的纹波有关Vripple.

相关文档 最新文档