文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机的数控电流源的设计

基于单片机的数控电流源的设计

基于单片机的数控电流源的设计
基于单片机的数控电流源的设计

南京邮电大学

实验开放项目

项目名称:基于单片机的数控电流源设计

学院:光电工程学院

导师:张胜

姓名:石晓娜、梅阳阳、丁嘉毅、赵敏、朱振东

二零一四年二月

基于单片机的数控电流源的设计

摘要

恒流源,是一种能够向负载提供恒定电流的电源。恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数。并且在差动放大电路、脉冲产生电路中得到了广泛应用。

本文设计了一种基于单片机控制的数控直流恒流源。该恒流源以STC-89C52为控制核心,采用了高共模抑制比低温漂的运算放大器LM324和自制达林顿管构成恒流源的主体,完成了单片机对输出电流的实时检测和实时控制。人机接口采用4×4键盘及LCD数码管显示器,控制界面直观、简洁,具有良好的人机交互性能。在软件设计上采用增量式PWM控制算法,即数字控制器的输出只是控制量的增量。

该系统已基本达到预期的设计目标,具有功能强、性能可靠、体积小、电路简单的特点,可以应用于需要高稳定度的小功率恒流源的领域。

关键词:恒流源、PWM控制算法、数字控制、单片机控制

引言

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能,价格,发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切。

众所周知,许多科学实验都离不开电源,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管来显示电压或电流,搭配电位器来调整所要的电压及电流输出值。使用上若要调整精确的电压或者电流输出,须搭配精确的显示仪表监测,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。因此,如果直流电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,以精确的微机控制取代不精确的人为操作,在实验开始之前就对一些参数进行预设,这将会给各个领域中的实验研究带来不同程度的便捷与高效。

当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。

1设计方案的选择

1.1电路综合设计流程

图1.1.1数控电流源电路设计流程图

1.2总体设计方案

经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括A/D、D/A转换)恒流源模块,键盘模块,显示模块。以下就各电路模块给出设计方案。

1.2.1 控制部分方案

方案一:采用FPGA作为系统的控制模块。FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。

方案二:采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活、可以通过ISP方式将程序快速下载到芯片,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功

耗低、体积小、技术成熟和成本低等优点。

基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A 转换(此处我们利用PWM脉宽调制实现D/A转换功能),驱动恒流源电路实现电流输出。输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。

1.2.2 恒流源模块设计方案

方案一:由三端可调式集成稳压器构成的恒流源。

其典型恒流源电路图如图1.2.1所示。一旦稳压器选定,则U0 是定值。若R固定不变,则I0不变,因此可获得恒流输出。若改变R值,可使输出 I0改变。因此将R设为数控电位器,则输出电流可以以某个步长进行改变。此电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。

图1.2.1 三端集成稳压器构成的恒流源框图

方案二:由数控稳压器构成的恒流源

方案一是在U0不变的情况下,通过改变R的数值获得输出电流的变化。如果固定R不变,若能改变U0的数值,同样也可以构成恒流源,也就是说将上图中的三端可调式集成稳压源改为数控电压源,其工作原理和上图类似。此方案原理清楚,若赛前培训过数控电压源的设计的话,知识、器件有储备,方案容易实现。但是,由1.2.2图可知,数控稳压源的地是浮地,与系统不共地线,对于系统而言,地线不便处理。

图1.2.2 数控电压源构成的恒流源框图

方案三:采用集成运放的线性恒流源

该恒流源输出的电流与负载无关, 通过使用两块构成比较放大环节,功率管构成调整环节,利用晶体管平坦的输出特性和深度的负反馈电路可以得到稳定的恒流输出和高输出阻抗,实现了电压—电流转换。其原理框图如图1.2.3所示。

图1.2.3 集成运放构成的恒流源框图

综合考虑,采用方案三,使用低噪音、通用运放LM324和2个8550等构成一个恒流源电路。

1.2.3 显示模块设计方案

方案一:使用LED数码管显示。数码管采用BCD编码显示数字,对外界环境要求低,易于维护。但根据题目要求,如果需要同时显示给定值和测量值,需显示的内容较多,要使用多个数码管动态显示,使电路变得复杂,加大了编程工作量。

方案二:使用LCD显示。LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。

综上所述,选择方案二。采用12864汉字图形点阵液晶显示模块同时显示电流给定值和实测值。

1.2.4 键盘模块设计方案

方案一:采用独立式按键电路,每个按键单独占有一根I/O接口线,每个I/O口的工作状态互不影响,此类键盘采用端口直接扫描方式。缺点为当按键较多时占用单片机的I/O

口数目较多。

方案二:采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。

题目要求可进行电流给定值的设置和步进调整,需要的按键比较多。综合考虑两种方案及题目要求,采用方案二,方便进行扩展。

1.2.5 电压源模块设计方案

系统需要多个电源,单片机、A/D、使用+5V稳压电源,运放需要±12V稳压电源,同时

题目要求最高输出电流为260mA,电源需为系统提供足够大的稳定电流。

综上所述,采用三端稳压集成7805、7812分别得+5V和±12V的稳定电压,78H系列稳压器输出电流可以达到5A,能为系统提供足够大的稳定电流。利用该方法实现的电源电路简单,工作稳定可靠。

1.3 系统组成

经过方案比较与论证,最终确定系统的组成框图如图所示

图1.3.1 系统组成框图

2单元电路的设计

2.1控制模块电路设计

2.1.1最小系统电路设计

通过键盘模块输入给定的电流值或是步进调整信号传送给单片机,单片机在接受到信号后进行处理运算,并显示其给定的电流值,然后经D/A转换以输出电压,驱动恒流源电路实现电流输出,并将采样电阻上的电压经过A/D转换输入单片机系统,通过补偿算法进行数值补偿处理,调整电流输出,并驱动显示器显示当前的电流值。

最小系统的核心为STC89C52,为了方便单片机引脚的使用,我们将单片机的引脚用接口引出,电路如图2.1.1所示:P0口和P3.0~P3.3是LCD接口;P1口作为A/D与D/A转换接口;P2口为键盘接口。

图2.1.1 最小系统原理图

2.1.2 A/D转换电路设计

A/D转换采用BB公司的ADS7816构成的转换电路,如图2.1.3 ADS7816是12位串行模/数转换器,采样频率高达200kHz,转换所需时间短,转换精度高。ADS7816转换器将采样电阻上的电压转换成数字信号反馈给单片机,单片机将此反馈信号与预置值比较,根据两者间的差值调整输出信号大小。这样就形成了反馈调节,提高输出电流的精度。同时,A/D采样回来的电流经过单片机处理传送到LCD,可以显示当前的实际电流值。

图2.1.3 A/D转换电路

2.2恒流源电路设计

恒流源电路的设计是本系统设计的核心,它采用电压来控制电流的变化。为了能产生恒定的电流,我们采用电压闭环反馈控制。恒流源电路原理图如图2.2.1所示,该电路主要由运算放大器、大功率达林顿管、采样电阻R S、负载R L等组成。取样电阻RS从输出端进行取样,再与基准电压比较,并将误差电压放大后反馈到调整管,使输出电压在电网电压变动的情况下仍能保持稳定。电路中调整管采用大功率达林顿管(由两个8550构成),既能满足输出电流最大达到260mA的要求,也能较好地实现电压近似线性地控制电流。RS选用热稳定性好的水泥电阻,并选取较大值(2Ω),使得在电流较低时也能获得较大的电压值。运算放大器采用高精度的lm324作为电压跟随器。DAOUT即为输入电压Ui,当Ui一定时,运算放大器的Ui=U S,I0=I L=I S=Ui/R S,即I0不随R L的变化而变化,从而实现压控恒流。

由此得到恒流源输出电流的大小为:I0= Ui/R S

图2.2.1 恒流源电路原理图

2.3 键盘电路设计

在设计中,使用标准的4x4键盘,可以实现0~9数字输入,“+”、“-”步进设置。其电路图如图2.3.1所示。

图2.3.1 键盘电路原理图

2.4 显示电路设计

本设计采用12864型汉字图形点阵液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(12X16点阵)及64X256点阵显示RAM(GDRAM)。可显示内容为192列× 64行,还带多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。

12864采用8位并行接法,与单片机P3和P4口相连,用于显示设定值与当前测量值。其接口如图2.4.1所示。

图2.4.1 LCD显示电路原理图

2.5 稳压电源设计

在本设计中,运放需±12V供电,单片机需、A/D需+5V供电,采用三端稳压器7805、7812、7815构成一稳压电源,输出电流范围是50mA~260mA,而78H系列稳压器输出电流最大可以达到5A,能为系统提供足够大的稳定电流。稳压电路如图2.5.1所示:考虑系统对功率要求较高,所以在设计中选取了输出功率50W的变压器,输入电压由变压器和全波整流滤波电路产生。

图2.5.1 电源电路原理图

3软件设计

软件设计采用C语言,对STC89C52进行编程实现各种功能。软件设计的关键是对A/D

转换器的控制。软件实现的功能是:

a)控制键盘工作,确定电流步进调整;

b)控制A/D工作,设置给定电流,测量输出电流;

c)对反馈回单片机的电流值进行补偿处理;

d)驱动液晶显示器显示电流设置值与测量值。

图3 软件流程框图

4实物图

图4.1 恒流源控制电路实物图

图4.2 液晶显示实物图

图4.3 矩阵键盘实物图

图4.4 线性电源实物图

图4.5 单片机控制系统(包括A/D)实物图

图4.6 整体实物图

4.7 PWM波调制波形

4.8 加上负载后电流实际示数

4.9 系统反馈后液晶示数

4.10封装后实物图

5数据记录

脉宽恒定情况下(初始电流设定150mA)负载变化的恒流测试(仿真图略)

6 结论与展望

本文结合各种新技术设计出一种基于单片机芯片STC-89C52的数控直流恒流源。对该恒流源的测量结果表明,该恒流源具有较高的精度和稳定度,基本满足设计要求。具体的研究成果和结论如下:

1.完成了硬件电路的设计,具体包括A/D转换电路的设计,键盘输入及输出显示等。该恒流源实现了键盘输入预置值,LCD显示输出预置值和实际输出值的功能,精度和稳定度都比较高。

2.本系统在软件设计上采用了增量式PWM控制算法,增量式控制虽然只是算法上作了一点改进,却带来了不少优点:

(1)算式中不需要累加。控制增量Δu(k)的确定仅与最近3次的采样值有关,容易通过加权处理获得比较好的控制效果;

(2)计算机每次只输出控制增量,即对应执行机构位置的变化量,故机器发生故障时影响范围小、不会严重影响生产过程。

本系统在软硬件设计上仍然有很多需要完善之处。进入21世纪,随着信息技术一日千里的发展,恒流源也必将经历由模拟恒流源向数字恒流源过渡的这一历程。特别是计算机技术的发展必将出现智能化技术。因此,如何把数字技术和智能化技术用于制作高稳定度的恒流源就将成为21世纪的新课题。

作品程序:

#include

#define uchar unsigned char

#define uint unsigned int

#define V_TH0 255

#define V_TL0 255

#define V_TMOD 0x01

uchar code table[]="I LOVE SAST!"; uchar code table1[]="I LOVE NJUPT!"; uchar code table2[]="Constant Current"; uchar table3[]="150 mA";

uchar code table4[]="error!";

uchar code table5[]="Please set again"; sbit lcden=P1^4; //液晶使能端

sbit lcdrs=P1^0; //液晶数据命令选择端sbit P3_7=P3^7;

sbit P1_2=P1^2;

unsigned char ZKB1,ZKB2;

uchar num,flag=0;

void delay(uint z)

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

void write_com(uchar com)

{

lcdrs=0;

P0=com;

delay(5);

lcden=1;

delay(5);

lcden=0;

}

void write_data(uchar date)

{

lcdrs=1;

P0=date;

delay(5);

lcden=1;

delay(5);

lcden=0;

}

void init()

lcden=0;

write_com(0x38);//设置16X2显示,5X7点阵,8位数据接口write_com(0x0c);//设置开显示,不显示光标

write_com(0x06);//写一个字符后地址指针加1

write_com(0x01);//显示清零,数据指针清零

write_com(0x80);

for(num=0;num<12;num++)

{

write_data(table[num]);

delay(5);

}

write_com(0x80+0x40);

for(num=0;num<13;num++)

{

write_data(table1[num]);

delay(5);

}

delay(500);

write_com(0x01);

delay(200);

write_com(0x80);

for(num=0;num<16;num++)

{

write_data(table2[num]);

delay(5);

}

write_com(0x80+0x40);

for(num=0;num<6;num++)

{

write_data(table3[num]);

delay(5);

}

}

void displayI()

{

write_com(0x80+0x40);

for(num=0;num<6;num++)

{

write_data(table3[num]);

delay(5);

}

}

void displayerror()

write_com(0x01);

write_com(0x40);

for(num=0;num<6;num++)

{

write_data(table4[num]);

delay(5);

}

write_com(0x80+0x40);

for(num=0;num<16;num++)

{

write_data(table5[num]);

delay(5);

}

}

void keyscan(uchar i)

{

uchar temp,key;

P2=0xfe;

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

delay(10);

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

temp=P2;

switch(temp)

{

case 0xee:

key='1';

break;

case 0xde:

key='2';

break;

case 0xbe:

key='3';

break;

case 0x7e:

key='+';

break;

}

while(temp!=0xf0)

{

temp=P2;

temp=temp&0xf0;

}

if(i==0) {table3[i]=key; flag=1;} else if(i==1) {table3[i]=key; flag=1;} else if(i==2) {table3[i]=key; flag=1;} displayI();

}

}

P2=0xfd;

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

delay(10);

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

temp=P2;

switch(temp)

{

case 0xed:

key='4';

break;

case 0xdd:

key='5';

break;

case 0xbd:

key='6';

break;

case 0x7d:

key='-';

break;

}

while(temp!=0xf0)

{

temp=P2;

temp=temp&0xf0;

}

if(i==0) {table3[i]=key; flag=1;} else if(i==1) {table3[i]=key; flag=1;}

else if(i==2) {table3[i]=key; flag=1;} displayI();

}

}

P2=0xfb;

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

delay(10);

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

temp=P2;

switch(temp)

{

case 0xeb:

key='7';

break;

case 0xdb:

key='8';

break;

case 0xbb:

key='9';

break;

case 0x7b:

key='*';

break;

}

while(temp!=0xf0)

{

temp=P2;

temp=temp&0xf0;

}

if(i==0) {table3[i]=key; flag=1;} else if(i==1) {table3[i]=key; flag=1;} else if(i==2) {table3[i]=key; flag=1;} displayI();

}

}

P2=0xf7;

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

delay(10);

temp=P2;

temp=temp&0xf0;

if(temp!=0xf0)

{

temp=P2;

switch(temp)

{

case 0xe7:

key='*';

break;

case 0xd7:

key='0';

break;

case 0xb7:

key='#';

break;

case 0x77:

key='Q';

break;

}

while(temp!=0xf0)

{

temp=P2;

temp=temp&0xf0;

}

if(i==0) {table3[i]=key; flag=1;} else if(i==1) {table3[i]=key; flag=1;} else if(i==2) {table3[i]=key; flag=1;} displayI();

}

}

}

void init_sys(void) //系统初始化函数{//定时器初始化

TMOD=V_TMOD;

TH0=V_TH0;

TL0=V_TL0;

TR0=1;

ET0=1;

EA=1;

} //延时

void Delay5Ms(void)

{

unsigned int TempCyc = 5000;

while(TempCyc--);

}

void main()

{

uchar i=0,current=9;

init();

init_sys();

while(1)

{

keyscan(i);

if((i==0&&flag==1)||(i==1&&flag==1))

{

i++;

flag=0;

}

if(i==2&&flag==1)

{

i=0;

flag=0;

}

current=(table3[0]-48)*100+(table3[1]-48)*10+(table3[2]-48)*1;

if(current<50&¤t>=0) ZKB1=198;

if(current>230) ZKB1=5;

if(current>=50&¤t<60) ZKB1=198;

if(current>=60&¤t<70) ZKB1=186;

if(current>=70&¤t<80) ZKB1=174;

if(current>=80&¤t<90) ZKB1=164;

if(current>=90&¤t<100) ZKB1=152;

if(current>=100&¤t<110) ZKB1=139;

if(current>=110&¤t<120) ZKB1=127;

if(current>=120&¤t<130) ZKB1=116;

if(current>=130&¤t<140) ZKB1=104;

if(current>=140&¤t<150) ZKB1=94;

if(current>=150&¤t<160) ZKB1=82;

if(current>=160&¤t<170) ZKB1=70;

if(current>=170&¤t<180) ZKB1=60;

if(current>=180&¤t<190) ZKB1=49;

if(current>=190&¤t<200) ZKB1=39;

if(current>=200&¤t<210) ZKB1=28;

if(current>=210&¤t<220) ZKB1=16;

if(current>=220&¤t<=230) ZKB1=5;

//ZKB1=current;

}

}

//中断函数

void timer0(void) interrupt 1 //using 2

{

static uchar n=0; //中断次数计数器变量

TH0=V_TH0; //恢复定时器初始值

TL0=V_TL0;

++n;

if (n>380) n=0;

if (n<=ZKB1) //当小于占空比值时输出低电平,高于时是高电平,从而 //实现占空比的调整

P3_7=0;

else

P3_7=1;

if (n<=ZKB2)

P1_2=0;

else

P1_2=1;

}

全国大学生电子设计竞赛-数控直流电流源

数控直流电流源 摘要:本文设计了一种数控直流电流源的方案,给出了硬件组成和软件流程及源程序。以STC89C52单片机为核心控制电路,利用12位D/A模块产生稳定的控制电压,12位A/D模块完成电流测量。输出电流范围为20~2000mA,具有“+”“-”步进调整功能,步进为1mA,纹波电流小,LCD同时显示预置电流值和实测电流值,便于操作和进行误差分析。 关键词:STC89C52 数控电流源 Numerical Control DC Current Source Abstract: This paper introduces a design scheme of numerical control DC current source ,and gives the hardware composition and software flow as well as the source program. Use STC89C52 MCU as the core control circuit. 12 D/A module generates A steady the control voltage and 12 A/D module completes current measurements. The current-output ranges 20 to 2000mA, with "+" and "-" stepping for 1mA adjustment function and small ripple current. LCD could show presets current value and the measured result at the same time, for easy operation and error analysis. Keywords:STC89C52 Numerical control Current source 1 设计方案的选择 1.1电路综合设计流程

基于数控直流电流源系统的设计

基于数控直流电流源系统的设计 摘要:随着电子技术的发展、数字电路应用领域的扩展,人们对数控恒定电流器件的需求越来越高。应社会发展的需求,对基于单片机控制的“数控直流电流源的设计”进行研究论证,并运用Proteus 软件进行仿真。以直流稳压电源和稳流电源为核心,结合单片机最小系统实现对输出电流的控制。首先采用了单片集成稳压芯片实现直流稳压,然后采用了分立元件实现稳流。为实现对输出电流的精确控制:一方面,通过D/A输出实现电流的预置,再通过运算放大器控制晶体管的输出电流;另一方面,运用A/D转换器件将输出电流的采样值送入单片机,与预置值进行比较,将误差值通过D/A转换芯片添加到调整电路,从而进一步降低了输出电流的纹波。 Abstract:The requiements of numerical controlling constant current devices is increasing as development of electronic technology and expanding of digital circuit applicational field. As to satisfy society development, do a study based on " Numerical control dc current source design " of SCM controlling and apply Proteus to simulating software.DC(digital current )V oltage regulator and DC current regulator is the key part of the design,its output current is controlled by single chip microprocessor,Firstly,single chip IC(integrated circuit)V oltage regulator LM338K is used to generate stable voltage, and then desperate devices is used to generate stabilize current . Tocontrol the output current ,on one hand ,system sets output current by D/A(digital/analogue converter and controls current of transistor by operational amplifier ;on the other hand ,with the help of A/D(analogue/digital)converter,system samples the output current and convert it into digital data ,compares it with preset value ,converts the error value into analogy and puts it on adjusting circuit ,and decreases the ripple of the system output current .

数控电流源设计毕业论文

数控电流源设计毕业论文 目录 摘要............................................................. I 第一章绪论.. (1) 1.1设计目的和意义 (1) 1.2设计技术及现状 (1) 1.3设计容 (3) 第二章设计任务及要求 (4) 2.1设计任务 (4) 2.2设计技术要求及技术指标 (4) 第三章系统设计 (5) 3.1技术路线 (5) 3.2设计思想 (5) 3.3总体方案论证 (5) 3.3.1 恒流源电路设计方案 (5) 3.3.2控制电路设计方案 (6) 3.3.3显示电路设计方案 (6) 3.3.4 键盘设计方案 (6) 3.3.5电源设计方案 (6) 3.3.6系统设计方案 (7) 第四章硬件设计 (8) 4.1 恒流源电路设计 (8) 4.1.1恒流源电路结构 (8) 4.1.2恒流源原理 (8) 4.1.3恒流源电路器件选型 (9) 4.2.数控电路设计 (10) 4.2.1数控电路结构 (10) 4.2.2数控电路原理 (10) 4.2.3单片机的选型 (11) 4.3 D/A转换电路设计 (13) 4.3.1 D/A转换电路结构 (13) 4.3.2 D/A转换电路原理 (13)

(13) 4.4 A/D转换电路设计 (16) 4.4.1A/D转换电路结构 (16) 4.4.2 A/D转换电路原理 (17) 4.4.3 A/D转换电路选型 (18) 4.5显示模块设计 (22) 4.5.1 显示电路结构 (22) 4.5.2显示电路选型 (22) 4.6键盘电路设计 (24) 4.7电源电路设计 (25) 4.7.1电源电路结构 (25) 4.7.2稳压电路原理 (25) 4.7.3电源电路器件选型 (26) 4.7.4系统电源电路抗干扰措施 (28) 第五章软件设计 (30) 5.1主程序设计流程 (30) 5.2 程序设计 (32) 5.2.1按键扫描 (32) 5.2.2 A//D采样程序 (33) 第六章设计总结 (35) 参考文献 (36) 外文翻译 (37) AD7705英文原文 (37) AD7705中文翻译 (52) 致谢 (67) 附录 (68) 附录一:程序代码 (68) 附录二:元器件清单 (78)

数控直流电流源程序

数控直流电流源程序

/* 跳线说明: 1)将EXP-LM3S811板卡上JP9、JP13跳至左侧(短接1-2); 2)将EXP-min_system_board板卡上JP13、JP14、JP15、JP16跳至右侧(短接2-3。 操作过程: 1)将EXP-min_system_board板卡上K1拨动开关拨至ON状态,给液晶上电; 2)调节RP1电位器,使液晶有合适的背光; 3)上电,编译并下载程序,复位后全速运行程序;观察液晶显示的内容,再修改程序使之显示自己的内容。 */ #include "systemInit.h" #include "ADS7886.h" #include "TLV5616.h" #include "timer.h" #define CTL_PERIPH SYSCTL_PERIPH_GPIOC // 控制液晶所用的片内端口外设定义 #define CTL_PORT GPIO_PORTC_BASE #define SCK GPIO_PIN_4 // 定义信号SCK #define SID GPIO_PIN_5 // 定义信号SID #define CS GPIO_PIN_6 // 定义信号CS

#define PSB GPIO_PIN_7 // 定义信号PSB #define SCK_L GPIOPinWrite(CTL_PORT,SCK,0x00) // 定义信号输出低电平 #define SID_L GPIOPinWrite(CTL_PORT,SID,0x00) #define CS_L GPIOPinWrite(CTL_PORT,CS,0x00) #define PSB_L GPIOPinWrite(CTL_PORT,PSB,0x00) #define SCK_H GPIOPinWrite(CTL_PORT,SCK,0xFF) // 定义信号输出高电平 #define SID_H GPIOPinWrite(CTL_PORT,SID,0xFF) #define CS_H GPIOPinWrite(CTL_PORT,CS,0xFF) #define PSB_H GPIOPinWrite(CTL_PORT,PSB,0xFF) #define SID_READ GPIOPinRead(CTL_PORT,SID) // 定义读回的数据 #define SID_IN GPIOPinTypeGPIOInput(CTL_PORT,SID) // 定义SID信号为输入 #define SID_OUT GPIOPinTypeGPIOOutput(CTL_PORT,SID) //定义SID信号为输出 #define LED_PERIPH SYSCTL_PERIPH_GPIOB #define LED_PORT GPIO_PORTB_BASE #define LED GPIO_PIN_5 #define KEY_PERIPH SYSCTL_PERIPH_GPIOD // KEYS所接的端口 #define KEY_PORT GPIO_PORTD_BASE #define KEY GPIO_PIN_7|GPIO_PIN_6|GPIO_PIN_5|GPIO_PIN_4|GPIO_PIN_3|GPIO_ PIN_2|GPIO_PIN_1|GPIO_PIN_0 #define KEY_H GPIO_PIN_7|GPIO_PIN_6|GPIO_PIN_5|GPIO_PIN_4

数控直流恒流源设计报告

数控直流恒流源设计报告 本系统以直流电流源为核心,AT89s52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由液晶显示电流设定值和实际输出电流值。本系统由单片机程控设定数字信号,经过D/A转换器(tlv5618)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。实际测试结果表明,本系统能有效应用于需要高稳定度的小功率恒流源的领域 关键字 压控恒流源智能化电源闭环控制 设计任务与要求 1.1设计任务 设计并制作一个数控直流电流源。输入的交流电压220~240V,50Hz;输出的直流电压≤10V。其原理示意图1如下所示。 图1 设计任务示意图 1.2技术指标 基本要求: (1)要求电压输出范围:200~2000mA; (2)可设置并输出电流给定值,要求输出电流和给定电流的偏差的绝对值≤给定值的1%+10mA;

(3)具有“+”、“-”步进调整功能,步进≤10mA; (4)改变负载电阻,输出电压在10V以内变化时,要求输出电流的变化的绝对值≤ 输出电流的1%+10mA; (5)纹波电流≤ 2mA; (6)自制电源。 发挥部分: (1)输出电流范围为20~2000mA,步进为1mA; (2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值或实测值),测量误差的绝对值≤测量值的0.1%+3个字; (3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤ 输出电流的0.1%+1mA; (4)纹波电流≤0.2mA; (5)其他。 2.方案比较与论证 2.1.1各种方案比较与选择 方案一:采用中小规模集成电路构成的控制电路。由三段可调式集成稳压器构成的恒流源。 以W350为例,其最大的输出电流为3A,输出电压Uo′为1.2~33V。其典型的恒流源电路如图2所示。

电子设计大赛—简易数控直流稳压电源

一、项目参加人员、负责内容以及技术特长: 二、项目背景 数控直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通直流稳压电源品种很多, 在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V 的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。 随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W的数控电源。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控制直流稳压电源就是一个很好的典型例子。但人们对它的要求也越来越高,要为现代人工作、科研、生活提供更好的更方便的设施,就需要从数字电子技术入手,一切向数字化和智能化方向发展。

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作 本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。 1 系统原理及理论分析 1.1单片机最小系统组成 单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。 1.2系统性能 本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。 1.3恒流原理 数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管 值下降,从而导致电流不能维持恒定。为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。电路反馈原理如下图所示。 2 总体方案论证与比较 方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。本方案电路复杂,灵活性不高,效率低,

数控直流稳压电源设计

数控直流稳压电源设计 [摘要]本文介绍了以8051单片机为控制单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM317的输出电压大小。该电路设计简单,应用广泛,精度较高等特点。LM317系列三端可调式集成稳压器的方法。 [关键词] 单片机(AT89C51),数模转换器(D/A),液晶,键盘

一、设计任务 设计出有一定输出电压范围和功能的数控电源。 二、设计要求 1.基本部分 (1)输出电压:范围0~+15V,步进0.1V,纹波不大于40mV;(2)输入电压值由液晶显示; (3)自制键盘,可以由键盘输入电压值; (4)输出电压值在输出端用万用表测得。 2.发挥部分 (1)输出电压可预置在0~15V之间的任意一个值; (2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V 不变); (3)扩展输出电压种类(比如三角波等)。 图1设计示意图

目录 引言 (1) 1、设计原理与总体方案 (2) 2、硬件电路设计 (3) 2.1 DAC电路 (3) 2.2 AGC控制电路 (4) 2.3 键盘部分 (6) 2.4 显示部分 (7) 2.5 稳压输出 (8) 3、软件设计流程 (9) 4、总体设计电路 (10) 5、调试过程与结果分析 (11) 5.1调试过程 (11) 5.2结果分析 (11) 总结 (13) 参考文献 (14) 附录1 元件清单 (14) 附录 2 参考源程序…………………………………………… 15

引言 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。在电子电路中,通常都需要电压稳定的直流电源来供电。而整个稳压过程是由电源变压器、整流、滤波、稳压等四部分组成。然而这种传统的直流稳压电源功能简单、不好控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通的直流稳压电源品种有很多, 但均存在以下二个问题: 输出电压是通过粗(波段开关) 及细调(电位器)来调节。这样, 当输出电压需要精确输出, 或需要在一个小范围内改变时,困难就较大。另外, 随着使用时间的增加, 波段开关及电位器难免接触不良, 对输出会有影响。稳压方式均是采用串联型稳压电路, 对过载进行限流或截流型保护, 电路构成复杂,稳压精度也不高。传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并由电压表指示电压值的大小。因此,电压的调整精度不高,读数欠直观,电位器也易磨损。 而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。利用数控直流电源,可以达到每步0.04 V的精度,输出电压范围0-15V。。

基于单片机的数控电流源的设计。

南京邮电大学实验开放项目 项目名称:基于单片机的数控电流源设计 学院:光电工程学院 导师:张胜 姓名:石晓娜、梅阳阳、丁嘉毅、赵敏、朱振东 二零一四年二月

基于单片机的数控电流源的设计 摘要 恒流源,是一种能够向负载提供恒定电流的电源。恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数。并且在差动放大电路、脉冲产生电路中得到了广泛应用。 本文设计了一种基于单片机控制的数控直流恒流源。该恒流源以STC-89C52为控制核心,采用了高共模抑制比低温漂的运算放大器LM324和自制达林顿管构成恒流源的主体,完成了单片机对输出电流的实时检测和实时控制。人机接口采用4×4键盘及LCD数码管显示器,控制界面直观、简洁,具有良好的人机交互性能。在软件设计上采用增量式PWM控制算法,即数字控制器的输出只是控制量的增量。 该系统已基本达到预期的设计目标,具有功能强、性能可靠、体积小、电路简单的特点,可以应用于需要高稳定度的小功率恒流源的领域。 关键词:恒流源、PWM控制算法、数字控制、单片机控制

引言 随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能,价格,发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切。 众所周知,许多科学实验都离不开电源,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管来显示电压或电流,搭配电位器来调整所要的电压及电流输出值。使用上若要调整精确的电压或者电流输出,须搭配精确的显示仪表监测,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。因此,如果直流电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,以精确的微机控制取代不精确的人为操作,在实验开始之前就对一些参数进行预设,这将会给各个领域中的实验研究带来不同程度的便捷与高效。 当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。

数控直流恒流源设计方案与制作

数控直流恒流源地设计与制作 本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000m/范围内任意设定,不随负载和环境温度变化,并具有很高地精度,输出电流误差 范围土4mA,因而可实际应用于需要高稳定度小功率直流恒流源地领域 1系统原理及理论分析 1.1单片机最小系统组成 单片机系统是整个数控系统地核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整?主要包括AT89S52单片机、模数转换芯片ADC0809 12位数模转换芯片AD7543数码管显示译码芯片74LS47与74LS138等器件.b5E2RGbCAP 1.2系统性能 本系统地性能指标主要由两大关系所决定,设定值与A / D采样显示值(系统内部测量值)地关系.内部测量值与实际测量值地关系,而后者是所有仪表所存在地误差? 1.3恒流原理 数模转换芯片AD7543是12位电流输出型,其中0UT1和OUT2是电流地输出端?为了实现数控地目地,可以通过微处理器控制AD7543地模拟量输出,从而间接改变电流源地输出电流?从理论上来说,通过控制AD7543地输出等级,可以达到1mA地输出精度.但是本系统恒流源要求输出电流范围是 20mA~2000mA而当器件处于2000mA地工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管“值下降,从而导致电流不能维持恒定.为了克服大电流工作时电流地波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流地波动,此反馈回路采用数 字形式反馈,通过微处理器地实时采样分析后,根据实际输出对电流源进行实时调节.经测试表明,采用常用地大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善.电路反馈原理如下图所示.p1EanqFDPw 2总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件.本方案电路复杂,灵活性不

数控直流电源设计

数控直流稳压电源1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于8mV。2)输出电流:500mA。 3)输出电压值用数码管LED显示。 4)用+、—两键分别控制输出电压的步进增减。 5)为实现上述几个部件工作,自制一台稳压直流电源,输出+ 、-15V、+5V。 发挥部分:1)输出电压可预置在0~9.9V之间的任何一个值。 2)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变)。 3)扩展输出电压种类(如三角波等)。 #include #include #define uchar unsigned char #define uint unsigned int #define DataPort P2 sbit LCM_RS=P1^5; sbit LCM_RW=P1^6; sbit LCM_EN=P1^7; sbit K1=P3^4; sbit K2=P3^2; sbit K3=P3^0; sfr P1ASF=0x9D; sfr ADC_CONTR = 0xbc; sfr ADC_RES = 0xbd; sfr ADC_RESL= 0xbe; void GET_AD_Result(); void AD_init( ); extern void WriteCommandLCM(uchar CMD,uchar Attribc); extern void InitLcd(); extern void DisplayoneChar(unsigned char X,unsigned char Y,unsigned char DData); extern void DisplayListChar(uchar X,uchar Y,uchar code *DData); unsigned char code dispcode[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39}; unsigned char dispbuf[8]={0,0,16,0,0,16,0,0};

数控电流源.

摘要 本系统利用集成运放、场效应管对电流放大与单片机的自动控制来实现数控直流电流源。系统有控制模块与恒流源模块组成。控制模块使用STC89C52结合按键与LCD1602液晶显示器,实现对恒流源的数控和预设值的显示;恒流源模块采用OP07与IRFP540组成的反馈放大电路实现对电流的放大,控制到恒流源的信号转采用DAC0832来实现,显示模块由ADC0832组成的显示电路来显示。并使用自制电源来实现供电。 关键词:STC89C52,恒流源,ADC0832,DAC0832,OP07 Abstract This system use the integrated operational amplifier, field effect tube to the current amplification and single chip microcomputer automatic control to realize numerical control dc current source. System consists of the control module and the constant current source module. Control and LCD1602 LCD module USES STC89C52 combined with buttons, realize the constant current source of nc and default display; Of constant current source module USES OP07 and IRFP540 feedback amplifier circuit implementation of current amplifier, control to turn signal of constant current source USES the DAC0832, display module display circuit composed of ADC0832 to display. To achieve the power supply and use homemade power. Key words: STC89C52, constant current source, ADC0832, DAC0832, OP07

数控直流电流源(F题)

数控直流电流源(F题) 设计者:彭浦能梁星燎林小涛 指导教师:王贵恩 摘要:本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由数码管显示实际输出电流值和电流设定值。本系统由单片机程控输出数字信号,经过D/A转换器(AD7543)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数据形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。实际测试结果表明,本系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±5mA,输出电流可在20mA~2000mA范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。 关键词:压控恒流源智能化电源闭环控制 The Digital Controlled Direct Current Source Abstract: For the system that DC source is center and 89S52 version single chip microcomputer (SCM) is main controller, output current of DC power can be set by a keyboard which step level of 1mA can be available, while the real output current and set value can be displayed by LED. In the system, the digital programmable signal from SCM is converted to analog value by DAC (AD7543), then the analog value that is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. On the other hand, The constant current source can be monitored by the SCM system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by SCM so that output current is more stable, so a stable voltage-controlled constant current power is designed. The test results have showed that the system can output a stable current, which has no influence with load and environment temperature, and can output a precise current of ±5mA error with a width, which can be set liberally in 20mA~2000mA, so it can be applied in need areas of constant current source with high stability and low power. Keywords: voltage-controlled constant current source ; intelligent power ; closed loop control 总体方案论证与比较 方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。 方案二:采用AT89S52单片机作为整机的控制单元,通过改变AD7543的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电流的大小。为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。此系统比较灵活,采用软件方法来解决数据的预置以及电流的步进控制,使系统硬件更加简洁,各类功能易于实现,

基于单片机的数控直流恒流源的设计毕业设计开题报告

基于单片机的数控直流恒流源的设计毕业设计开题报告

毕业设计(论文)开题报告 设计(论文)题目 基于单片机的恒流源设计 设计(论文)题目来源 自选课题 设计(论文)题目类型 电子设计类 起止时间 2009.12—2010.05 一、设计(论文)依据及研究意义: 随着电子技术的发展,数字电路应用领域的扩展,现今社会产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切。当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间,本文正是应社会发展的要求,研制出一种高性能的数控直流恒流源。 二、设计(论文)主要研究的内容、预期目标:(技术方案、路线) 设计思路是:以单片机为主控制器,通过键盘来设定输出电流值,并由LCD 显示电流设定值和实际输出值。本系统由单片机程控设定数字信号,经过D/A 转换输出模拟量,控制电流的变化。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D 转换芯片,实时把模拟量转化为数字量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的恒流源。 系统整体框图如下所示: 三、设计(论文)的研究重点及难点: 设计的难点重点是: 压控恒流模块 A/D 转换 输出电流采样 D/A 转换 LCD 显示 负载 单 片 机 按键控制

简易数控直流电源设计的报告

简易数控直流电源

数控直流电源是一种常见的电子仪器,广泛应用于电路,教学试验和科学研究等领域。目前使用的可控直流电源大部分是点动的,利用分立器件,体积大,效率低,可靠性差,操作不方便,故障率高。随着电子技术的发展,各种电子,电器设备对电源的性能要求提高,电源不断朝数字化,高效率,模块化和智能化发展。以单片机系统为核心而设计的新一代——数控直流电源,它不但电路简单,结构紧凑,价格低廉,性能优越,而且由于单片机具有计算和控制能力,利用它对数据进行各种计算,从而可排除和减少模拟电路引起的误差,输出电压和限定电流采用数输入采用键盘方式,电源的外表美观,操作使用方便,具有较高的使用价值。 关键词:数控直流电源单片机 ABSTRACT Numerical control dc power is a common electronic instrument, is widely used in the circuit, the teaching experiment and scientific research, etc. Current use of controlled most of the dc power supply is the point start, the use of the device division, big volume, low efficiency, poor reliability, operation convenience, not high failure. With the development of electronic technology, various kinds of electronic, electrical equipment to improve the performance requirements of power, the power supply, high efficiency, the constant digital modular and intelligent development. Based on the single chip computer system as the core and the design of a new generation of numerical control dc power, it-not only circuit is simple, compact structure, the price is low, superior performance, and because the single-chip microcomputer with the calculation and control ability, use it for data, so as to eliminate all kinds of calculation and reduce the error caused by the analog circuit, output voltage and current limit the number of the keyboard input way, the power supply appearance, convenient in operation, has higher application value. Key words:Numerical control dc power Single-chip microcomputer

数控直流恒流源

数控恒流源设计与总结报告 摘要:本设计以89C52为主控器件,采用了高共模抑制比低温漂的运算放大器OP07和大功率场效应管IRF640构成恒流源,通过12位A/D、D/A转换芯片,完成了单片机对输出电流的实时检测和实时控制,控制界面直观、简洁,具有良好的人机交互性能,人机接口采用4*4键盘及LCD液晶显示器。该系统电流输出范围为20mA~2000mA的数控直流电流源。该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。 关键词:89C52 恒流源AD DA 1 系统设计 设计并制作数控直流电流源。输入交流200~240V,50Hz;输出直流电压≤10V。其原理示意图如下所示。 图1.1 数控直流电流源原理示意图 1.1设计要求 题目要求设计并制作数控直流电流源。输入交流200~240V,50Hz;输出直流电压≤10V。其要求如下: 1.1.1 基本要求 (1)输出电流范围:200mA~2000mA; (2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA; (3)具有“+”、“-”步进调整功能,步进≤10mA; (4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA; (5)纹波电流≤2mA; (6)自制电源。 1.1.2 发挥部分 (1)输出电流范围为20mA~2000mA,步进1mA; (2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字; (3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA; (4)纹波电流≤0.2mA; (5)其他。

数控直流电流源课程设计与制作

课程设计任务书 一、设计题目:数控直流电流源的设计与制作 二、主要内容及要求 1.功能与主要技术指标 (1)输出电流:0∽1A步进可调,调整步距4mA;误差≤0.1mA (2)输入电压:12V; (3)显示:输出电压值用LED数码管显示; (4)电流调整:由“+”、“-”两按键分别控制输出电流的步进增减; (5)输出电流预置:输出电流可预置在0∽1A之间的任意一个值; (6)其它:自制电路工作所需的直流稳压电源,输入电压为±12V,+5V; 三、进度安排 任务设计2012年3月12日—2012年3月16日 练习制作2012年3月19日—2012年3月23日

数控直流电流源设计与制作 一、设计任务和技术要求 1、设计一个数控直流电流源 2、输出电流0~1A,手动步进4mA增、减可调,误差不大于0.1mA; 3、负载供电电压+12V,负载等效阻值10欧姆; 4、电路应具有对负载驱动电流较好的线性控制特性; 二、总体设计方案原理及结构框图 数控直流电流源共有六部分组成,其中输出电流的调节是通过“+” 和“-”两个按键来操作的;步进电流精确到0.1A以手动控制可逆计数器分别作加,减计数;控制数字量为8位二进制码:00000000~11111111增、减变化。 可逆计数器的二进制数字输出分两路运行,一路用于驱动数字显示电路,精确显示当前输出电流值;另一路进入数模转换电路(D/A转换电路);数模转换电路将数字量按比例,转换成模拟电流,然后经过射极跟随器的控制,调整输出级,使输出稳定直流电流。 图2-1电路结构原理框图

三、部分模块原理及结构图 1、74LS193芯片 74LS193具有同步可逆计数功能、异步清零功能、异步并行置 数和保持功能。 与 是为74LS193级联时使用的。级联时只要把低位的端、端分别与高位的CP U、CP D连接起来,各芯片的CR 端连接在一起, 端连接在一起,就可以了。 图3-1 74LS193引脚排列图和逻辑功能示意图CR异步清零端,高电平有效; 异步置数,低电平有效; CPU加法计数脉冲输入端,上升沿触发; CPD减法计数脉冲输入端,上升沿触发; 进位脉冲输出端; BO CO BO CO LD LD CO

相关文档
相关文档 最新文档