文档库 最新最全的文档下载
当前位置:文档库 › 人造卫星基本原理

人造卫星基本原理

人造卫星基本原理
人造卫星基本原理

人造卫星基本原理

集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

人造卫星的基本原理

参考、摘录自——王冈 曹振国《人造卫星原理》

一、关于椭圆轨道

在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。

因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。

a ——椭圆的半长轴

b ——椭圆的半短轴

c

e ——偏心率 a

c

e = 发射速度>7.9km/s-椭圆

>11.2km/s-抛物>16.7km/s-双曲

P e ——近地点

A p ——远地点 P ——半通径)1(22e a a

b P -== Y w ——轴与椭圆交点的坐标

f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角

只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来:

)12(a

r v -=μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -=

近地点向径:)1(e a r p -=

远地点向径:)1(e a r A +=

所以,近地点r 最小,卫星速度最大e e a v -+?=

112μ 远地点r 最大,卫星速度最小e

e a v +-?=112μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。

圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 又因为r g r 2

μ=,所以: 21

0)(r R R g r g v r ?=?= 这就是运行轨道的环绕速度公式。

f a b A p P e

o 卫E

c

三、人造卫星的轨道参数(轨道根数)

对于人造地球卫星轨道的形状、大小、在空间的方位以及卫星在特定时刻所处的位置,人们通常用一些特殊的量来描述,这些“量”被称为“轨道参数”,最常用的是经典轨道常数,即开普勒轨道常数,用来描述在空间中的卫星的轨道。可以用这些常数递推出卫星在过去或将来的位置。有以下六个:

1.轨道倾角 i ——赤道平面与卫星轨道平面间的夹角

2.升交点赤经Ω——从春分点(以地球为中心观察:太阳从南半球王北半球运动时,跟地球赤道平面相交的点)到卫星升交点(卫星由南半球往北半球穿过赤道平面的那一点,反之为降交点)的经度。

3.近地点幅角ω——地心与升交点连线 和 地心与近地点连线 间的夹角

4.椭圆半长轴a

5.椭圆偏心率e

6.卫星通过近地点的时刻t

前5个参数实际描述了3个问题:轨道平面在空间中的方位;椭圆轨道在轨道平面中的取向(长轴指向);椭圆轨道的形状和大小。

四、人造卫星的周期

由开普勒第三定律可知:运行周期的长短与半长轴有关,与半短轴无关 即:GM a T 2

2

2π= 大致可以这样说:

距地面高度180~500km 运行周期约90分钟

距地面高度1 万 km 运行周期约6小时

距地面高度3.6万 km 运行周期约24小时

运行周期为24小时的卫星叫“同步卫星”

相对地面静止(运转方向和地球自转方向相同,轨道在赤道上空)的同步卫星叫“地球同步卫星”

五、人造卫星的寿命

在地球的外层空间,即使气体分子极其稀少,仍然会对卫星的运行形成阻力,使它不断降低运行高度,以至最终进入稠密大气层销毁。所以,简单的说,轨道越高,真空度越高,卫星的运行寿命也就越长。(有效寿命——工作时间还受星上设备元件等影响,所以,卫星真正实用的时间多这几年,少者只有几天甚至更少)

六、人造卫星的常用轨道

1.圆轨道(用于把人造天体作为空间观测站、基准点和中继站的场合——侦查、气象、地球资源勘测、测地、导航、通信等)

要把人造卫星发射到圆轨道,必须同时满足两个条件

(1)速度正好等于入轨点处的当地环绕速度

(2)速度方向同入轨点处的地平线平行

如果,入轨点的速度大于该点环绕速度,卫星将进入椭圆轨道,入轨点成为近地点;

如果,入轨点的速度小于该点环绕速度,卫星将进入椭圆轨道,入轨点成为远地点,其近地点过低,一旦低于100km,进入大气层,就会导致发射失败。

度方向片上还是偏下,近地点都将低于入轨点,方向偏得越多,低得就越多,导致发射失败的危险就越大。

2

入轨点的高度取近地点高度,也就是人造卫星在近地点入轨发射比较方便。

根据轨道的近地点和远地点的要求计算入轨速度。

3.地球同步轨道(零倾角,高度为35 800km,最适合地面远距离通话、电视转播等通信卫星和导弹预警卫星)

地球同步卫星的发射比一般圆轨道和椭圆轨道要复杂,其发射过程可分为三步。

(1)运载火箭将卫星送入初始轨道(地高度,轨道平面和赤道面有倾角,一般在200km左右),

(2) 当卫星经过赤道时,运载火箭再次工作,使其加速,进入一

个远地点为35800km 的椭圆轨道——转移轨道(非常扁,与

赤道平面有倾角),并与火箭分离

(3) 当卫星正好穿过赤道平面时,由卫星上的远地点发动机调整

卫星的速度,再次加速并同时调整方向(由于发动机推力所

增加的速度与卫星原有速度合成),使速度正好等于地球同

步卫星所需环绕速度,就可以使卫星进入地球同步轨道了

4.极地轨道(优点是覆盖全球,侦查、导航、气象、测地、地球资源勘测等应用大倾角的轨道和极地轨道)

七、失重的环境

长期的星际航行,必须在运周飞船上创造人工重力。例如,把飞船做成环形,让它绕中心旋转,在环的外壁上的人和物受到的力就相当于人工重力。

如果假定每分钟转N 次,环的直径为D ,这时,环外壁处的线速度为?

=60N D v π 向心加速度为:222)60

2(2)60(2N D ND D R v a ππ===(若D =60m ,N =6即可和地面上相似)

八、人造卫星的发射

这种发射方式是不现实的:沿水平方向发射,一下子给卫星一个第一宇宙速度。原因有三:空气阻力太大,火箭会在严酷的气动力加热条件下被烧为灰烬;不可能有这样的运输工具;目前,第一宇宙速度还不能在瞬息之间得到。

实际的发射,同时要考虑克服重力和大气阻力减少能量损失等问题。为了利用地球的自转,节省能量,航天发射一般都顺地球自转的方向向东发射。并且,发射时先让运输工具沿垂直方向慢慢上升一段,到一定的高度——空气比较稀薄了,在逐渐拐弯,在增加高度的同时,不断增加速度,奔向所需要的轨道。

我国人造卫星的种类、发射时间、用途和意义

我国人造卫星的种类 环绕地球飞行并在空间轨道运行一圈以上的无人航天器。简称人造地球卫星。人造卫星是发射数量最多,用途最广,发展最快的航天器。1957年10月4日苏联发射了世界上第一颗人造卫星。之后,美国、法国、日本也相继发射了人造卫星。中国于1970年4月24日发射了东方红1号人造卫星,到1992年底中国共发射33颗不同类型的人造卫星。 在人类发射的数千颗人造卫星中,90%以上是直接为国民经济和军事服务的卫星,称为应用卫星。此外,还有科学卫星和技术试验卫星。应用卫星按其用途可分为空间物理探测卫星、通信卫星、天文卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星、测地卫星等。 人造卫星一般由专用系统和保障系统组成。专用系统是指与卫星所执行的任务直接有关的系统,也称为有效载荷。应用卫星的专用系统按卫星的各种用途包括:通信转发器,遥感器,导航设备等。科学卫星的专用系统则是各种空间物理探测、天文探测等仪器。技术试验卫星的专用系统则是各种新原理、新技术、新方案、新仪器设备和新材料的试验设备。保障系统是指保障卫星和专用系统在空间正常工作的系统,也称为服务系统。主要有结构系统、电源系统、热控制系统、姿态控制和轨道控制系统、无线电测控系统等。对于返回卫星,则还有返回着陆系统。 人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈,不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所遥感的面积可达几万平方千米。 在卫星轨道高度达到35800千米,并沿地球赤道上空与地球自转同一方向飞行时,卫星绕地球旋转周期与地球自转周期完全相同,相对位置保持不变。此卫星在地球上看来是静止地挂在高空,称为地球静止轨道卫星,简称静止卫星,这种卫星可实现卫星与地面站之间的不间断的信息交换,并大大简化地面

人造卫星设计

沈阳航空航天大学课程设计任务书CAD课程设计说明书人造地球卫星设计 院系航空航天工程学部(院) 专业空间飞行器设计与工程 班号24030601 学号2012040306013 姓名李桦 指导教师杨靖宇 沈阳航空航天大学 2015年9月

沈阳航空航天大学课程设计任务书 承诺书 本人声明所呈交的课程设计说明书是本人在导师指导下进行 的设计工作及取得的研究成果。除了文中特别加以标注和致谢的地 方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包 含为获得沈阳航空航天大学或其他教育机构的学位或证书而使用 过的材料。 本人授权沈阳航空航天大学可以将论文的全部或部分内容进 行存档,可以采用影印、缩印或扫描等复制手段保存、汇编论文。 (保密的论文在解密后适用本承诺书) 作者签名: 日期: 2015.9.18

摘要 课程设计目的在于培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。本文对人造卫星进行了相关的设计、绘制和装配。这次课程设计持续三周,用CATIA进行绘制并进行合理的调整。 关键词:CATIA.人造卫星设计.装配

ABSTRACT The purpose of curriculum design is to cultivate students comprehensive use of knowledge , discovery, analyzing and solving practical problems. My Course Exercise is about artificial satellite, which include designing, drawing and assemblage. This Course Exercise lasted three weeks, using CATIA software to draw artificial satellite and make reasonable adjustments. In these three weeks, I spend most of my time on studying, I learned a lot from this Course Exercise, which increase my spoken English, ability of designing and innovation. Keywords: CATIA artificial satellite assemble

人造卫星宇宙速度教案Word版

人造卫星宇宙速度 平谷区平谷中学分校李招娣 教学设计思路: 本节重点讲述了人造卫星的发射原理,推导了第一宇宙速度,介绍了三个宇宙速度的含义.本节内容是万有引力定律在天体运动中的具体运用,是航天科学技术的理论基础.引导学生运用科学的思维方法,探究人造卫星的发射原理,进行知识的正向迁移,顺利、流畅地推导第一宇宙速度,有助于培养学生的发散思维、逻辑思维,发展的分析推理的能力.另外,学生通过了解人造卫星、宇宙速度,也将产生对航天科学的热爱,增强民族自信心和自豪感. 学习任务分析: 通过对前几节知识的学习,学生对曲线运动的特点、万有引力定律已有一定的了解.在此基础上,教师通过设计问题情境,引导学生探究,获得新知识. 学习者分析: 尽管学生对天体运动的知识储备不足,猜想可能缺乏科学性,语言表达也许欠妥,但只要学习始终参与到学习情境中,激活思维,大胆猜想,敢于表达,学生就能得到发展和提高. 教学目标: 一、知识与技能 了解人造卫星的发射与运行原理,知道三个宇宙速度的含义,会推导第一宇宙速度.了解人造卫星的运行原理,认识万有引力定律对科学发展所起的作用,培养学生科学服务于人类的意识. 二、过程与方法 学习科学的思维方法,发展思维的独立性,提高发散思维能力、分析推理能力和语言表达能力. 三、情感态度与价值观 在主动学习、合作探究的过程中,体验和谐、民主、愉悦的学习氛围,在探究中不断获得美的感受不断进步. 学习科学,热爱科学,增强民族自信心和自豪感. 教学准备: 多媒体电脑及相关软件.

人类进入了航天时代.这节课我们就来学习人造地球卫星 方面的基本知识. § 3.4 人造卫星宇宙速度 进行新 课 问:离地面一定高度的物体以一定的初速度水平射出,由 于重力作用,物体将做平抛运动,即最终要落回地面.但如果 射出的速度增大,会发生什么情况呢? 思考 演示牛 顿设想原理 图 一、人造地球卫星 由于抛出速度不同,物体的落点也不同.当抛出速度达 到一定大小,物体就不会落回地面,而是在引力作用下绕地球 旋转,成为绕地球运动的人造卫星. 那么,速度多大时,物体将不会落回地面而成为绕地球旋转的 卫星呢? 观察、分析 引导学 生讨论 二、宇宙速度 下面讨论人造卫星绕地球运动的速度.假如地球和人造卫 星的质量分别为M和m,卫星的轨道半径和线速度分别为r 和v,根据万有引力提供向心力,可解出 对于近地人造卫星,卫星的运转半径约等于地球半径R, 可求出: 将引力常量G=6.67×10-11N·m2/kg2和地球质量M= 5.98× 1024kg 及地球半径 R= 6.37× 106m 代入上式,可求 得 讨论并推 导

人造卫星基本原理

人造卫星的基本原理 参考、摘录自——王冈 曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O 在椭圆的一个焦点上 a ——椭圆的半长轴 b ——椭圆的半短轴 >11.2km/s-抛物线 >16.7km/s-双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(2 2 e a a b P -== Y w ——轴与椭圆交点的坐标 f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12( a r v - = μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+? = 112 μ 远地点r 最大,卫星速度最小e e a v +-? = 112 μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 r GM r v = = 2 μ A

各种各样的人造卫星

各种各样的人造卫星 人造地球卫星有它独具的优越条件。它本身无需动力就可以在大气外层空间长时间运行,能在几百公里到几万公里高度的大范围内活动,飞越地球上的绝大部分地区,甚至全球飞行,执行航天任务。这是大气层内任何飞行器都无法比拟的。自从第一颗人造地球卫星问世后,世界各国都把 发展航天事业放在重要地位。迄今,有20多个国家先后共发射了4000多颗人造地球卫星。 各种应用卫星不仅成了人类的政治活动、生产劳动、科学研究、文化娱乐所不可缺少的设备,而且现在它已进入到能大量创造财富的实用阶段。如美国制造一颗气象卫星成本只有几千万美元,而每年可收益10~20亿美元;用2.5亿美元设置3颗资源卫星,每年可收益14亿美元。还有各种军事卫星,在军事活动中也取得非常明显的效果。 一、通信卫星 现在,人们从电视屏幕上看到世界各地生动的场景和激动人心的体育比赛场面,已习以为常。确实,这是通信卫星的功劳才让观众大饱眼福,给千家万户带来了欢乐。 现代无线电通信有长波、中波、短波、超短波、微波等几种波段。其中超短波(波长10~1米)和微波(波长1米以下)传输的信息量大,稳定可靠,适合于远距离通信,但是只能在“视距”范围内直线传播。发射站OH架设的天线越高,传播的范围越远,但超过OA的距离处就无法收到,需要一个转播站O′H′来转播。如果把转播站放到卫星上去,则传播距离就大得多。通信卫星上装有天线、转发器等无线电传输设备。地面发射站发出的微波信号,通过通信卫星接收、放大后,再远距离发回地面。

但是卫星不停地绕地面运行,只有地面上看到卫星时才能接收信号,因此,对某一地点来说就不能随时都能通信。这就要求通信卫星相对于地球是静止的,才能稳定通信。如果把卫星发射到离地面35800公里高度,那么它绕地球运行一周,正好等于地球的一天,与地球自转的速度同步,卫星相对于地球就是静止的。这个轨道就是同步轨道。一颗通信卫星在这个高度上可以覆盖地球表面积的三分之一。因此,在赤道上空等距安排三颗同步通信卫星,就可以实现全球通信,成一组国际通信卫星,当然还需要配备专门的地面接收和发射站。下图即为我国的WD-6六米卫星通信地面站。 同时,通信卫星要对地面站接收和发射信号,就要控制卫星的姿态, 使无线始终对着地球。最新的V号国际通信卫星有12000条电话线路,

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨 问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。 轨道半径r 确定后,与之对应的卫星线速度 r GM v = 、周期 GM r T 3 2π =、向心加速度2r GM a =也都是唯一确定的。如果卫星的质 量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径 r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情 况决定)。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄 大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速 度减小,卫星所需要的向心力r mv 2减小了,而万有引力2 r GMm 的 大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

卫星的大小分类

神舟太空集团信息,重量在1000Kg以下的人造卫星统称为“微小型卫星”,进一步可细分为:“小卫星”(smallsat),重100~1000Kg;“微卫星” (microsat),重10~100Kg;“纳卫星” (nanosat),重1~10Kg;“皮卫星” (picosat),重0.1~1Kg;“飞卫星” (femtosat),重0.1Kg以下。英文词中的micro (微)、nano (纳)、pico (皮)和femto (飞)等,是国际单位制中用以表示十进制倍数的词头,其数值分别为10-6、10-9、10-12和10-15,这里只是借用来对微小型卫星按重量进行分类,并不具有其数值的实际含义。 微小型卫星体积小、重量轻、研制周期短、成本低、发射方式灵活,在军事上有较大的应用潜力,20世纪80年代中期以来受到越来越多国家的重视。美国已发射重量在几百千克以下的多种小卫星和重量不足10千克的试验型纳卫星和皮卫星;英国、瑞典也在2000年发射了纳卫星;法国、印度、阿根廷、智利、巴西、韩国、泰国、巴基斯坦等国已经有了自己的小卫星。此外,印度尼西亚、马来西亚、菲律宾等国及中国台湾地区正在与航天大国合作研制小卫星或微卫星。 微小型卫星目前主要用于通信、对地遥感、行星际探测、科学研究和技术试验,它的发展依然是受需求牵引和技术推动的制约。更广泛的应用需要在关键技术上有革命性的突破与创新。这些新技术主要包括电推进技术、多功能结构、微机电系统、一体化设计、先进的存储器与计算机软件技术以及轨道控制技术等。随着这些技术不断被攻克,微小型卫星必将成为一大类航天器,并作为大型航天器的补充,在军事、国民经济各部门得到广泛应用。 根据太空垃圾尺寸的大小,国际上把太空垃圾分为3类:尺寸>10厘米的为大碎片,现在大概有2万多块,可被监测到;尺寸介于1~10厘米之间的为小碎片,现在大概有11万块;尺寸介于1毫米~1厘米之间的为微小碎片,现在大概有37万块。而尺寸不大于1毫米的碎片现在大概有几千万块。 多年来,科学家一直担心卫星有可能会撞上这些太空垃圾。一次撞击就有可能产生数千个垃圾,这些碎片存在摧毁其他卫星的潜在风险。轨道里大约有2.2万个尺寸足以让地面上的人进行追踪的物体,以及无数更小的垃圾,它们会对载人飞船和非常重要的人造卫星造成严重破坏。电视信号、天气预报、全球定位导航和国际电话连接均是存在撞击风险的一些服务项目。最近美国宇航局在一份报告中称,围绕在地球周围的太空垃圾的数量已经达到一个“临界点”。

人造卫星问题专题

人造卫星问题专题 一. 教学容: 人造卫星问题专题 二. 学习目标: 1、掌握人造卫星的力学及运动特点。 2、掌握地球同步卫星的特点及相关的题目类型。 3、强化对于人造卫星问题中典型题型的相关解法。 考点地位: 人造卫星问题是万有引力定律应用部分的难点问题,是近几年高考命题的热点,这部分容综合性很强,从高考出题形式上分析,突出了对于卫星的发射、运转、回收等多方面的考查,人造卫星问题中涉及到的同步卫星的定位,人造卫星问题中的超重失重问题,人造卫星与地理知识与现代科技知识的综合问题,都是近几年高考考查的热点问题,2007年全国各地的高考题目中,2007年单科卷第16题是以大型计算题目形式出现的,2007年天津理综卷的第17题理综卷的第17题均以绕月探测工程为物理背景以选择题形式出现。 三. 重难点解析: 1. 人造地球卫星的发射速度 对于人造地球卫星,由,得,这一速度是人造地球卫星在轨道上的运行速度,其大小随轨道半径的增大而减小,但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到距地球越远的轨道,在地面上所需的发射速度就越大。 2. 人造卫星的运行速度、角速度、周期与半径的关系 根据万有引力提供向心力,则有 (1)由,得,即人造卫星的运行速度与轨道半径的平方根成反比,所以半径越大(即卫星离地面越高),线速度越小。 (2)由,得,即,故半径越大,角速度越小。 (3)由,得,即,所以半径越大,周期越长,发射人造地球卫星的最小周期约为85分钟。 3. 人造卫星的发射速度和运行速度(环绕速度) (1)发射速度是指被发射物在地面附近离开发射装置时的速度,并且一旦发射后就再也没有补充能量,被发射物仅依靠自身的初动能克服地球引力做功上升一定高度,进入运动轨道(注意:发射速度不是应用多级运载火箭发射时,被发射物离开地面发射装置的初速度)。

(完整版)人造卫星选择专题练习有答案

e p q 人造卫星选择题专题练习 1.如图,地球赤道上山丘e ,近地资源卫星p 和同步通信卫星q 均在 赤道平面上绕地球做匀速圆周运动。设e 、p 、q 的圆周运动速率分别 为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则 A .v 1>v 2>v 3 B .v 1a 2>a 3 D .a 1

人造卫星的分类及主要用途

人造卫星的分类及主要用途 自从牛顿发现万有引力定律,并设想在高山上水平抛出物体,当速度大到一定程度时,物体就不会落回地面,成为一颗人造卫星,300多年过去后,他的这一理论得到了证实,在地球上方发射了各种各样的人造卫星。 一、人造卫星的分类。 1、按用途分:科学探测和研究的科学卫星,包括空间物理探测卫星和天文卫星等;试验卫星,包括进行航天新技术试验或者是为应用类卫星进行试验的卫星;应用卫星,包括通信卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星等, 2、按轨道的高低分:低轨道、中高轨道、地球同步轨道、地球静止轨道、太阳同步轨道、大椭圆轨道和极地轨道7大类。 3、按运行轨道划分: 顺行轨道:顺行轨道的特点是轨道倾角即轨道平面与地球赤道平面的夹角小于90度。卫星地面较近,高度仅为数百公里,故又将其称为近地轨道。我国用长征一、二号、风暴一号两种运载火箭发射的8颗科学技术试验卫星, 17颗返回式遥感卫星,神州号试验飞船,都是用顺行轨道。 逆行轨道:逆行轨道的特征是轨道倾角大于90度。欲把卫星送入这种轨道运行,运载火箭需要朝西南方向发射。不仅无法利用地球自转的部分速度,而且还要付出额外能量克服地球自转。因此,除了太阳同步轨道外,一般都不利用这类轨道。 赤道轨道:赤道轨道的特点是轨道倾角为0度,卫星在赤道上空运行。这种轨道有无数条,但其中的一条地球静止同步轨道具有特殊的重要地位。世界上主要的通信卫星都分布在这条轨道上。我国用长征三号火箭先后发射了1颗试验卫星、5颗东方红二号系列通信卫星、2颗风云二号气象卫星、用长征三号甲火箭发射了1颗实践四号探测卫星、2两颗东方红三号通信卫星、1颗中星22号通信卫星都在这一轨道上。 极地轨道:就卫星轨道类型来说,还有一种轨道倾角为90度的极地轨道。它是因轨道平面通过地球南北两极而得名。在这种轨道上运行的卫星可以飞经地球上任何地区上空。我国长征二号丙改进型火箭以1箭双星的方式6次从太原起飞,把12颗美国铱星送入太空,就属于这种发射方式。

人造卫星基本原理

人造卫星的基本原理 参考、摘录自一一王冈曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越扁长”直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心0在椭圆的一个焦点上 a――椭圆的半长轴 b -- 椭圆的半短轴 c -- 偏心距,即椭圆焦点到对称中心的距离。 e -- 偏心率 Pe --- 近地点 Ap --- 远地点 P――半通径 Yw——轴与椭圆交点的坐标

f――真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E -- 偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a, e等,卫星在椭圆轨 道上任一点(r)处的速度就可以计算出来: 其中二GM (地心万有引力常数) 椭圆轨道上任一点处的向径r为: 近地点向径: 远地点向径: 所以,近地点r最小,卫星速度最大 远地点r最大,卫星速度最小 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r,所以 又因为,所以: 这就是运行轨道的环绕速度公式。 三、人造卫星的轨道参数(轨道根数) 对于人造地球卫星轨道的形状、大小、在空间的方位以及卫星在特定时刻所处的位置,人们通常用一些特殊的量来描述,这些量”被称为轨道参数”最 常用的是经典轨道常数,即开普勒轨道常数,用来描述在空间中的卫星的轨道。可以用这些常数递推出卫星在过去或将来的位置。有以下六个: 1.轨道倾角i――赤道平面与卫星轨道平面间的夹角 2.升交点赤经Q―-春分点(以地球为中心观察:太阳从南半球王北半球运动时,跟地球赤道平面相交的点)到卫星升交点(卫星由南半球往北半球穿过赤道平

能发射人造卫星的国家

*目前能够独立用火箭发射航天器的国家和地区: 苏联(1957)、 美国(1958)、 法国(1965)、 日本(1970)、 中国(1970)、 英国(1971)、 印度(1980)、 以色列(1988)、 俄罗斯(1992,继承的是苏联技术)、 乌克兰(1992,继承的是苏联技术)、 伊朗(2009), 朝鲜(1998,2009两次发射西方均不承认成功,2012年获得成功且得到美日韩承认) 巴西(巴西在1997、1999和2003年进行了3次发射尝试,但均未成功) 韩国(进行过2次“罗老号”试验,均未成功,且火箭第一部分为俄罗斯制造)。 *目前拥有战争核力量的国家: 国际社会承认的:美国、苏联(现为俄罗斯)、中国、法国、英国 国际社会公认但不承认的:以色列、印度、巴基斯坦、伊朗、朝鲜 准有核、有研制能力的国家:德国、日本。。。。。。(一定要防止核扩散啊) *目前向外天体发射过探测器的国家和地区: 俄罗斯,美国,日本,欧盟,中国,印度

*目前掌握航天器返回技术的国家和地区: 俄罗斯,美国,中国,欧盟,印度 *目前能够独立实施载人航天的国家: 俄罗斯,美国,中国 *目前进行过载人登月的国家: 美国(1969年-1972年,一共6次登月) *目前进行过载人登火星的国家: 这个真没有 截止到2008年底,有38个国家的宇航员先后飞上太空,从时间上看,中国的航天员排在国家序列的第35位,距离前苏联和美国首次进入太空的时间相隔42年,可谓姗姗来迟。但是,如果从宇航员乘坐的宇宙飞船是否是本国研制的这一点来看,中国当之无愧的排名第三,毕竟,当今世界除了俄罗斯和美国,只有中国具备独立的载人航天能力,其他国家的宇航员都是借助俄罗斯和美国(大部分由前苏联/俄罗斯承担)的运载工具(飞船和航天飞机)才得以上天。这倒不是说除此三国外,其他国家和组织一概不具备研发载人航天的实力,比如对于欧空局而言,研制类似“神舟”系列水平的飞船在技术上并无任何重大障碍,只是受到政治上和经济上的种种制约罢了,毕竟,花费巨大的载人航天工程其费效比并不突出,有较强的国家形象工程的味道,对大国很重要,但对中小国家则不那么急需。 值得一提的是,1976年起前苏联开始实行颇具政治色彩的Intercosmos计划,从社会主义同盟国家选拔宇航员,接受训练后再乘坐苏联飞船进入太空。在这种历史背景下,来自越南的范遵居然成为了全亚洲、乃至第三世界国家远征太空的第一人,在航天史上留下了自己的名字。范遵1947年生于越南太平省,1965年加入北越空军,1972年他在河内上空击落了美军的B—52轰炸机,成为击落此

人造卫星基本原理

人造卫星的基本原理 参考、摘录自王冈曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大丁地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏 离,和速度方向与当地的地球水平■方向问的微小偏差,都会使航天器的轨道不是圆形 二是椭圆形,椭圆扁率取决丁入轨点的速度大小和方向。 发射速度>16.7km/s-双曲线 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用丁任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O在椭圆的一个焦点上 a——椭圆的半长轴 b——椭圆的半短轴

f --- 真近点角,近地点和远地点之间连线与卫星向径之间的火角 E --- 偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a, e 等,卫星在椭圆轨道 上任一点(r)处的速度就可以计算出来: v J (2 1) 其中2=GM (地心万有引力常数) r a 椭圆轨道上任一点处的向径r 为:r a(1 ecosE) 近地点向径:r p a(1 e) p 远地点向径:r A a(1 e) 远地点r 最大,卫星速度最小v 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当 地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即 a=b=r ,所以 飞 GM 乂因为 g r ——,所以:v 、g 「r ‘g 。R (—)2 r r 这就是运行轨道的环绕速度公式。 c ——偏心距,即椭圆焦点到对称中心的距离 e — 偏心率 e — a P e 一 -近地点 Ap- -远地点 P — b 2 一半通径P — a a(1 e 2) Y w- -轴与椭圆交点的坐标 所以,近地点r 最小,卫星速度最大v

中国发射第一颗人造卫星的意义 及卫星的分类知识

中国发射第一颗人造卫星的意义 “东方红一号”卫星的发射成功,标志着我国成为当时世界上第五个独立自主研制和发射人造地球卫星的国家。其发射的成功,使中国多级火箭技术取得了研制和试验方面的突破,为“东方红一号”人造地球卫星的成功发射打下了坚实的基础,创造了良好的条件。 “东方红一号”卫星的发射成功使中国成为世界上继苏联、美国、法国和日本之后第五个完全依靠自己的力量成功发射人造卫星的国家。虽比它苏联发射第一颗人造卫星“斯普特尼克一号”晚了13年,它的质量超过了前四个国家第一颗卫星质量的总和。从此中国正式加入了“太空俱乐部”,发射成功后,钱学森向中央提出中国应该发展载人航天,并提交发展中国载人航天事业的报告,得毛泽东亲笔批示“同意”。东方红一号卫星,反映着当时我国的经济、科技、社会和军事能力发展水平,是国家综合国力的重要标志,是影响国际关系格局的重要因素,是促进经济和科技进步的重要手段,对于增强民族自豪感和凝聚力具有重要作用。东方红一号卫星上天,在许多国家引起了强烈反响,国外纷纷发表评论指出,这颗卫星发射成功,“体现了中国一直在依靠自己的力量为人类的幸福和进步进行宇宙开发”,“表明中国的科学技术和工业进步达到新高度”,“是中国科学技术和工艺方面取得的突出成就”,“中国掌握了先进火箭技术和制造出大型火箭的技能”。东方红一号卫星是全国各族人民在中国共产党领导下艰苦奋斗的结晶,是中国工人阶级、解放军、知识分子的杰出贡献。

“东方红一号”的发射成功,为中国航天技术的发展打下了极为坚实的根基,带动了中国航天工业的兴起,使中国的航天技术与世界航天技术前沿保持同步,标志着新中国进入了航天时代。 我国人造卫星的种类 环绕地球飞行并在空间轨道运行一圈以上的无人航天器。简称人造地球卫星。人造卫星是发射数量最多,用途最广,发展最快的航天器。 在人类发射的数千颗人造卫星中,90%以上是直接为国民经济和军事服务的卫星,称为应用卫星。此外,还有科学卫星和技术试验卫星。应用卫星按其用途可分为空间物理探测卫星、通信卫星、天文卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星、测地卫星等。在人类发射的数千颗人造卫星中,90%以上是直接为国民经济和军事服务的卫星,称为应用卫星。此外,还有科学卫星和技术试验卫星。应用卫星按其用途可分为空间物理探测卫星、通信卫星、天文卫星、气象卫星、地球资源卫星、侦察卫星、导航卫星、测地卫星等。 我国人造卫星的发射时间、用途和意义

人造地球卫星知识点解析

人造地球卫星知识点解析 一、难点形成原因: 卫星问题是高中物理内容中的牛顿运动定律、运动学基本规律、能量守恒定律、万有引力定律甚至还有电磁学规律的综合应用。其之所以成为高中物理教学难点之一,不外乎有以下几个方面的原因。 1、不能正确建立卫星的物理模型而导致认知负迁移 由于高中学生认知心理的局限性以及由牛顿运动定律研究地面物体运动到由天体运动规律研究卫星问题的跨度,使其对卫星、飞船、空间站、航天飞机等天体物体绕地球运转以及对地球表面物体随地球自转的运动学特点、受力情形的动力学特点分辩不清,无法建立卫星或天体的匀速圆周运动的物理学模型(包括过程模型和状态模型),解题时自然不自然界的受制于旧有的运动学思路方法,导致认知的负迁移,出现分析与判断的失误。 2、不能正确区分卫星种类导致理解混淆 人造卫星按运行轨道可分为低轨道卫星、中高轨道卫星、地球同步轨道卫星、地球静止卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按科学用途可分为气象卫星、通讯卫星、侦察卫星、科学卫星、应用卫星和技术试验卫星。。。。。。由于不同称谓的卫星对应不同的规律与状态,而学生对这些分类名称与所学教材中的卫星知识又不能吻合对应,因而导致理解与应用上的错误。 3、不能正确理解物理意义导致概念错误 卫星问题中有诸多的名词与概念,如,卫星、双星、行星、恒星、黑洞;月球、地球、土星、火星、太阳;卫星的轨道半径、卫星的自身半径;卫星的公转周期、卫星的自转周期;卫星的向心加速度、卫星所在轨道的重力加速度、地球表面上的重力加速度;卫星的追赶、对接、变轨、喷气、同步、发射、环绕等问题。。。。。。因为不清楚卫星问题涉及到的诸多概念的含义,时常导致读题、审题、求解过程中概念错乱的错误。 4、不能正确分析受力导致规律应用错乱 由于高一时期所学物体受力分析的知识欠缺不全和疏于深化理解,牛顿运动定律、圆周运动规律、曲线运动知识的不熟悉甚至于淡忘,以至于不能将这些知识迁移并应用于卫星运行原理的分析,无法建立正确的分析思路,导致公式、规律的胡乱套用,其解题错误也就在所难免。 5、不能全面把握卫星问题的知识体系,以致于无法正确区分类近知识点的不同。如,开普勒行星运动规律与万有引力定律的不同;赤道物体随地球自转的向心加速度与同步卫星环绕地球运行的向心加速度的不同;月球绕地球运动的向心加速度与月球轨道上的重力加速度的不同;卫星绕地球运动的向心加速度与切向加速度的不同;卫星的运行速度与发射速度的不同;由万有引力、重力、向心力构成的三个等量关系式的不同;天体的自身半径与卫星的轨道半径的不同;两个天体之间的距离L与某一天体的运行轨道半径r的不同。。。。。。只有明确的把握这些类近而相关的知识点的异同时才能正确的分析求解卫星问题。 二、难点突破策略: (一)明确卫星的概念与适用的规律: 1、卫星的概念: 由人类制作并发射到太空中、能环绕地球在空间轨道上运行(至少一圈)、用于科研应用的无人或载人航天器,简称人造卫星。高中物理的学习过程中要将其抽象为一个能环绕地球做圆周运动的物体。

2021年人造卫星基本原理

人造卫星的基本原理 欧阳光明(2021.03.07) 参考、摘录自——王冈曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 a——椭圆的半长轴b——椭圆的半短轴>11.2km/s-抛物线 双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(22 e a a b P -==Y w f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12(a r v -=μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+?=112μ 远地点r 最大,卫星速度最小e e a v +-? =112μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 A

各国首颗人造卫星

各国首颗人造卫星 1.苏联 1957年10月4日,世界上第一个人造地球卫星由前苏联发射成功。这个卫星在离地面900公里的高空运行;它每转一整周的时间是1小时35分钟,它的运行轨道和赤道平面之间所形成的倾斜角是65度。它是一个球形体,直径58公分,重83.6公斤。内装两部不断放射无线电信号的无线电发报机。其频率分别为20.005和40.002兆赫(波长分别为15和7.5公尺左右)。信号采用电报讯号的形式,每个信号持续时间约0.3秒。间歇时间与此相同。苏联第一颗人造地球卫星的发射成功,揭开了人类向太空进军的序幕,大大激发了世界各国研制和发射卫星的热情。 2.美国 美国于1958年1月31日成功地发射了第一颗“探险者”-1号人造卫星。该卫星重8.22千克,锥顶圆柱形,高203.2厘米,直径15.2厘米,沿近地点360.4公里、远地点2531公里的椭圆轨道绕地球运行,轨道倾角33.34°,运行周期114.8分钟。发射“探险者”-1号的运载火箭是“丘辟特”℃四级运载火箭。 3.法国 法国于1965年11月26日成功地发射了第一颗“试验卫星”-1(A-l)号人造卫星。该行星重约42千克,运行周期108.61分钟,近地点526.24公里、远地点1808.85公里的椭圆轨道运行,轨道倾角34.24°。发射A-1卫星的运载火箭为“钻石”tA号三级火箭,其全长18.7米,直径1.4米,起飞重量约18吨。 4.日本 日本于1970年2月11日成功地发射了第一颗人造卫星“大隅”号。该星重约9.4公斤,轨道倾角31.07°,近地点339公里,远地点5138公里,运行周期144.2分钟。发射“大隅”号卫星的运载火箭为“兰达”-45四级固体火箭,火箭全长16.5米,直径0.74米,起飞重量9.4吨。第一级由主发动机和两个助推器组成,推力分别为37吨和26吨;第二级推力为11.8吨;第三、四级推力分别为6.5吨和1吨。 5.中国 1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红”1号由“长征一号”运载火箭一次发射成功。该卫星直径约1米,重约173千克,运行轨道距地球最近点439 公里,最远点2384公里,轨道平面和地球赤道平面的夹角 68.5度,绕地球一周(运行周期)114分钟。卫星用20009兆周的频率,播送《东方红》乐曲。发射“东方红”1号卫星的远载火箭为“长征”1号三级运载火箭,火箭全长29,45米,直径2.25米,起飞重量81.6吨,发射推力

人造卫星

太空千里眼抗震显身手 ——人造卫星 之前我们已经了解了什么是载人航天,什么是航天器,其中,我们最熟悉的航天器应该就是人造卫星了。人造卫星是发射数量最多、用途最广、发展最快的航天器,其发射数量约占航天器发射总数的90%以上。那么,什么是人造卫星呢?人造卫星有哪些特征,又有 哪些用途呢?让我们一起携手,从了解卫星开始。 卫星分天然卫星和人造卫星。天然卫星是指环绕行星运转的星球,而行星又环绕着恒星运转。就比如在太阳系中,太阳是恒星,地球及其它行星环绕太阳运转,月亮、土卫一、天卫一等星球则环绕着地球及其它行星运转,这些星球就叫做行星的天然卫星。 人造卫星按用途来讲可以分为三类,一个是科学卫星,一个是实验卫星,第三个是应用卫星。人造地球卫星按运行轨道可分为低轨道卫星、中高轨道卫星和轨道高度约为 36000 卡通人造卫星(https://www.wendangku.net/doc/ff7215402.html, ) 卫星的分类 太阳系(https://www.wendangku.net/doc/ff7215402.html, )

千米的地球静止轨道卫星。 月亮是地球的天然卫星。月球在绕地球转时,受离心力的作用。因为月球绕地球的运转所产生的离心力刚好与地球的引力相当,使得月球既无法挣脱地球的引力,也不会被地球“吸过去”。而关于月亮是不是地球唯一的天然 卫星,或者是不是从一开始就是地球的卫星,到现在为止,还有很多争议。2002年10月,科学家曾发现一颗命名为“2002 AA29”的小行星,其直径大约60米,因受地球和太阳的共同作用力而与地球运行的轨道非常接近。科学家预计600年后这颗小行星才有可能像月球一样围绕地球飞行,成为一颗遥远的“准卫星”。另外,2003年,美国天文学家发现了一颗“准卫星”,一颗环绕太阳飞行并围绕地球旋转的小行星。科学家将其命名为:“2003 YN107”。这就意味着,地球可能并非只有一个真正的天然卫星。 人造卫星是人造地球卫星的简称。用运载火箭发射到高空并使其沿着一定轨道环绕地球运行的宇宙飞行器。卫星的外貌千姿百态,有球形、多面形、圆柱形、棱柱形,还有像哑铃、皇冠、蝴蝶和大鹏等形状的。人造地球卫星具有对地球进行全方位观测的能力,其 最大特点是居高临下,俯视面大。一颗运行在赤道上空轨道的卫星可以覆盖地球表面 1.63 ——小知识 天然卫星 人造卫星 人造卫星(https://www.wendangku.net/doc/ff7215402.html, )

天体运动与人造卫星知识点

天体运动与人造卫星知 识点 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

天体运动与人造卫星 要点一宇宙速度的理解与计算 1.第一宇宙速度的推导 方法一:由G=m得 v1==m/s =7.9×103m/s。 方法二:由mg=m得 v1==m/s=7.9×103m/s。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min=2π=5075s≈85min。 2.宇宙速度与运动轨迹的关系 (1)v发=7.9km/s时,卫星绕地球做匀速圆周运动。 (2)7.9km/s<v发<11.2km/s,卫星绕地球运动的轨迹为椭圆。 (3)11.2km/s≤v发<16.7km/s,卫星绕太阳做椭圆运动。 (4)v发≥16.7km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。 要点二卫星运行参量的分析与比较 1.四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系。 = 2.四个比较 (1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星。 (2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。 (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9km/s。 (4)赤道上的物体随地球自转而做匀速圆周运动,由万有引力和地面支持力的合力充

当向心力(或者说由万有引力的分力充当向心力),它的运动规律不同于卫星,但它的周期、角速度与同步卫星相等。 要点三卫星变轨问题分析 1.变轨原理及过程 人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图4-5-2所示。 图4-5-2 (1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。 2.三个运行物理量的大小比较 (1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点速率分别为v A、v B。在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。 (2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。 (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律=k可知T1<T2<T3。 [方法规律] 卫星变轨的实质(1)当卫星的速度突然增加时,G<m,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=可知其运行速度比原轨道时减小。 (2)当卫星的速度突然减小时,G>m,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=可知其运行速度比原轨道时增大。卫星的发射和回收就是利用这一原理。 要点四宇宙多星模型 1.宇宙双星模型 (1)两颗行星做匀速圆周运动所需的向心力是由它们之间的万有引力提供的,故两行星做匀速圆周运动的向心力大小相等。 (2)两颗行星均绕它们连线上的一点做匀速圆周运动,因此它们的运行周期和角速度

相关文档
相关文档 最新文档