文档库 最新最全的文档下载
当前位置:文档库 › “优凝舒布洛克杯”大学生加筋土挡墙及砌块面板设计大赛计算书

“优凝舒布洛克杯”大学生加筋土挡墙及砌块面板设计大赛计算书

“优凝舒布洛克杯”大学生加筋土挡墙及砌块面板设计大赛计算书
“优凝舒布洛克杯”大学生加筋土挡墙及砌块面板设计大赛计算书

“优凝舒布洛克杯”大学生加筋土挡墙及砌块面板

设计大赛计算书

组长:

队员:

“优凝舒布洛克杯”大学生加筋土挡墙及砌块面板

设计大赛计算书

一、新技术——用加筋环代替加筋条。

1.加筋环:用钢筋等抗拉强度高的材料制成的圆形环。

2.加筋环的作用机理:在筋环内填加的填料,环内产生的侧向压力由加筋环承担,加筋环

内材料在垂直荷载的作用下受挤压并产生侧向膨胀,而加筋环约束了这种变形,使侧向压力全部由加筋环承担。因此加筋环阻断了环内侧向压力的向外传递,从而圆环和环内填土形成一个饼状物,若干层“土饼”交叉叠加后便组成了加筋土实体。

3.加筋环的优越性:①加筋体内部受力明确;②加筋体内部受力明确;③加筋材料易于防腐;

④有利于施工;⑤经济效益好。

二、模型建造

在一块宽*高=50cm*50cm的制面板上粘结加筋带,我门采用筋带和筋环的组合体。根据对实际工程案例的考察和对模型的尺寸要求的分析我们做出了如下的设计。整体效果如下图所示:

筋带总共设8层加筋环,沿挡墙纵向共4列,相邻的两行交叉叠加。筋带的尺寸和筋环的尺寸见下图。

加筋组合体与面板的设计四视图:

三、计算过程

1.材料特性及参数根据

;301.0030,/KN 18)0()()(=?=?

===ββ?γa K m ,)(填土面与水平面夹角内摩擦角重度

2.库仑土压力计算:

m KN K H Q E a a /67725.0301.05.0182

1

2

1

22max =???==

主动土压力分解为水平分力和垂直分力

;

sin ,cos θθa ay a ax E E E E ==式中:

.εσθ+=

3垂直土压力计算。

深度为i Z 的垂直应力为:h i i γγσ+Z = 式中——h :外荷载的等土层厚度。

;28.846.018max h h γγδ+=+?=

4.筋带拉力的计算及筋带长度的计算:

5.?????????????????????????????????????

四、稳定性验算。

欲使拉筋不被拔出,应使得拉筋与摩擦系数满足下列关系。

f N b L

T

≤2

式中——T :筋带所受拉力, b : 拉筋宽度, N :垂直土压力,

f: 土与拉筋间的摩擦系数。

一:参考文献(刘大鹏.土力学.清华大学出版社)第206页表6-4主动土压力系数

K。

a

二:感想

通过这次比赛作品的设计,我们都认识到了团队合作的重要性,增强了友谊,增强了动手能力。这次比赛,是否能够进入决赛,不是我们关心的,关键在于参加了,运用了自己所学的知识,也学到了新知识,我们还会努力地,因为:努力不一定成功,放弃必定失败。

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

初步设计阶段混凝土面板堆石坝设计大纲范本讲解

FCD31010 FCD 水利水电工程初步设计阶段 混凝土面板堆石坝设计大纲范本 水利水电勘测设计标准化信息网 i

FCD31010 FCD 1999年10月 ii

_____ 工程初步设计阶段 混凝土面板堆石坝设计大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员:

______ 勘测设计研究院 ______ 年—月 目录 1综合说明 (4) 2 设计依据文件和规范 .................................................... ( 4) 3 基本资料 (4) 4 面板坝布置 (9) 5 坝体设计 (10) 6 坝体计算 (13) 7 基础处理 (14) 8 坝体原型观测设计 ..................................................... ( 15) 9 工程量计算及设计成果 ................................................. ( 16)

1 引言 工程位于 ____ 省 ______ ( 县)以 __ km 的 _____ 河上,是以 ______ 为主,兼顾 (结合 ) 等综合利用的水利水电枢纽工程。水库正常蓄水位 ________ m,最大坝高 ______ m 总库容 _______ 32 m ,电站总装机容量 ______ MW 年发电量 ______ kW- h ,灌溉面积 _____ hm 。 本工程可行性研究报告于 _______ 年 ____ 月由 ____ 审查通过,选定坝址为。 2 设计依据文件和规范 2.1 有关本工程的文件 (1) 可行性研究报告 (2) 可行性研究报告审批文件 (3) 可行性研究地质报告、建材试验报告 (4) 可行性研究专题报告 (5) 设计合同及设计任务书 (6) 初步设计地质报告、建材试验报告 2.2 主要设计规范 3 基本资料 3.1 工程等别与建筑物级别 (1) 工程等别 工程,水库总库容 x 108nf ,防洪效益 ,灌溉面积 hmf ,水电站装 机容量 MV ,按SDJ 12 — 78的规定,本工程为 等。 (2) 建筑物级别 根据 SDJ 12—78中表 2确定建筑物的级别为: _______ 级; 永久主要建筑物拦河坝为 _______ 级; 永久次要建筑物为 _____ 级; 临时建筑物为 _____ 级。 3.2 气象 (1) 气温与水温 1) 气温 表1 气温表 单位:C 行) 及补充规定; (2)SDJ 218 — 84 碾压式土石坝设计规范; (3)DL 5016 — 93 混凝土面板堆石坝设计导则; (4)SL 49 — 94 混凝土面板堆石坝施工规范; (5)DL 5073 — 1997 水工建筑物抗震设计规范; (6)SDJ 20 78 水工钢筋混凝土结构设计规范; (7)SDJ 338 — 89 水利水电工程施工组织设计规范 (8)GB 50201 — 94 防洪标准。 (1)SDJ 12— 78 ( 试行 ) ; 水利水电枢纽工程等级划分及设计标准 (山区、 丘陵区部分 )( 试

水电站厂房参数设计计算书

水电站厂房 第一节几种水头的计算(1) H max=Z蓄—Z单机满出力时下游水位 H r= Z蓄—Z全机满出力时下游水位 H min=Z底—Z全机满出力时下游水位 一、H max的计算。 1 假设H max=84m 由公式Nr=K Q H 公式中 Nr为单机出力50000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03H0) Q 为该出力下的流量。 故解出Q=70.028m3/s 查下游流量高程表得下游水位为198.8m 上游水位为284m ΔH=0.03 (284—198.8)=2.6m 又因为284—84—2.6= 197.4 2 重新假设Hmax=83m 由公式Nr=K Q H 解出Q=70.87m3/s 查下游流量高程表得下游水位为199.3m 上游水位为284m ΔH=0.03 (284—199.3)=2.5m

又因为284—83—2.5=198.5 故H max=83m 二、H min的计算。 1 假设H min=60m 由公式Nr=K Q H 公式中 Nr为全机出力200000KW K 为出力系数8.5 H 为净水头=H0—ΔH=0.97H0 (ΔH=0.03Ho) Q 为该出力下的流量。 故解出Q=392.16m3/s 查下游流量高程表得下游水位为203.50m 上游水位为264m ΔH=0.03 (264—203.50)=1.80m 又因为264—60—1.80=202.20< 203.50 2 重新假设Hmin=59m 由公式Nr=K Q H 解出Q=398.80m3/s 查下游流量高程表得下游水位为203.58m 上游水位为264m ΔH=0.03 (264—203.58)=1.77m 又因为264—59—1.77=203.23 = 203.58 故H min=59m 三、H r的计算。

边坡设计计算说明

西南交通大学研究生课程设计 某公路高大边坡设计 年级: 2014级 学号:2014200015 姓名:黄锐 专业:岩土工程 指导老师:马建林 二零一五年六月三十日

摘要:边坡工程是公路工程,铁路工程及水利工程的重要组成部分,其具有工程量大,施工周期长等特点,常常作为项目的控制性工程,随着我国道路、铁路等基础设施的建设,对边坡支护技术提出了越来越高的要求。 本设计为一个公路工程高大边坡设计,对支护结构的设置位置及工后的变形提出了较高的要求,设计对边坡C及D两个节段的K1+810及K1+860控制横断面进行设计。目前,边坡的支挡结构主要有重力式挡土墙、锚杆框架梁、排桩等形式,考虑到上述限制因素及边坡本身高度条件,经过方案比选,对边坡采用锚杆桩板墙结构进行加固,其中,K1+810断面采用锚杆桩板墙及桩顶放坡的支护形式,对桩板墙的稳定性进行验算后,还对桩顶土坡的稳定性进行验算。K1+860横断面设计采用双排桩支护结构,将前后排桩分开计算,桩顶位移累加,此计算方法是偏于安全的。设计采用理正岩土5.6进行计算。 Abstract:the slope engineering is always an important part in highway engineering, railway engineering, and water conservancy project, its quantity is big, long construction period, etc, often as controlling engineering of the project, along with our country the construction of infrastructure such as road, railway, puts forward higher and higher requirements on the slope supporting technology. This tall slope design for a highway engineering design, the location of the supporting structure and the deformation after put forward higher requirements, the design of slope C and D are two segments of K1 + 810 and K1 + 860 control cross-sectional design. At present, the slope of the retaining structure mainly include gravity retaining wall pile, anchor frame beam, such as form, considering the above constraints and slope itself highly conditions, through scheme comparison, to reinforce the slope with anchor ZhuangBanQiang structure, among them, the anchored ZhuangBanQiang K1 + 810 section and pile top slope support form, the stability of ZhuangBanQiang after checking, also the stability of pile top slope calculation.K1 + 860 cross-sectional design of retaining structure with double-row piles were adopted, the front row piles is calculated separately, the displacement of pile top accumulation, this calculation method is more safe. Design USES reason is geotechnical 5.6 to calculate.

重力式挡土墙设计计算书教学版

挡土墙设计计算书 1 工程概况 挡土墙是用来支撑天然边坡或人工边坡以保持土体稳定的建筑物。按照墙的形式,挡土墙可以分为重力式挡土墙,加筋挡土墙。锚定式挡土墙,薄壁式挡土墙等形式。本设计采用重力式挡土墙。 2 挡土墙设计资料 1.浆砌片石重力式路堤墙,填土边坡1:,墙背仰斜,坡度1::。 2.公路等级二级,车辆荷载等级为公路-II 级,挡土墙荷载效应组合采用荷载组合I 、II 。 3.墙背填土容重γ=/m 3,计算内摩擦角Φ=42°,填土与墙背间的内摩擦角δ =Φ/2=21°。 4.地基为砂类土,容许承载力[σ]=810kPa ,基底摩擦系数μ=。 5.墙身材料采用5号砂浆砌30号片石,砌体a γ=22kN/m 3,砌体容许压应力为 []600=a σkPa ,容许剪应力[τ]=100kPa ,容许拉应力[wl σ]=60 kPa 。 3 确定计算参数 挡墙高度H =4m 填土高度a =2m 墙面倾斜坡度:1: 墙背倾斜坡度:1: 墙底倾斜坡率:0 扩展墙趾台阶:1级台阶,宽b 1=,高h 1=。 填土边坡坡度为1:;填土内摩擦角:042=φ,填土与墙背间的摩擦角?==212/?δ;

墙背与竖直平面的夹角?-=-=036.1425.0arctan α 墙背填土容重m 3 地基土容重:m 3 挡土墙尺寸具体见图。 图 挡土墙尺寸 4 车辆荷载换算 试算不计车辆荷载作用时破裂棱体宽度 (1) 不计车辆荷载作用 0=h 假定破裂面交于荷载内侧,计算棱体参数 A 、 B : 18)42(21 )(21))(2(212200=+=+=+++= H a H a h H a A 7 )036.14tan()224(421 3221tan )2(21210=-?+??-??=+-=αa H H ab B 389.018 7 00=== A B A ?=?+?-?=++=964.4821036.1442δα?ψ; 715 .0)389.0964.48(tan )964.48tan 42(cot 964.48tan ) )(tan tan (cot tan tan =+???+?+?-=++±-=A ψψ?ψθ 则:?=++?>==?69.334 23 25.04arctan 57.35715.0arctan θ 计算车辆荷载作用时破裂棱体宽度值B :

沥青混凝土面板堆石坝设计大纲范本

FJD31080 FJD 水利水电工程技术设计阶段 沥青混凝土面板堆石坝设计 大纲范本 水利水电勘测设计标准化信息网 1997年11月 1

水电站技术设计阶段 沥青混凝土面板堆石坝技术设计大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 设计基本资料 (4) 4. 坝体布置 (9) 5.坝体设计 (9) 6.坝的计算 (12) 7.碾压式沥青混凝土面板设计 (13) 8.面板与岸坡、基础及刚性建筑物的连接 (17) 9.基础处理 (18) 10.原形观测 (19) 11.技术专题研究(含试验) (20) 12.工程量计算 (21) 13.设计成果 (22) 3

1 引言 工程系建在河(江) 游,距市(县) km。水库总库容亿m3,是以、为主和、的综合利用水库。本工程主(副)坝为沥青混凝土面板堆石坝,坝高m,坝顶长m。属等工程。 工程初步设计报告于年月经审查通过,并以文进行了批复。 2. 设计依据文件和规范 2.1 有关本工程或本专业的文件 (1) 工程初步设计报告; (2) 工程初步设计报告的审批文件; (3) 工程专题研究报告; (4) 工程有关文件或会议纪要。 2.2 主要设计规范 (1) SDJ 12-78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部 分)和补充规定(试行); (2) SDJ 218-84 碾压式土石坝设计规范及修改和补充规定; (3) SLJ 01-88 土石坝沥青混凝土面板和心墙设计准则; (4) SDJ 10-78 水工建筑物抗震设计规范(试行); (5) SDJ 20-78 水工钢筋混凝土结构设计规范(试行); (6) SDJ 14-78 水利水电工程地质勘察规范(试行); (7) SL 52-93 水利水电工程施工测量规范; (8) SL 47-94 水工建筑物岩石基础开挖工程施工技术规范; (9) SDJ 207-82 水工混凝土施工规范; (10) SDJ 213-83 碾压式土石坝施工技术规范; (11) SD 220-87 土石坝碾压式沥青混凝土防渗墙施工规范; (12) SL 62-94 水工建筑物水泥灌浆施工技术规范。 3. 设计基本资料 4

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

加筋土挡土墙设计计算书

加筋土挡土墙设计计算书 一、设计资料 1. 加筋土路肩墙墙高H=11m ,分段长度为10m 2. 路基宽度B=41m ,路面宽度B ` =39.5m 3. 荷载标准为汽车—超20级 4. 加筋体填料:墙后填土均为砂土,砂土容重γ1=19KN/m 3 ,计算内摩擦角φ=35°。墙体采用矩形断面,加筋体宽为14m 5. 筋带采用CAT 钢塑复合筋带,宽度为30mm ,厚度为2mm ,容许拉应力[σ2]=80Mpa 6. 土与筋带之间的视摩擦系数f * =0.4,加筋体与地基之间的摩擦系数f=0.4 7. 地基为粘土,容许承载力根据地质报告 8. 面板采用50X100cm 板厚25cm ,混凝土标号为25号,S x =0.5m ,S y =0.5m 9. 以荷载组合Ⅰ进行计算 二、内部稳定计算 1.筋带受力计算 1) 计算加筋体填土重力的等代土层厚度h F =0 2) 计算汽车—超20级重车荷载作用下的等代土层厚度h c (1)B 0的确定 汽车超—20级中的重车为550KN ,前后轴距L *=3+1.4+7+1.4=12.8m ,车轮接地长度a * =0.2m , 因此,重车的扩散长度B 0* 为 B 0*= L *+ a *+(2a+H )tg30。=12.8+0.2+(2×0+11)tg30。 =19.35m 由于扩散长度B 0*=19.35m<20m 故取B 0= B 0* =19.35m (2)L 0的确定 决定L 0的限值,由于0.3H=0.3×11=3.3m ,故活动区进入路基宽度,因此取路基全宽和活动区宽度分别进行计算h h 1= 43.019 35.1941550 12γB 00∑=×××= L G h 2= ( ) 59.019 35.1975.03.3550 γ B 00∑=××= L G 因为h 2> h 1, , 故L 0=0.33m h c = h 2=0.59 将等代均布土层h c 布置在路基全宽上,以2:1向下扩散,根据公式 T i =K i (r 1h i +r 1h c )s x s y 计算得各层筋带所受拉力列于表-1中

水轮机选型设计计算书 原稿

第一章 水轮机的选型设计 第一节 水轮机型号选定 一.水轮机型式的选择 根据原始资料,该水电站的水头范围为18-34m , 二.比转速的选择 水轮机的设计水头为m H r 5.28= 适合此水头范围的有HL240和ZZ450/32a 三.单机容量 第二节 原型水轮机主要参数的选择 根据电站建成后,在电力系统的作用和供电方式, 初步拟定为2台,3台,4台三种方案进行比较。 首先选择HL240 n11=72r/min 一.二台 1、计算转轮直径 水轮机额定出力:kw N P G G r 67.66669 .0106.04 =?== η 上式中: G η-----发电机效率,取0.9 G N -----机组的单机容量(KW ) 由型谱可知,与出力限制线交点的单位流量为设计工况点单位流量,则Q 11r =1.155m 3 /s,对应的模型效率ηm =85.5%,暂取效率修正值 Δη=0.03,η

=0.855+0.03=0.885。模型最高效率为88.5%。 m H Q P D r r 09.2885 .05.28155.181.967 .666681.95 .15.1111=???== η 按我国规定的转轮直径系列(见《水轮机》课本),计算值处于标准值2m 和2.25m 之间,且接近2m ,暂取D 1=2m 。 2、计算原型水轮机的效率 914.02 46 .0)885.01(1)1(155 110max =--=--=D D M M ηη Δη=η max -ηM0=0.914-0.885=0.0.029 η=ηm +Δη=0.855+0.029=0.884 3、同步转速的选择 min /18.1972 95 .0/5.2872av 1110r D H n n =?== min /223.11855 .0884 .07210 M 0 T 11011r n n =-?=-=?)( )( ηηmin /223.73223.172n 1111r 11r n n m =+=?+= 4、水轮机设计单位流量Q11r 的计算 r Q 11= r r r H D η5 .12181.9P =884.05.28281.967.66665.12???=1.2633 m /s 5、飞逸转速的计算 r n = 1 11max D H n r =73.223×28.33=212.851r/min 6、计算水轮机的运行范围 最大水头、平均水头和最小水头对应的单位转速 min)/609.66223.18.332 180.19711max 1min 11r n H nD n =-?=?-= min)/(777.70223.195 .0/5.282180.19711av 111r n H nD n a =-?=?-=

蒋家沟面板堆石坝颗粒级配设计及填筑标准

蒋家沟混凝土面板堆石坝料颗粒级配设计及坝体填筑要求 1、坝料颗粒级配设计 1.1 特征粒径选择 1)最大粒径D:垫层料80mm、过渡料300mm、主堆石料600mm、下游堆石料800mm。 2)特征粒径D K及相应的P K 垫层料中D K常取5mm。小于5mm颗粒的相对含量P5对垫层料的透水性起明显的控制作用。本坝垫层料中小于5mm含量P5取40%左右(35%~45%)。 其它料常取其平均粒径D50来表征,D50的大小决定着坝料的粗细,D50较大时坝面不平整度较大,增加施工费用和难度;D50较小时引起坝料强度降低;一般大约为最大粒径D的1/4~1/10。 本坝过渡料取D50=50~80mm、主堆石料取D50=80~120mm、下游堆石料取D50=120~200mm。 3)最小粒径D M及其相应含量P M 堆石坝料中常取D M=0.075mm(0.1mm),含泥量是影响坝料性质的重要因素。当含泥量增大到一定值后,坝料的抗剪强度急骤下降,渗透系数减小。 本坝垫层料P0.1≤3%、过渡料P0.1≤2%、主堆石料P0.1≤2%、下游堆石料P0.1≤5%。 1.2 级配曲线公式 优良级配曲线常为抛物线,一般用下式表示: P=A+(100-A)(d i/D)r(A)可以用两种特征粒径料及相应含量来确定A、r,一般r= -0.5~1.5。 坝料级配常以最大粒径D、最小允许粒径D M、特征粒径D K及其相对含量P M、P K来控制。 r值的试算求解:P K=P M+(100- P M)( D K r-D M r)/( D r-D M r)。 按堆石坝规范要求,推算出如下两个公式: 垫层料及过渡料:P(%)= -8+108(d/D)0.3、主、次堆石料:P(%)=100(d/D)0.4

水电站课程设计计算书

水电站厂房课程设计计算书 1.蜗壳单线图的绘制 1.1 蜗壳的型式 根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。可知采用金属蜗壳。又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。 1.2 蜗壳主要参数的选择 金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345?=。 通过计算得出最大引用流量m ax Q 值,计算如下: ○ 1水轮机额定出力:15000 156250.96 f r f N N KW η= = = 式中:60000150004 f KW N KW = =,0.96f η=。 ○ 2'31max 3 3 2222115625 1.11 1.159.819.81 2.2546.20.904 r p N Q m s D H η = = =

水轮机计算

水电站作业 水轮机型号及主要参数的选择: 已知某水电站最大水头H max=245m,加权平均水头H av=242.5m,设计水头H r=240m,最小水头H min=235m,水轮机的额定出力为12500kw,水电站的海拔高程为2030m,最大允许吸出高Hs≥-4.0m。 要求: 1、选择两种机型(HL120-38,HL100-40)进行选择。 2、对选择的机型进一步绘制其运转特性曲线,

` (一)水轮机型号的选择 根据题目条件已知要用HL120-38和HL100-40型水轮机进行选择,对比计算分别如下: (二)水轮机主要参数的计算 HL120-38型水轮机方案主要参数的计算 1、转轮直径的计算 1D = 式中: '3112500;240; 380/0.38/r r N kW H m Q L s m s ==== 同时在附表1中查得水轮机模型在限制工况的效率=88.4%M η,由此可初步假定水轮机在该工况的效率为90.4% 将以上各值代入上式得 10.999D m = = 选用与之接近而偏大的标准直径1 1.00D m =。 2、效率修正值的计算 由附表一查得水轮机模型在最优工况下的max =90.5%M η,模型转轮直径10.38M D m =,则原型水轮机的最高效率max η可依下式计算,即 max max =1M ηη-(1- 1(10.93593.5%=--== 考虑到制造工艺水平的情况取11%ε=;由于水轮机所应用的蜗壳和尾水管的型式与模型基本相似,故认为20ε=,则效率修正值η?为: max max 10.9350.9050.010.02M ηηηε?=--=--=

平面滑动法边坡稳定性设计计算书

平面滑动法边坡稳定性设计计算书 依据《建筑边坡工程技术规范》(GB 50330-2002) 一. 参数信息 松散性的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线形态,整个路堤成直线形态下滑。(如图) 边坡土体类型为 :填土; 边坡工程安全等级:三级边坡(1.25); 边坡土体重度为 :19.00kN/m3; 边坡土体内聚力为:20.00kPa; 边坡土体内摩擦角:37.00°; 边坡高度为:20.00m; 边坡斜面倾角为:50.00°; 边坡顶部均布荷载:12.00kN/m2。 二. 平面滑动法计算边坡稳定性 由示意图按静力平衡可得此时边坡稳定性安全系数公式为: 式中:ω——滑动面的倾角; f ——等于 tgφ,摩擦系数; φ——边坡土体内摩擦角;

L ——滑动面的长度; N ——滑动面的法向分力; T ——滑动面的切向分力; c ——滑动面上的粘结力(或土的内聚力); Q ——滑动体的重力(包括坡顶均布荷载)。 ,滑动面位置不同,K 值亦随之而变,边坡稳定与否的判断依据,应是稳定系数的最小值 K min 相应的最危险滑动面的倾角为ω (如图所示)。 由于滑动体的重力(包括均布荷载)可以由下式求得: 式中:γ——边坡土体的容重(kN/m3); B ——滑动土体块顶部宽度(m); H ——边坡计算高度(m); q ——边坡顶部均布荷载(kN/m2); α——边坡斜面倾角(°)。 所以,边坡稳定性安全系数计算公式为: 欲求 K 值,根据 dK/dω=0,可求得最危险滑动面的倾角ω的值为: min 式中:

将参数代入可得: a = 2×20.00 / (19.00×20.00 +2×12.00) = 0.10; ctgω = 0.84 + (0.10/(0.75+0.10))1/2×1.31 = 1.28. 则边坡稳定性最不利滑动面倾角为:ω = 37.91°. 由此时的滑动面倾角可得到边坡稳定的稳定系数公式, K = (2×0.10+0.75)×0.84 +2×(0.10×(0.75+0.10))1/2×1.31 = 1.557. min ≥ 1.25,满足边坡稳定性要求! 此边坡稳定系数 K min

浅谈混凝土面板堆石坝坝坡设计

浅谈混凝土面板堆石坝坝坡设计 [摘要] 混凝土面板堆石坝坝坡设计可以按经验取值,但我们无法知道其安全度,因此重要的工程的坝坡设计仍需稳定分析计算。 [关键词] 混凝土堆石坝坝坡稳定 1.引言 我们在混凝土面板坝设计时,一般都是沿用经验来定坝坡,很少进行稳定分析计算,虽然说是说这是一种实用方法,但是我们无法知道其安全度,对于一些重要的工程,我们就应计算其相应的稳定分析。 2. 混凝土面板坝坝坡稳定分析 首先我们来研究一下规范,来看下在设计大坝坝坡中如何根据规范对大坝坝坡进行取值,SL228—98和DL/T5016—1999《混凝土面板堆石坝设计规范》规定:当筑坝材料为硬岩堆石料时,上、下游坝坡可采用1:1.3~1.4,软岩堆石体的坝坡宜适当放缓;当用质量较好的天然砂砾石筑坝时,上、下游坝坡可采用1:1.5~1:1.6。下游坝坡设有上坝道路时,道路中间的实际坝坡可以比该规范规定的坝坡值略陡,但平均坝坡应满足上述要求。 这两个规范提出:混凝土面板堆石坝坝坡参照已建工程,一般可不进行稳定分析,当存在下列情况之一时,须进行相应的稳定分析: ①坝基有软弱夹层或坝基砂砾石层中存在细砂层、粉砂层或粘性土夹层。 ②坝址位于地震烈度8、9度的坝 ③施工期堆石坝体过水或堆石坝体用垫层挡水度汛、且挡水水深较高时。 ④坝体用软岩堆石料填筑。 ⑤地形条件不利。 ⑥抽水蓄能电站运行中面板堆石坝上游坝坡具有水位骤降的运行工况时。 堆石坝的稳定分析是判断混凝土面板堆石坝的安全的前提条件,只有从安全角度出发,才可以优化坝体设计,从而节省投资、缩短施工工期。 混凝土面板堆石坝稳定安全控制工况与土质防渗体的碾压式土石坝不同,混凝土面板或上述的面板堆石坝防渗体系可视为相对不透水层,因而混凝土面板堆石坝稳定分析的控制工况为:施工期的上、下游坝坡和正常运用遇地震的上、下

高边坡脚手架计算书说课讲解

高边坡脚手架计算书

高边坡脚手架计算书 一、参考规范 《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 《建筑结构荷载规范》GB 50009-2001 《建筑边坡工程技术规范》GB 50330-2002 《碳素结构钢》GB/T 700-2006 《直缝电焊钢管》GB/T 12793-1992 《钢管脚手架扣件》GB 15831-2006 二、设计参数: 1、按照设计坡比1:0.5进行脚手架设计。 2、脚手板采用竹串片脚手板,其自重标准值为0.35KN/m2(见JGJ130规范表4.2.1-1)。 3、钢管尺寸均为φ48×3.5mm,其质量符合现行国家标准《碳素结构钢》(GB/T 700中)Q235-A级钢的规定(Q235钢抗拉、抗压、抗弯强度设计值f=205N/mm2,弹性模量E=2.06× 105N/mm2)。 计算参数 ⑴、脚手架参数:双排脚手架搭设高度为24.3 m,立杆采用单立杆;采用的钢管类型为Φ48×3.5为增加安全系数,计算时重量按Φ48×3.5取值,力学参数按Φ48×3.0计算。因局部位置为三排立杆,在计算立杆强度及稳定性时按最大荷载发生位置取中间立杆计算。②、搭设几何尺寸:立杆的横距为0.9m,立杆的纵距按建筑物

尺寸有1.5m和1.6米,取大值1.6米计算。大小横杆的步距为1.8 m;每步距中部外侧设一根大横杆作为防护栏杆;内排架距离墙0.45m;小横杆上不搭大横杆;小横杆每边伸出立杆尺寸按0.15米计算。③、横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为1.00;④、与结构的连接点,因为是改造工程,为尽量保护原有建筑主体,采用两步三跨,连接点采用钢管形成抱箍连接在原有框架柱上,竖向间距3.6 m,水平间距4.8 m,采用扣件连接,对没有柱子的部位采用楼板和铜管打孔连接。 2.活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途装修脚手架; 同时施工层数按2层计算; 3.风荷载参数 本工程地处牡丹江分局,按《建筑结构荷载规范》取值,基本风压0.27 kN/m2;风压高度变化系数μz,按C类地区(有密集建筑群市区),计算连墙件强度时取0.92,计算立杆稳定性时取0.74;风荷载体型系数μs 按密目安全网封闭,背靠开洞墙面,计算取值为1.236;(按Us=1.3φ,其中φ=1.2An/Aw,其中An为密目安全网挡风面积,Aw为迎风面积,密目网按2000目计算) 4.静荷载参数 每米立杆承受的结构自重标准值,按《技术规范》插值法计算:0.1278(kN/m),因技术规范中计算简图中无步距中间栏杆,实际

(完整版)水利水电工程规范规程清单(2018最新版)

水利水电工程标准精选(最新) G1499.1《热轧光园钢筋》 G1499.2《热轧带肋钢GB1499.1- 2008 GB1499.2-G2938《低热微膨胀水泥》 GB2938-2008 第 1 部分: 差动电阻式应变计》 GB/T 3408.1-2008 第 2部分: 振弦式应变计》 GB/T 3408.2-2008 第 1 部分: 差动电阻式钢筋计》 GB/T 3409.1-2008 第 1 部分: 差动电阻式测缝计》 GB/T 3410.1-2008 第 2部分: 振弦式测缝计》 GB/T 3410.2-2008 3411.1-2009 G3412.1《大坝监测仪器 检测仪第 1 部分:振弦式仪器检测仪》 GB/T3412.1-2009 G3413《大坝监测仪器 埋入式铜电阻温度计》 GB/T 3413-2008 G5223《预应力混凝土用钢丝》 GB/T 5223-2014 G5224《预应力混凝土用钢绞线》 GB/T 5224-2014 G3408.1《大坝监测仪器 应变计 G3408.2《大坝监测仪器 应G3410.1《大坝监测仪器 测缝计 G3411.1《大坝监测仪器 孔隙水压力计 第 1 部分:振弦式孔隙水压力计》 GB/T G10597《卷扬式启闭机》 GB/T 10597-2011 G11828.1《水位测量仪器 : 浮子式水位计》 GB/T11828.1-2002 G11828.3《水位测量仪器 G11828.4《水位测量仪器 第 3 部分:地下水位计》 GB/T 11828.3-2012 第 4 部分:超声波水位计》 GB/T 11828.4-2011 第5 部分:电 子水尺》 GB/T 11828.5-2011 遥测水位计》 GB/T 11828.6-2008 G11826《转子式流速仪》 GB/T 11826-2002 G11826.2《流速流量仪器 第 2部分:声学流速仪》 GB/T 11826.2-2012 G12898《国家三、四等水准测量规范》 GB/T 12898-2000 待确认 G14173《水利水电工程钢闸门制造、安装及验收规范》 GB/T 14173-G14627《液压式启闭机》 GB/T 14627-2011 G15659《水电新农村电气化验收规程》 GB/T G15772《水土保持综合治理 G15773《水土保持综合规划通则》 GB/T 15772-2008 验收规范》 GB/T 15773-2008 效益计算方法》 GB/T 15774-2008

相关文档