文档库 最新最全的文档下载
当前位置:文档库 › 第二章 质点动力学习题答案

第二章 质点动力学习题答案

第二章   质点动力学习题答案
第二章   质点动力学习题答案

第二章 质点动力学习题答案

2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向

与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.

解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v

方向为X 轴,平行

斜面与X 轴垂直方向为Y 轴.如图2-1.

图2-1

X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ②

0=t 时 0=y 0=y v

2

sin 2

1t g y α=

由①、②式消去t ,得

2

2

sin 21x g v y ?=

α

2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为

常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m

⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:

合力:f P F

+=

a m f P =+

y 分量:dt

dV m

KV mg =--

dt KV

mg mdV -=+?

dt m

KV mg dV 1-

=+

?

?

-

=

+t

v

v dt m

KV

mg dV

10

dt m

KV mg KV mg K

1ln

10

-

=++

)(0KV mg e

KV mg t

m K +?=+- mg K

e

KV mg K

V t

m K 1)(10-

+=

?- ①

0=V 时,物体达到了最高点,可有0t 为

)1ln(ln

00

0mg

KV K

m mg KV mg K

m t +

=

+=

∵ dt

dy V =

∴ Vdt dy =

dt mg K e KV mg K Vdt

dy t

t m

K t

y

?

??

??

????-+=

=

-0

1)(1 mgt K

e KV mg K

m y t m

K 11)(02

-??????-+-

=-

021()1K

t m m

mg KV e mgt K K

-+--??=???? ③ 0t t = 时,max y y =,

)1ln(11)(0)1ln(02

max 0mg KV K m mg K e KV mg K

m y mg

KV K m

m K +?-

???

?????-+=

+?- )1ln(11)(0

2

2

002

mg KV g K m mg KV mg KV mg K m +-??

???

?

??????

+-+= )1ln()

(02

20

002

mg

KV g K

m KV mg KV KV mg K

m +

-

++=

)1ln(02

20mg

KV g K

m K

mV +

-

=

2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一

段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.

解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为

m xg l

根据牛顿定律,有

m F xg m a l

=

=

图2-4

通过变量替换有 m dv xg m v

l

dx

=

0,0x v ==,积分0

l v m xg m vdv l

=

?

?

由上式可得链条刚离开桌面时的速度为v =2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用细绳连接,跨过滑轮,绳子

不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =

12

g 上升时,求:

(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和2m 的加速度各为多少? 解: 分别以1m ,2m 为研究对象,其受力图如图所示.

(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有

)(22a a m T g m -'=-

a m T '=1

题2-5图

联立,解得g a ='方向向下 (2) 2m 对地加速度为

2

2g a a a =

-'= 方向向上

1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a

+='

∴ g g

g

a

a a 2

54

2

2

2

21=

+

=+'=

a a '

=arctan

θo

6.262

1arctan

==,左偏上.

2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体

受冲量之比及动量增量之比各为多少?

解:设物体沿+x 方向运动,

2525

5

1==

=?

?

tdt Fdt I N·

S (1I 沿i

方向) 75210

5

10

5

2==

=

?

?

tdt Fdt I N·

S (2I 沿i

方向) 3/12=?I I

∵????=?=1

12

2)()(p I p I ∴

3)()(1

2=??p p

2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回. 设跳回时速率不

变,碰撞前后的速度方向和墙的法线夹角都为60α?=,⑴求碰撞过程中小球受到的冲

量?=I

⑵设碰撞时间为05.0=?t s ,求碰撞过程中小球 受到的平均冲力?F =

解:

?

?

?=-=-==--=-=0sin sin cos 2)cos (cos 1212ααα

ααmv mv mv mv I mv mv mv mv mv I y y y x x x i i i mv i I I x

10.060cos 5020.02cos 2=???===?αN·S

2-9 一颗子弹由枪口射出时速率为1

0s m -?v ,当子弹在枪筒内被加速时,它所受的合力为

F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,

试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有

0)(=-=bt a F ,得b

a t =

(2)子弹所受的冲量

?

-

=-=

t

bt

at t bt a I 0

2

2

1d )(

将b

a t =

代入,得

b

a

I 22

=

(3)由动量定理可求得子弹的质量

2

2bv a

v I m =

=

2-10 木块B 静止置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知

0.25A m =kg ,B m =0.75kg ,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面

间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)

解:当小木块A 以初速度0v 向右开始运动时,它将受到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改变系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改变系统的总动量. 设经过t ?时间,A 、B 具有相同的速度,根据质点系的动量定理 0()k A B A F t m m v m v -?=+-

2()k A B F m m g μ=+

再对小木块A 单独予以考虑,A 受到B 给予的摩擦阻力'

K F ,应用质点的动量定理

'

0k A B F t m v m v -?=-

以及 '

1k A F m g μ=

解得 0

01212

1(

)

,A A B

v v v

m v t m m g

μμμμμ-=-?=

+-

代入数据得 2.5v =m/s t ?=7.65s

2-11一粒子弹水平地穿过并排静止放置在光滑水平面上的木块,如图2-11所示. 已知两木

块的质量分别为1m 和2m ,子弹穿过两木块的时间各为1t ?和

2t ?,设子弹在木块中所受的阻力为恒力F ,求子弹穿过后,

两木块各以多大速度运动.

2-10

图2-11

解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块静止, 由动量定理,于是有

1121()0F t m m v ?=+-

设子弹穿过第二木块后,第二木块速度变为2v ,对第二块木块,由动量定理有

22211

F t m v m v ?=- 解以上方程可得 112

1212

12

2

,F t F t F t v v m m m m m ???=

=

+++

2-12一端均匀的软链铅直地挂着,链的下端刚好触到桌面. 如果把链的上端放开,证明在链

下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那部分链条的重量.

解:设开始下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的部分下落速度为v ,在d t 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而静止. 根据动量定理,桌面给予d m 的冲量等于d m 的动量增量,即 I F d t v d m v

d ρ==

= 所以 2

dx F v v dt

ρρ==

由自由落体的速度22v gx =得

2F gx ρ=

这是t 时刻桌面给予链的冲力. 根据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,

t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那部分链的重力之和,所以

'

3N F xg xg ρρ=+=

所以

3N

xg

ρ=

即链条作用于桌面上的压力3倍于落在桌面上那部分链条的重量.

2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船长为5m ,问当人从船头走到船尾时,船头移动的距离.

解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得

m +M =0v V 其中,V 分别为人和小船相对于静水的速度,

可得m -

M

V =v

人相对于船的速度为 'M m M +=-=v v V v

设人在t 时间内走完船长l ,则有 '

t t t M m M m

l v d t

v d t

v d t M

M

++=

==?

?

?

在这段时间内,人相对于地面走了0

t

x vdt =?

所以M l x M m

=

+

船头移动的距离为'

53

m l x l x M m

=-==+

2-14质量为M 的木块静止在光滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,

并陷在木块内与木块一起运动.求:

(1)子弹相对木块静止后,木块的速度和动量; (2)子弹相对木块静止后,子弹的动量; (3) 在这个过程中,子弹施于木块的冲量.

解:子弹相对木块静止后,其共同速度设为u ,子弹和木块组成系统动量守恒 (1)0()mv m M u =+ 所以 0m v u m M

=

+

0M M m v P M u m M

==

+ (2)子弹的动量2

0m m v P m u m M

==

+

(3)针对木块,由动量守恒知,子弹施于木块的冲量为

00M M m I P v M m

=-=

+

2-15质量均为M 的两辆小车沿着一直线停在光滑的地面上,质量为m 的人自一辆车跳入另

一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.

解: 质量为m 的人,以相对于地面的速度v 从车A 跳到车B ,此时车A 得到速度1u ,由于车是在光滑的地面上,沿水平方向不受外力,因此,由动量守恒得

1m v M u =

人到达车B 时,共同得速度为2u ,由动量守恒得

2()M m u mv +=

人再由车B 以相对于地面的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共

同速度为'1u ,如图所示,由动量守恒得

联立方程解得:'22m u v M

=

'

12m u v M m

=

+

所以车B 和车A 得速率之比为

'2'

1

u M m u M

+=

2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为?,初速度为0v . 到达最高点时,

该人将手中的物体以水平向后的相对速度u 抛出,问跳远成绩因此增加多少?

解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对地面这个惯性参考系

'

'

0'

0'

()cos ()

cos m m v m v m v u m

v v u

m m

??+=+-=+

+

从最高点到落地,人做平抛运动所需时间0sin v t g

?=

跳远距离增加为 '

00'

(cos )cos m

s v u t v t m m ???=+

-+

'

0'

s i n v m

p

ut u

m m

P p

g

?=

=

++

2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 个

人从平板车的后端跳下,每个人的质量均为m ,相对平板车的速度均为u . 问在下述

两种情况下,平板车的末速度是多少?(1)N 个人同时跳离;(2)一个人、一个人的跳离. 所得结果是否相同.

解:取平板车和N 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车静止,则有

()0M v N m v u +-=

'

22'

11

()()M u mv M m u M m u mv M u -=++=+

所以N 个人同时跑步跳车时,车速为

N m v u M N m

=

+

(2)若一个人、一个人地跳车,情况就不同了. 第一个跳车时,由动量守恒定律可得

11[(1)]()0M N m v m v u +-+-=

第二个人跳车时,有

221[(2)]()[(1)]M N m v m v u M N m v +-+-=+-

21(1)m u v v M N m

-=

+-

以此类推,第N 个人跳车时,有

1()()N N N M v m v u M m v -+-=+ 1N N m u v v M m

--=

+

所以1

111()2N

N n m u v m u M m

M m M N m

M nm

==++???=

++++∑

因为

11

1

2M m M m

M N m >

>???>

+++

1112N

M m

M m

M N m

M N m

+

+???

>

++++

故N v v >

2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示。若0=x 时,

s m v /1=,试求m x 16=时,?=v

解:在0x =到m x 16=过程中,外力功为力曲线与x 轴所围的面积代数和=40J

由动能定理为:

图2-18

2

122

mv 2

1mv

2

1W -

=

即 1102

1102

1402

2??-

?=

v

s m v /32=?

2-19在光滑的水平桌面上,水平放置一固定的半圆形屏障. 有一质量为m 的滑块以初速度

0v 沿切线方向进入屏障一端,

如图2-19所示,设滑块与屏障间的摩擦因数为μ,试证明当滑块从屏障另一端滑出时,摩擦力作功为

2

201(1)2f W m v e

μπ

-=

-

解:滑块做圆周运动,依牛顿定律,有: 法向:2

mv N R

=

切向:dv dv d m v dv f N m m dt d dt

R d θμθθ

=-===

由以上两式,可得

dv

d v μθ=- 对上式两边积分,有00

v v dv d v π

μθ=-?? 可得 0v v e μπ

-=

由动能定理可得摩擦力做功为

2

2

2200111(1)22

2

f W m v m v m v e

μπ

-=

-

=

-

2-20质量为M 的木块静止于光滑水平面上,一质量为m ,速率为v 的子弹水平射入木块后

嵌在木块内,并于木块一起运动,求:(1)木块施于子弹的力所做的功;(2)子弹施于木块的力所做的功;(3)木块和子弹系统耗散的机械能.

解:把子弹和木块当作一个系统,动量守恒

()M m u mv +=

因而求得子弹和木块共同速度m u v M m

=

+

图2-19

(1)2

2

2

2

2

1121()2

2

()2

M

M m A m u m v m v M m +=

-

=-

+ (2)'2

2

2

110(

)2

()

2

M m A M u mv M m =

-=

+

(3)2222

1111()()222()2

M E mu M u mv mv M m ?=+-=-+

2-21一质量10M =kg 的物体放在光滑的水平桌面上,并与一水平轻弹簧相连,弹簧的劲度

系数1000k =N/m. 今有一质量m =1kg 的小球以水平速度0v =4m/s 飞来,与物体M 相撞后以1v =2m/s 的速度弹回,试问: (1) 弹簧被压缩的长度为多少?

(2) 小球m 和物体M 的碰撞是完全弹性碰撞吗?

(3) 如果小球上涂有黏性物质,相撞后可与M 粘在一起,则(1),(2)所问的结果又

如何?

解:碰撞过程中物体、弹簧、小球组成系统的动量守恒 01mv mv M u =-+

01()

1(42)

0.610m v v u M +?+=

=

=m/s

小球与弹簧碰撞,弹簧被压缩,对物体M 有作用力,对物体M ,由动能定理 (1)2

2

1102

2

kx M u -

=-

弹簧被压缩的长度

0.60.06x =

=

=m

(2)2

2

2

101112

2

2

k E M u m v m v ?=

+

-

=-4.2J

(3)小球与物体M 碰撞后粘在一起,设其共同速度为'

u ,根据动量守恒及动量定理

'

0()m v M m u =+

'2

'2

110()2

2

kx

M m u -

=-

+

此时弹簧被压缩的长度

'

0.04

x =

=m

2-22 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端

一重物C ,C 的质量为M ,如2-22图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.

解: 弹簧B A 、及重物C 受力如2-22图所示平衡时,有

又 11x k F A ?=

22x k F B ?=

所以静止时两弹簧伸长量之比为

1

22

1k k x x =??

弹性势能之比为

1

22

2

22

1

11

2

121

2

k k x k x k E E p p

=

??=

2-23 如题2-23图所示,一物体质量为2kg ,以初速度0v =3m ·s -1

从斜面A 点处下滑,它与

斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.

2-22

A B F F M g

==

解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有

??

?

???+-=

-37sin 2

121

2

2

mgs mv kx s f r

2

2

2

137sin 2

1kx

s

f mgs mv

k r -?+=

式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得

-1

m N 1390?=k

再次运用功能原理,求木块弹回的高度h '

2

o

2

137

sin kx s mg s f r -

'='-

代入有关数据,得 m 4.1='s , 则木块弹回高度

m 84.037sin o

='='s h

2-24铅直平面内有一光滑的轨道,轨道的B C D E 部分是半径为R 的圆. 若物体从A 处由静

止下滑,求h 应为多大才恰好能使物体沿圆周B C D E 运动?

解:木块如能通过D 点,就可以绕整个圆周运动. 设木块质量为m ,它在D 点的法向运动

2-23

图2-25

方程为

2

v

N m g m

R

+=

式中N 为圆环给木块的法向推力. 显然N =0时,木块刚好能通过D 点,所以木块刚好能绕圆周运动的条件为

2

v Rg =

选木块和地球为系统,系统的机械能守恒,所以可得 2

122

m g R m v m g h

+

=

联立求解得 2.5h R =

即高度为 2.5h R =时木块刚好能绕圆周运动

2-25两个质量分别为1m 和2m 的木块A 和B ,用一个质量忽略不计、倔强系数为k 的弹簧

连接起来,放置在光滑水平面上,是A 紧靠墙壁,如图示. 用力推木块B 使弹簧压缩0x ,然后释放. 已知12,3m m m m ==,求

(1) 释放后,A 、B 两木块速度相等时的瞬时速度的大小; (2) 释放后,子弹的最大伸长量.

解:释放后,子弹恢复到原长时A 将要离开墙壁,设此时B 的速度为v ,由机械能守恒,

2

2

013/22

kx m v =

得0

v x =A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,有

11222m v m v m v

+=

2

2

2

2

1122

2111122

2

2

m v k x m v m v +

+

= (1)

当12v v =

时,求得:12334

4

v v v x ==

=

(2)

图2-26

(2)弹簧有最大伸长量时,1234

v v v ==,由式(2)得

m

a

x

12

x x = 2-26两块质量各为1m 和2m 的木块,用劲度系数为k 的轻弹簧连在一起,放置在地面上,如

图示,问至少要用多大的力F 压缩上面的木块,才能在该力撤去后因上面的木板升高而将下面的木板提起?

解:

将12,m m 和弹簧和地球视为一个系统,该系统在压力撤离后,只有保守力作用,所以机械能守恒. 设压力撤离时刻为初态,2m 恰好提离地面时为末态,初态、末态时动能均为零. 设弹簧原长时为坐标原点和势能零点, 则 2

2

1100112

2

m gx kx m gx kx +

=-+

式中0x 为压力F 作用时弹簧的压缩量,则

100m g F kx +-=

式中x 为2m 恰好能提离地面时弹簧的伸长量,此时要求2kx m g ≥ 联立以上几个方程解得

12()F m m g ≥+

故能使2m 提离地面的最小压力为m in 12()F m m g =+

2-27一质量为'm 的三角形木块放在光滑的水平面上,另一质量为m 的立方木块由斜面最低

处沿斜面向上运动,相对于斜面的初速度为0v ,如图所示,如果不考虑木块接触面上的摩擦,问立方木块能沿斜面上滑多

高?

解:三角形木块与立方木块组成的系统在水平方向不受外力作用,

水平方向动量守恒. 初始时,立方木块速度为0v ,其水平方向分量为0cos v θ,三角形木

图2-27

图2-28

块静止;当立方木块达最高点时,相对于三角形木块静止,设二者共同的速度为v ,则 '

0c o s ()m v m m v θ=

+

在运动过程中,两木块和地球组成的系统只有重力做功,机械能守恒,得

2

'2

011()2

2

m v m gh m m v =+

+

由以上两式得立方木块沿斜面上滑的高度为 2

22

2'

0'

'

cos sin (1)22v v m m m h g

m m

g

m m

θθ+=

-

=

++

2-28两个形状完全相同、质量都为M 的弧形导轨A 和B ,放在地板上,今有一质量为m 的小

物体,从静止状态由A 的顶端下滑,A 顶端的高度为0h ,所有接触面均光滑. 试求小物体在B 轨上上升的最大高度(设A 、B 导轨与地面相切)

解:设小物体沿A 轨下滑至地板时的速度为v ,对小物体与A 组成的系统,应用机械能守恒定律及沿水平方向动量守恒定律,有 0A M v m v -+= (1)

2

2

01122

A m gh M v m v =

+

(2)

解得v =

(3)

当小物体以初速v 沿B 轨上升到最大高度H 时,此时小物体相对B 的速度为零,设小物体与B 相对地沿水平方向的共同速度为u ,根据动量守恒与机械能守恒, 有()Mv M m u =+ (4)

2

2

11()22

m v M m u m gH =

++ (5)

联立(3)-(5)解得 2

2

0(

)2()M v

M H h M m g

M m

=

=++

2-29 一质量为200g 的砝码盘悬挂在劲度系数196k =N/m 的弹簧下,现有质量为100g 的

砝码自30cm 高处落入盘中,求盘向下移动的距离(假设砝码与盘的碰撞是完全非弹性碰撞)

2-29

解:第一阶段:砝码落入盘中以前,由机械能守恒有

第二阶段:砝码与盘碰撞,因为完全非弹性碰撞,其共同速度设为2v ,在垂直方向,砝码和盘组成系统之碰撞内力远大于重力、弹簧的弹性力,可认为在 垂直方向动量守恒,因而有

11122()m v m m v =+

第三阶段:砝码和盘向下移动过程中机械能守恒,注意到弹性势能零点是选在弹簧的原长处

2

2

2

12212122111()()()22

2

kl m m v k l l m m gl +

+=

+-+

解以上方程可得

2

22980.980.0960l l --=

向下移动的最大距离为20.037l =

2-30倔强系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接. 推

动小球,将弹簧压缩一端距离L 后放开,假定小

球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等. 试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.

解:取弹簧的自然长度处为坐标原点

在0t =时,静止于x L =-的小球开始运动的条件是

kL F > (1)

小球运动到x 处静止的条件,由功能原理得 2

2

11()22

F L x kx kL -+=

-

(2)

2-30

图2-31

2

111

12m gh m v =

21

m g kl =

使小球继续保持静止的条件为 2||||F k x k L F k

=-

≤ (3)

所求L 同时满足(1)和(3)式,求得

3F F L k k

<≤

2-31一绳跨过一定滑轮,两端分别拴有质量为m 及M 的物体,如图示,M 静止在桌面上

(M >m ).抬高m , 使绳处于松弛状态. 当m 自由落下h 距离后, 绳才被拉紧,求此

时两物体的速度及M 所能上升的最大高度.

解:分三个阶段

m 自由下落 2

12

m g h m v

=

,m M 相互作用(通过绳)

,在此阶段,绳中张力T 比物体所受重力大得多,此时可忽略重力,由动量定理 对m 有 0t

T d t m V m

v ?-=-

? 对M 有

0t T d t M V ?=-?

m 下降,M 上升过程机械能守恒

2

10()2

m gH M gH M m V -=-

+

解以上方程可得

2

22

m h V H M

m

==

-

图2-32

大物B课后题02-第二章 质点动力学

习题 2-1 质量为0.25kg 的质点,受力为()F ti SI =的作用,式中t 为时间。0t =时,该质点以 102v jm s -=?的速度通过坐标原点,则该质点任意时刻的位置矢量是_____. 解 因为 40.25 d v F t i ti dt m ===,所以()4d v t i d t =, 于是有()0 4v t v dv ti dt =? ?, 222v t i j =+;又因为 dr v dt =,所以()222dr t i j dt =+,于是有()222dr t i j dt =+??,3 223 r t i tj C = ++,而t=0时质点通过了原点,所以0C =,故该质点在任意时刻的位置矢量为3 223 r t i tj =+。 2-2 一质量为10kg 的物体在力(12040)()f t i SI =+作用下,沿x 轴运动。0t =时,其速度 106v im s -=?,则3t s =时,其速度为( ) A. 1 10im s -? B. 1 66im s -? C. 1 72im s -? D. 1 4im s -? 解 本题正确答案为C 在x 方向,动量定理可写为()3 12040t dt mv mv +=-?,即0660mv mv -= 所以 ()10660660 67210 v v m s m -=+ =+=?。

2-3 一物体质量为10kg 。受到方向不变的力3040()F t SI =+的作用,在开始的2s 内,此力的 冲量大小等于______;若物体的初速度大小为1 10m s -? ,方向与F 同向,则在2s 末物体的 速度大小等于_______. 解 在开始的2s 内,此力的冲量大小为 ()2 3040140()I t dt N s = +=?? 由质点的动量定理得 0I mv mv =- 当物体的初速度大小为1 10m s -?,方向与F 同向时,在2s 末物体速度的大小为 101401024()10 I v v m s m -=+=+=? 2-4 一长为l 、质量均匀的链条,放在光滑的水平桌面上。若使其长度的1/2悬于桌边下,由静 止释放,任其自由滑动,则刚好链条全部离开桌面时的速度为() A. B. C. D. 解 本题正确答案为B 。 根据题意作图2.15.设链条的质量为m ,则单位长度的质量为m l ,若选取桌面为零势能点,则由机械能守恒定律得 21 2422m l l m l g l g mv l l ????????????-???=-???+ ? ? ? ????????????????? 其中v 为链条全部离开桌面时的速度。解之得 v = 2-5 一弹簧原长为0.5m ,劲度系数为k ,上端固定在天花板上,当下端悬挂一盘子时,其长度为0.6m ,然后在盘子中放一物体,弹簧长度变为0.8m,则盘中放入物体后,在弹簧伸长过程中

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第2章 质点动力学习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ f 1 N 1 m 1T a F N 2 m 2 T a N 1 f 1 f 2

02质点动力学

二、质点动力学习题 一、选择题 1.一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为1m 和2m ,且21m m > (滑轮质量及一切摩擦均不计),此时系统的加速度大小为a ,今用一竖直向下的恒力g m F 1=代替1m ,系统的加速度大小为a ',则有 ( ) (A) a a ='; (B) a a >'; (C) a a <'; (D) 条件不足,无法确定。 2.如图所示,系统置于以g/2加速度上升的升降机内,A 、B 两物块质量均为m ,A 所处桌面是水平的,绳子和定滑轮质量忽略不计。 (1) 若忽略一切摩擦,则绳中张力为 ( ) (A) mg ;(B) mg /2;(C) 2mg ;(D) 3mg /4。 (2) 若A 与桌面间的摩擦系数为μ (系统仍 加速滑动),则绳中张力为 ( ) (A )mg μ; (B) 4/3mg μ; (C) 4/)1(3mg μ+;(D) 4/)1(3mg μ-。 3. 如图所示,一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为 ( ) A 、 g M m ; B 、g M m M -; C 、 g M m M +; D 、g m M m M -+。 4. 一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ。要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为 ( ) A 、Rg ; B 、θtg Rg ; C 、 θ θ 2 sin cos Rg ; D 、θctg Rg 。 5. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 ( ) (A) k mg . (B) k g 2 . (C) gk . (D) gk . 6.如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为 ( ) (A) g sin θ. (B) g cos θ. (C) g ctg θ. (D) g tg θ. 2 g a =

锅炉原理习题参考答案

《锅炉原理》习题库参考答案 第一章 基本概念 1. 锅炉容量:指锅炉的最大长期连续蒸发量,常以每小时所能供应蒸汽的吨数示。 2. 层燃炉:指具有炉箅(或称炉排),煤块或其它固体燃料主要在炉箅上的燃料层内燃烧。 3. 室燃炉:指燃料在炉膛空间悬浮燃烧的锅炉。 4. 旋风炉:指在一个以圆柱形旋风筒作为主要燃烧室的炉子,气流在筒内高速旋转,煤粉气流沿圆筒切向送入或由筒的一端旋转送入。较细的煤粉在旋风筒内悬浮燃烧,而较粗的煤粒则贴在筒壁上燃烧。筒内的高温和高速旋转气流使燃烧加速,并使灰渣熔化形成液态排渣。 5. 火炬―层燃炉:指用空气或机械播撒把煤块和煤粒抛入炉膛空间,然后落到炉箅上的燃烧方式的炉子。 6. 自然循环炉:指依靠工质自身密度差造成的重位压差作为循环推动力的锅炉。 7. 多次强制循环炉:指在循环回路中加装循环水泵作为主要的循环推动力的锅炉。 8. 直流锅炉:指工质一次通过蒸发受热面,即循环倍率等于一的锅炉。 9. 复合制循环炉:指在一台锅炉上既有自然循环或强制循环锅炉循环方式,又有直流锅炉循环方式的锅炉。 10. 连续运行小时数:指两次检修之间运行的小时数。 11. 事故率=%100?+事故停用小时数 总运行小时数事故停用小时数; 12. 可用率= %100?+统计期间总时数备用总时数运行总时数; 13. 钢材使用率: 指锅炉每小时产生一吨蒸汽所用钢材的吨数。

一、基本概念 1. 元素分析:指全面测定煤中所含全部化学成分的分析。 2. 工业分析:指在一定的实验条件下的煤样,通过分析得出水分、挥发分、固定碳和 灰分这四种成分的质量百分数的过程。 3. 发热量:指单位质量的煤在完全燃烧时放出的全部热量。 4. 结渣:指燃料在炉内燃烧时,在高温的火焰中心,灰分一般处于熔化或软化状态, 具有粘性,这种粘性的熔化灰粒,如果接触到受热面管子或炉墙,就会粘结于其上,这就称为结渣。 5. 变形温度:指灰锥顶变圆或开始倾斜; 6. 软化温度:指灰锥弯至锥底或萎缩成球形; 7. 熔化温度:指锥体呈液体状态能沿平面流动。 二、问答题 1. 煤的元素分析成分有哪些? 答:煤的元素分析成分包括:碳、氢、氧、氮、硫、灰分和水分。 2. 煤的工业分析成分有哪些? 答:煤的元素分析成分包括:水分、挥发分、固定碳和灰分。 3. 挥发性物质包括一些什麽物质? 答:挥发性物质主包括:各种碳氢化合物、氢、一氧化碳、硫化氢等可燃气体组成,此外,还有少量的氧、二氧化碳、氮等不可燃气体。

大学物理质点动力学习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解] 卫星所受的向心力即是卫星和地球之间的引力 由上面两式得() () () N 1082.710 85.110 63781063788.9132732 63 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 h R v m f +=e 2

练习02(二) 质点动力学

练习(二) 质点动力学 1.三个质量相等的小球由二相同轻弹簧连接如图所示,再用细绳悬于天花板上,处 于静止状态。将绳子剪断瞬间,三个小球的加速度分别为:d (A )1a =2a =3a =g (B )1a =g ,2a = 3a =0 (C )1a =2g ,2a = g , 3a =0 (D )1a =3g ,2a = 3a =0 2.如图所示,质量为m 的子弹以水平速度0v 射入静止的木块M ,并陷入木块内,射入过程中木块不反弹,则墙壁对木块的冲量为d (A )0 (B )m 0v (C )(M +m )0v (D )-m 0v 3.质点的质量为m ,置于光滑固定球面的顶点A 处。如图所示,当它由静止开始下滑到球面上B 点时, 它的加速度的大小为:D (A )a =2g(θcos 1-) B )a =g θsin (C )a =g (D )a = θθ2222sin )cos 1(4g g +- 4.如图所示,两木块质量为1m 和2m ,由一轻弹簧连接,并静止于光滑 水平桌面上。现使两木块靠近而将弹簧压紧,然后由静止释放。若弹簧伸长到原长时1m 的速率为1v ,则弹簧原来在压缩状态时所具有的势能是:D (A ) 2121mv (B )211 21221v m m m m + (C )2121)(21v m m + (D )212211)(21v m m m m + 5.如图所示,质量为m 的物体A 用平行于斜面的细线连结置于光滑的斜面上,若斜面向左方作加速运动,当物体开始脱离斜面时,它的加速度的大小为:C A 、g θsin B 、g θcos C 、g θctg D 、g θtg 6.一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线 突然断开,小猴沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度 为:C (A )g (B )M mg / (C )M m M + g (D )g M m M - 7.质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用。比例系数为k ,k 为正常数。该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是:A (A )k mg (B )k g 2 (C )gk (D )gk 8.一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 点时,它将对容器的正压力数值为N ,则质点自A 滑到B 的过程中,摩擦力对其作的功为:

锅炉专业考试题库答案

锅炉专业考试题库 理论部分: —、填空题: 安全部分: 1.消防工作的方针是(预防为主),(防消结合)。 4.生产现场禁火区内进行动火作业,应同时执行(动火工作票制度)。 5.工作延期手续只能办理一次。如需再延期,应重新签发(工作票),并注明(原因)。 8.安全电压额定值的等级为:(42)伏、(36)伏、(24)伏、(12)伏、(6)伏 10.工作票不准任意涂改。涂改后上面应由(签发人或工作许可人)签名或盖章,否则此工作票应无效。 11.许可进行工作前,应将一张工作票发给(工作负责人),另一张保存在(工作许可人处)。 12.全部工作结束后,工作人员退出工作地点,工作负责人和运 行班长或值长应在工作票上(签字注销)。注销的工作票应送交 所属单位的领导。工作票注销后应保存(三个月)。 13.工作如不能按计划期限完成,必须由工作负责人办理工作(延期手续)。 14.在没有脚手架或在没有栏杆的脚手架上工作,高度超过(1.5)

米时,必须使用安全带,或采取其他可靠的安全措施。 。较大的工具应用绳栓在牢固的构件高处作业应一律使用(工具袋)15. 上,不准随便乱放,以防止从高空坠落发生事故。 16.在进行高处工作时,除有关人员外,不准他人在工作地点的下面(通行或逗留),工作地点下面应有(围栏或装设其他保护装置),防止落物伤人。 钳工部分: 1、内径千分尺测量范围很有限,为扩大范围可采用(加接长杆)的方法。 2、水平仪的读数方法有(相对)读数法和(绝对)读数法。 3、工艺基准按其作用可分为(装配)基准、(测量)基准、(定位)基准、(工序)基准。 4、测量方法的总误差包括(系统)误差和(随机)误差。 5、划线作业可分两种即(平面划线);(立体划线)。 6、锉刀的齿纹有(单齿纹)和(双齿纹)两种。 7、锉刀分(普通锉);(特种锉);(什锦锉) 三类。 8、通过锉削,使一个零件能放入另一个零件的孔或槽内,且松紧合乎要求,这项操作叫(锉配)。 9、钻孔时,工件固定不动,钻头要同时完成两个运动、。 11、麻花钻头主要由几部分构成(柄部);(颈部);(工作部分)。 12、用丝锥加工内螺纹称为(攻丝)用板牙套制外螺纹称为(套

第二章 质点动力学

普通物理
黄 武 英
第二章
一.牛顿第一定律
质点动力学
三.牛顿第三定律
§2.1 牛顿定律
二.牛顿第二定律
§2.2 常见的力
一.万有引力 五.四种基本力 二.重力 三.弹力 四.摩擦力
牛顿定律应用举例
§2.3 单位制和量纲 §2.4 动量定理和动量守恒定律 §2.5 动能定理和功能原理 §2.6 能量守恒定律 §2.7 角动量定理和角动量守恒定律
物理与电子信息学院
§2.4 动量定理和动量守恒定律
一、质点的动量定理 二、动量定理的应用 三、质点系的动量定理 四、质心运动定理 五、质点系的动量守恒定律 六、变质量物体的运动方程
§2.5 动能定理和功能原理
一、动能及功的定义 三、功率 五、保守力和非保守力 六、质点的功能原理 七、质点系的动能定理和功能原理 二、动能定理
四、功的计算举例
§2.6 能量守恒定律
一、机械能守恒定律 二、守恒定律(机械能与动量) 的综合应用 三、能量转化及守恒定律 四、碰撞
§2.7角动量守恒定律
一、力矩 二、角动量 三、角动量守恒定律
四、动能定理
K rb G K 2 2 1 Wab = ∫K f ? dr = 1 2 mVb ? 2 mVa
ra
本章小结 G G dp d (mv ) G 一、牛顿第二定律 = =F dt dt
二、质点系的动量定理
五、质点系的功能原理和机械能守恒定律
Ekb + E pb ? ( Eka + E pa ) = W外 + W非保守内力
则: E kb + E pb = E ka + E pa 六、角动量定理和角动量守恒定律 K K dL 角动量定理 M= G dt 若 M =0 (条件)
功能原理
若外力和非保守内力都不作功或所作的总功为零(条件) 机械能守恒定律
G I =

t2
t1
G G G F合外 dt = ∑ mi vi (t 2 ) ? ∑ mi vi (t1 )
i i
三、质点系的动量守恒定律 若系统不受外力作用,或所受外力的矢量和为零(条件) n K K K K 则: ∑ miVi=m1V1 + m2V2 + " mnVn = 恒量
i =1
G

dL =0 dt
G L = 常矢量
角动量守恒定律

02 质点动力学 卷AB 答案

a a a 1 121 02 质点动力学 卷A 答案 班级 学号 姓名 . 一. 选择题(每题4分) 1. 如图所示,质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 作用下匀速运动.如突然撤消拉力, 则刚撤消后瞬间,二者的加速度a A 和a B 分别为 ( D ) (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B =0. (B 卷1). 一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为1m 和2m ,且12m m > (滑轮质量及一切摩擦均不计),此时系统的加速度大小为 a ,今用一竖直向下的恒力1F m g =代替1m ,系统的加速度大小为a ',则有 ( B ) (A)a a =' (B)a a >' (C)a a <' (D) 无法确定 2. 质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 ( B ) (A) 2 m/s (B) 4 m/s (C) 7 m/s (D) 8 m/s 3. 沙子从h = 0.8m 高处落到以3m/s 速度水平向右运动的传送带上。取g = 10m/s 2,则传送带给予沙子的作用力的方向 ( B ) (A) 与水平夹角53向下; (B) 与水平夹角53向上; (C) 与水平夹角37向上; (D) 与水平夹角37向下。 分析与解:00.8m h v =1002,v v v j v v vi ==-== ()()210I m v m v v m vi v j =?=-=+ 04tan ,533 v v θθ?= ====,向上 4. 静止在光滑水平面上的一质量为M 的车上悬挂一单摆,摆球质量为m ,摆线长为l .开始时,摆线水平,摆球静止于A 点.突然放手,当摆球运动到摆线呈竖直位置的瞬间,摆球相对于地面的速度为 ( C ) (A) 0. (B) gl 2. (C) M m gl /12+. (D) m M gl /12+5. 如图所示,质量分别为m 1, m 2的两物体用一屈强系数为k 放在水平光滑桌面上,当两物体相距x 时,系统由静止释放,已知弹簧的自然长度为x 0则当物体相距x 0时, m 1的速度大小为 ( D ) (A) (B) (C) (D)

2019锅炉考试题及答案

锅炉专业考试题 一、填空题 1.过热蒸汽温度超出该压力下的(饱和)温度的(度数)称为过热度。 2.水冷壁的传热过程是:烟气对管外壁(辐射换热),管外壁向管内壁(导热),管内壁 与汽水之间进行(对流放热)。 3.锅炉受热面外表面积灰或结渣,会使管内介质与烟气热交换时的热量(减弱),因为灰渣的 (导热系数)小。 4.锅炉吹灰前应适当提高燃烧室(负压),并保持(燃烧)稳定。 5.冲洗水位计时应站在水位计的(侧面),打开阀门时应(缓慢小心)。 6.“虚假水位”现象是由于(负荷突变)造成(压力变化)引起锅水状态发生改变而引起 的。 7.强化锅炉燃烧时,应先增加(风)量,然后增加(燃料)量。 8.锅炉汽包水位三冲量自动调节系统,把(蒸汽流量)作为前馈信号,(给水流量)作为 反馈信号进行粗调,然后把(汽包水位)作为主信号进行校正。 9.循环倍率是指进入到水冷壁管的(循环水量)和在水冷壁中产生的(蒸气量)之比值。 10.锅炉排污分为(定期)排污和(连续)排污两种。 二、选择题 1.锅炉吹灰前,应将燃烧室负压()并保持燃烧稳定。 (A)降低;(B)适当提高;(C)维持;(D)必须减小。答案:B 2.()开启省煤器再循环门。 (A)停炉前;(B)熄火后;(C)锅炉停止上水后;(D)锅炉正常运行时。答案:C 3.锅炉正常停炉一般是指()。 (A)计划检修停炉;(B)非计划检修停炉;(C)因事故停炉;(D)节日检修。答 案:A 4.当机组突然甩负荷时,汽包水位变化趋势是()。 (A)下降;(B)先下降后上升;(C)上升;(D)先上升后下降。答案:B 5.在锅炉三冲量给水自动调节系统中,()是主信号。 (A)汽包水位;(B)给水流量;(C)蒸汽流量;(D)给水压力。答案:A

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

锅炉第二章题库答案

第二章燃料与燃烧计算 一、名词解释 1、发热量:单位质量的燃料在完全燃烧时所放出的热量。 2、高位发热量:1kg燃料完全燃烧后所产生的热量,包括燃料燃烧时所生成的水蒸气的汽化潜热。 3、低位发热量:高位发热量中扣除全部水蒸气的汽化潜热后的发热量。 4、标准煤:规定收到基低位发热量Qnet,ar =29308kJ/kg的煤。 6、煤的挥发分:失去水分的干燥煤样置于隔绝空气的环境下加热至一定温度时,煤中的有机物分 解而析出的气态物质的百分数含量。 7、油的闪点:油气与空气的混合物与明火接触发生短暂的闪光时对应的油温。 、不完全燃烧:指燃料的燃烧产物中还含有某些可燃物质的燃烧。 10、理论空气量:1kg收到基燃料完全燃烧,而又无过剩氧存在时所需的空气量。 11、过量空气系数:实际供给的空气量与理论空气量的比值。 12、理论烟气量:供给燃料以理论空气量,燃料达到完全燃烧,烟气中只含有二氧化碳、二氧化 硫、水蒸气及氮气四中气体时烟气所具有的体积 13、烟气焓:1kg固体、液体燃料或标准状态下1m3气体燃料燃烧生成的烟气在等压下从0℃加热 到某一温度所需的热量。 二、填空 1、煤的元素分析法测定煤的组成成分有碳、氢、氧、氮、硫、灰分、水分,其中碳、氢、硫是可燃成分,硫是有害成分。 2、煤的工业分析成分有水分、挥发分、固定碳和灰分。 3、表征灰的熔融特性的四个特征温度为变形温度、软化温度、半球温度和流动温度。 4、煤的炭化程度越深,其挥发分含量越少,着火温度越高,点火与燃烧就越困难。

5、煤的成分分析基准常用的有收到基、空气干燥基、干燥基和干燥无灰基。 6、理论水蒸气体积,包括燃料中氢完全燃烧生成的水蒸气、燃料中水分受热蒸发形成的 水蒸气、理论空气量带入的水蒸气三部分。 7、随同理论空气量V k 0带进烟气中的水蒸气体积为V k0 m3/kg。 8、烟气成分一般用烟气中某种气体的所占干烟气总体积的体积百分数含量来表示。 9、完全燃烧方程式为(1+β)RO2+O2=21 ,它表明当燃料完全燃烧时,烟气中含氧量与三原子气体量之间的关系,当α=1时,其式变为(1+β)RO2max=21 。 14、算α的两个近似公式分别为、。两式的使用条件是CO=0 、干烟气含有的氮气接近79%(N2=79%/N ar可忽略) 、β很小。 三、选择 1、在下列煤的成分中,能用干燥无灰基表示的成分有。(1)(2)(3)(5) (1)碳(2)氧(3)挥发分(4)灰分(5)固定碳 2、煤的收到基低位发热量大小与煤中下列成分有关。(1)(2)(4)(5)(6) (1)C ar (2)O ar (3)N ar (4)H ar (5)S ar (6)M ar 3、煤被一场大雨淋湿后,煤的高位发热量。(2) (1)升高(2)降低(3)不变 4、煤被一场大雨淋湿后,煤的干燥基碳的百分含量。(3) (1)升高(2)降低(3)不变 5、下列各煤种中,对锅炉的安全工作危害最大的是。 (3) A、Q net,ar =31320kJ/kg,S ar=% B、Q net,ar =29310kJ/kg,S ar=% C、Q net,ar =25435kJ/kg,S ar=% 6、煤的元素分析成分中收到基碳是。(4) (1)固定碳(2)焦碳(3)碳化物中的碳 (4)由固定碳和碳化物中的碳组成 7、理论空气量的大小是由元素所决定的。(1)(5)(4)(6)(1)C(2)M(3)A(4)O(5)H(6)S(7)N

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

大学物理第2章-质点动力学习题(含解答)

大学物理第2章-质点动力学习题(含解答)

2 第2章质点动力学习题解答 2-1 如图所示,电梯作加速度大小为a 运动。物体质量为m ,弹簧的弹性系数为k ,?求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。 解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F += 2-2 如图所示,质量为10kg 物体,?所受拉力为变力21 32 +=t F (SI ),0=t 时物体静止。该物 体与地面的静摩擦系数为 20 .0=s μ,滑动摩擦系数为10.0=μ, 取10=g m/s 2,求1=t s 时,物体的速度和加速度。 解:最大静摩擦力) (20max N mg f s ==μ max f F >,0=t 时物体开始运动。

3 ma mg F =-μ,1 .13.02 +=-=t m mg F a μ 1 =t s 时,)/(4.12 s m a = dt dv a = Θ,adt dv =,??+=t v dt t dv 0 2 1.13.0 t t v 1.11.03+= 1 =t s 时,)/(2.1s m v = 2-3 一质点质量为2.0kg ,在Oxy 平面内运动, ?其所受合力j t i t F ρ ρρ232 +=(SI ),0=t 时,速度j v ρ ρ 20 =(SI ),位矢i r ρρ 20=。求:(1)1=t s 时,质点加速 度的大小及方向;(2)1=t s 时质点的速度和位 矢。 解:j t i t m F a ρρρ ρ+==22 3 22 3t a x = ,00=x v ,2 =x ?? =t v x dt t dv x 020 2 3 , 2 3 t v x = ?? ?==t x t x dt t dt v dx 03 2 02, 2 84 +=t x t a y =,2 0=y v ,0 =y ?? =t v y tdt dv y 2 , 2 2 2 +=t v y

锅炉原理试题库

《锅炉原理》习题库参考答案 第一章 基本概念 1. 锅炉容量:指锅炉的最大长期连续蒸发量,常以每小时所能供应蒸汽的吨数示。 2. 层燃炉:指具有炉箅(或称炉排),煤块或其它固体燃料主要在炉箅上的燃料层内燃烧。 3. 室燃炉:指燃料在炉膛空间悬浮燃烧的锅炉。 4. 旋风炉:指在一个以圆柱形旋风筒作为主要燃烧室的炉子,气流在筒内高速旋转,煤粉气流沿圆筒切向送入或由筒的一端旋转送入。较细的煤粉在旋风筒内悬浮燃烧,而较粗的煤粒则贴在筒壁上燃烧。筒内的高温和高速旋转气流使燃烧加速,并使灰渣熔化形成液态排渣。 5. 火炬―层燃炉:指用空气或机械播撒把煤块和煤粒抛入炉膛空间,然后落到炉箅上的燃烧方式的炉子。 6. 自然循环炉:指依靠工质自身密度差造成的重位压差作为循环推动力的锅炉。 7. 多次强制循环炉:指在循环回路中加装循环水泵作为主要的循环推动力的锅炉。 8. 直流锅炉:指工质一次通过蒸发受热面,即循环倍率等于一的锅炉。 9. 复合制循环炉:指在一台锅炉上既有自然循环或强制循环锅炉循环方式,又有直流锅炉循环方式的锅炉。 10. 连续运行小时数:指两次检修之间运行的小时数。 11. 事故率= %100?+事故停用小时数总运行小时数事故停用小时数; 12. 可用率=%100?+统计期间总时数 备用总时数运行总时数; 13. 钢材使用率: 指锅炉每小时产生一吨蒸汽所用钢材的吨数。 第二章 一、基本概念 1. 元素分析:指全面测定煤中所含全部化学成分的分析。 2. 工业分析:指在一定的实验条件下的煤样,通过分析得出水分、挥发分、固定碳和灰分这四种成分的质量百分数的过程。

3. 发热量:指单位质量的煤在完全燃烧时放出的全部热量。 4. 结渣:指燃料在炉内燃烧时,在高温的火焰中心,灰分一般处于熔化或软化状 态,具有粘性,这种粘性的熔化灰粒,如果接触到受热面管子或炉墙,就会粘结于其上,这就称为结渣。 5. 变形温度:指灰锥顶变圆或开始倾斜; 6. 软化温度:指灰锥弯至锥底或萎缩成球形; 7. 流动温度:指锥体呈液体状态能沿平面流动。 二、问答题 1. 煤的元素分析成分有哪些? 答:煤的元素分析成分包括:碳、氢、氧、氮、硫、灰分和水分。 2. 煤的工业分析成分有哪些? 答:煤的元素分析成分包括:水分、挥发分、固定碳和灰分。 3. 挥发性物质包括一些什麽物质? 答:挥发性物质主包括:各种碳氢化合物、氢、一氧化碳、硫化氢等可燃气体组成,此外,还有少量的氧、二氧化碳、氮等不可燃气体。 第三章 一、基本概念 1. 理论空气量:1kg燃料完全燃烧时所需要的最低限度的空气量称为理论空气量。 2. 过量空气系数:实际空气量和理论空气量之比。 3. 理论烟气量:当实际参加燃烧的湿空气中的干空气量等于理论空气量,且1kg 的燃料完全燃烧时产生的烟气量称为理论烟气量。 4. 实际烟气量:供给的空气量大于理论空气量,且使1kg燃料完全燃烧时产生的 烟气量。 5. 理论空气、烟气焓:在定压条件下,将1kg 燃料所需的空气量或所产生的烟气 量从0加热到t℃时所需要的热量。 6. 锅炉有效利用热:指水和蒸汽流经各受热面时吸收的热量。 7. 正平衡法:直接确定输入锅炉的热量和锅炉的有效利用热,然后利用锅炉热效 率定义式计算锅炉热效率的方法。 8. 反平衡法:通过确定锅炉的各项热损失,计算锅炉热效率的方法。

大学物理第二章质点动力学习题答案

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0 = 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向, 开始沉降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得m t v k mg v k mg = +-ln 整理得T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解]卫星所受的向心力即是卫星和地球之间的引力 由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f

第2章 质点动力学

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了

惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系 的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出 分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第2章质点动力学 二、解题示例 【例2-1】如题图2-1a所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦

相关文档
相关文档 最新文档