文档库 最新最全的文档下载
当前位置:文档库 › 7.荧光相关谱(FCS)

7.荧光相关谱(FCS)

荧光光谱法

荧光分析法测定维生素B2 一、实验目的 1.学习与掌握荧光光度分析法测定维生素B2的基本原理与方法; 2.熟悉荧光分光光度计的结构及使用方法; 3、学习掌握固体及液体试样的荧光测试方法。 二、实验原理 当用一种波长的光照射某种物质时,这种物质会在极短的时间内,发射出一种比照射光波长较长的光,这种发射出来的光就叫做荧光。当照射光停止照射时,荧光也随之很快地消失。利用某些物质被紫外光照射后所产生的、能够反映出该物质特性的荧光,以进行该物质的定性分析与定量分析,称为荧光分析。 实验证明,荧光通常发生于具有刚性平面的л-电子共轭体系分子中。随着л-电子共轭度与分子平面度的增大,荧光也就越容易产生。因此几乎所有对分析化学有用的荧光体系都含有一个以上的芳香基团,芳环数越多,荧光愈强。能发荧光的纯无机物很少,通常就是利用有机配位体与金属离子形成荧光络合物进行无机离子的分析。 图1.荧光分光光度计的结构原理图

荧光分光光度计工作原理(图1)可简述为:光源发出的光束经激发单色器色散,提取所需波长单色光照射于样品上,由样品发出的荧光经发射单色器色散后照射于检测器上,检测器把荧光强度信号转变为电信号并经放大器放大后,由信号显示系统显示或者记录。 荧光光谱包括激发光谱与发射光谱两种。激发光谱就是就是指发射单色器波长固定,而激发单色器进行波长扫描所得到的荧光强度随激发光波长变化的曲线。荧光发射光谱就是指激发单色器波长固定,发射单色器进行波长扫描所得到的荧光强度随发射光波长变化的曲线。一般所说的荧光光谱实际上仅指荧光发射光谱。这一光谱为分析指出了最佳的发射波长。 荧光定性定量分析与紫外可见吸收光谱法相似。定性时,就是将实验测得样品的荧光激发光谱与荧光发射光谱与标准荧光光谱图进行比较来鉴定样品成分,一般荧光定性的依据就是荧光光谱峰的个数、位置、相对强度及轮廓。 定量分析时,一般以激发光谱最大峰值波长为激发光波长,以荧光发射光谱最大峰值波长为发射波长,测量样品的荧光强度。对同一物质而言,荧光强度F 与该物质的浓度c 有以下的关系: F = 2、303Фf I0 a b c ⑴ Фf-荧光过程的量子效率; a-荧光分子的吸收系数; I0-入射光强度; b-试液的吸收光程。 在I0 与b 不变时,2、303Фf I0 a b为常数,则⑴式可以表示为 F=Kc ⑵ ⑵即可作为荧光定量检测的依据。 图2 VB2的结构式

分子荧光光谱实验报告

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。 激发光谱:在发射波长一定的条件下,被测物吸收的荧

光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm) 400000 荧光黄/水体系第二次发射光谱S1 / R1 (CPS /

俄歇电子能谱分析原理及方法

俄歇电子能谱分析原理及方法 XXX 【摘要】近年来,俄歇电子能谱(AES)分析方法发展迅速,它具有很多的优点,比如分析速度快、精度高、需要样品少等等,也因此在很多研究领域的表面分析中都得到了广泛的应用。可以不夸张的说,这个技术为表面物理和化学定量分析奠定了基础。本文主要是介绍俄歇电子能谱分析的主要原理及其在科学研究中的主要应用,旨在让读者对俄歇电子能谱有一个初步的了解。 关键词:俄歇电子能谱;表面物理;化学分析。 前言 近些年来,俄歇电子能谱分析发展如火如荼,在各个领域都有很抢眼的表现。目前有很多的人在研究,将俄歇电子分析技术应用到电子碰撞以及微纳尺度加工等高技术领域,俄歇电子能谱分析方法表现出强大的生命力,同目前已为很人熟悉和赞赏的强有力的分析仪器电子探针相比俄歇电子能仪可能有几个独到之处:( 1 )能分析固体表面薄到只有几分之一原子层内的化学元素组成,这里说的“表面”指的不只是固体的自然表面,也指固体内颗粒的分界面,(2)俄歇电子谱的精细结构中包含有许多化学信自,借此可以推断原子的价态;( 3 )除氢和氦外所有元素都可以分析,特别是分析轻元素最为有利;(4)利用低能电子衍射装置和俄歇能谱分析器相结合的仪器(“LEED一Au-ger”装置),有可能从得到的数据资料中分晶体表面的结构,推断原子在晶胞中的位置。因此,俄歇电子能谱仪作为固体材料分析的一个重要工具,近年来发展很快,研究成果不断出现于最新的文献中。本文主要是想要综合论述俄歇电子能谱的分析方法,以及概述它在各方面的应用。[1] [1]《俄歇电子能谱仪及其应用》许自图 正文 一、俄歇电子能谱分析的原理

1.1俄歇电子能谱发现的历史 1925年法国科学家俄歇在威尔逊云室中首次观察到了俄歇电子的轨迹,并且他正确的解释了俄歇电子产生的过程,为了纪念他,就用他的名字命名了这种物理现象。到了1953年,兰德才从二次电子能量分布曲线中第一次辨识出这种电子的电子谱线,但是由于俄歇电子谱线强度较低,所以当时检测还比较困难。到了1968年,哈里斯应用微分法和锁相放大器,才解决了如何检测俄歇电子信号的问题,也由此发展了俄歇电子能谱仪。俄歇电子能谱仪不仅可以作为元素的组分分析仪器,还可以检测化学环境信息。咋很多的领域都得到了应用,比如基础物理,应用表面科学等等。 1.2俄歇效应 当一束具有一定能量的电子束(一次电子)射到固体表面的时候,原子对电子产生了弹性散射和非弹性散射。非弹性散射使得电子和原子之间发生了能量的转移,发出X-射线以及二次电子。这个时候如果在固体表面安装一个接受电子的探测器,就可以得到反射电子的数目(强度)按能量分布的电子能谱曲线。 图1 入射电子在固体中激发出的二次电子能谱 俄歇电子是指外壳层电子填补内壳层空穴所释放出来的能量激发了外壳层的另外一电子,并且使得它脱离原子核,逃逸出固体表面的电子,这个过程被俄歇发现,所以称为俄歇电子。

荧光分析法基本概念

紫外可见吸收光谱一紫外吸收光谱分析 基于物质对200-800nm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱 分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的σ电子;(2)形成双键的π电子;(3)分子中非键电子即n电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (σ)<(π)<(n)<(π*)<(σ* )σ,π是成键轨道,n 是非键轨道,σ* ,π* 是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。 横坐标表示吸收光的波长,用nm(纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、?(吸收系数) 中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强度。 四、紫外光谱中常用的几个术语 1.发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C、C=O、N=N 、三键、苯环等)

荧光光谱基础知识

荧 光 光 谱(Fluorescence Spectroscopy ) 韩荣成(10303023) 北京大学,03级生物医学工程 一、背景知识: 1.荧光,是指物质在吸收紫外光后发出的波长较长的紫外荧光或可见荧光,以及吸收波长较短的可见光后发出波长较长的可见荧光。除了紫外荧光和可见荧光,还有红外荧光、X 射线荧光等。 在很多情况下,分子从激发态回到基态过程中,能量通过热量等形式散失到周围。但 是在某些情况下,能量能以光子发射的形式释放出来。 分子的能量状态在光学分析中涉及的分子能量有:E 0=Ee+Ev+Er ,其中Ee:价电子运动能(electron ); Ev :原子在平衡位置的振动能(vibration );Er :分子绕其重心的转动能(rotation )。Ee 大 约为1eV 数量级;Ev 大约为10-1~10-2 eV ;Er 大约为10-4~10-5eV 数量级, 可见⊿Ee>⊿Ev>⊿ Er 分子吸收能量后,处于激发态的分子通过非辐射过程丢失能量,首先到达S1的最低振动能 级,这一过程称为内转换(internal conversion),发生在10-11s内。从S1的最低振动能级以光子形式放出能量而回到基态的不同振动能级,这一过程称为荧光 (fluorescence),发生在10-9s内;如果以非辐射的形式丢失能量则称为淬灭 (quenching)。如果某种物质在被某种波长的光照射以后能在较长的时间内发出比

荧光波长更长的波长的光,则称这种光为磷光。磷光产生的机制与荧光是不同的,虽然它们都属于发射光谱,但磷光不是处于第一电子激发态的最低振动能级的分子直接释放出光子回到基态的结果,而是从某种能量低于第一电子激发态的最低振动能级的另一种亚稳能级?三重态向基态的各振动能级以辐射方式产生跃迁时发出的光。 所谓三重态或三线态,是指分子中电子自旋量子数S=1,即原来两个配对的自旋 方向相反的电子之一自旋方向改变,以至电子自旋之和不为0的情况。处于第一电子激发态最低振动能级的分子,有可能通过无辐射跃迁(系间交连,intersystem crossing)消耗部分能量,其中一个电子的自旋方向倒转,从而处于三线态。从三线态的最低振动能级向基态的各振动能级跃迁并释放出光子,则其发光为磷光。由于三线态的电子自旋和不为零,这种跃迁是一种被禁跃迁,即跃迁几率很小。这样, 在三线态停留的时间即寿命就比较长(从10-3秒到数秒),强度很弱。由于三线态能 量低于第一电子激发态最低振动能级,因此磷光的波长比荧光长。 二、荧光光谱: 荧光光谱包括激发谱和发射谱两种。激发谱是荧光物质在不同波长的激发光作 用下测得的某一波长处的荧光强度的变化情况,也就是不同波长的激发光的相对效率;发射谱则是某一固定波长的激发光作用下荧光强度在不同波长处的分布情况, 也就是荧光中不同波长的光 成分的相对强度。 激发谱既然是表示某种荧光 物质在不同波长的激发光作 用下所测得的同一波长下荧 光强度的变化,而荧光的产生 又与吸收有关,因此激发谱和 吸收谱极为相似,呈正相关。 由于激发态和基态有相似的 振动能级分布,而且从基态的 振动能级跃迁到基态各振动能级的几率也相近,因此吸收谱与发射谱呈镜象对称关系.λex:maximum excitation wavelength; λem(λax): maximum emissio wavelength 最低振动能级跃迁到第一电子激发态各振动能级的几率与由第一电子激发态的最低n

XPS能谱数据处理

XPS能谱数据处理 材料,射线光电子能谱数据处理及分峰的分析实例 72例:将剂量为1,10ions/cm,能量为45KeV的碳离子注入单晶硅中,然后在1100C退火2h进行热处理。对单晶硅试样进行XPS测试,试对其中的C高分辨扫瞄谱1s进行解析,以确定各种可能存在的官能团。 分析过程: 1、在Origin中处理数据 图1 将实验数据用记事本打开,其中C表示的是C电子,299.4885表示起始结 1s1s 0.2500表示结合能递减步长,81表示数据个数。从15842开始表示是光合能,- 电子强度。从15842以下数据选中Copy到Excel软件B列中,为光电子强度数据列。同时将299.4885Copy到Excel软件A列中,并按照步长及个数生成结合能数据,见图2

图2 将生成的数据导入Origin软件中,见图3。 图3 此时以结合能作为横坐标,光电子强度作为纵坐标,绘出C谱图,检查谱1s 图是否有尖峰,如果有,那是脉冲,应把它们去掉,方法为点Origin 软件中的Data-Move Data Points,然后按键盘上的,或,箭头去除脉冲。本例中的实验数据没有脉冲,无需进行此项工作。将column A和B中的值复制到一空的记事本文档中(即成两列的格式,左边为结合能,右边为峰强),并存盘,见图4。

图4 2、打开XPS Peak,引入数据:点Data----Import (ASCII),引入所存数据,则出现相应的XPS谱图,见图5、图6。 3、选择本底:点Background,因软件问题, High BE和Low BE的位置最

好不改,否则无法再回到Origin,此时本底将连接这两点,Type可据实际情况选择,一般选择Shirley 类型,见图7。 图7 4、加峰: 点Add peak,出现小框,在Peak Type处选择s、p、d、f等峰类型(一般选s),在Position处选择希望的峰位,需固定时则点fix前小方框,同法还可选半峰宽(FWHM)、峰面积等。各项中的constraints可用来固定此峰与另一峰的关系。点Delete peak可去掉此峰。然后再点Add peak选第二个峰,如此重复。 在选择初始峰位时,如果有前人做过相似的实验,可以查到相应价键对应的峰位最好。但是如果这种实验方法比较新,前人没有做过相似的,就先用标准的峰位为初始值。最优化所有的峰位,然后看峰位位置的变化。 本例中加了三个峰,C元素注入单晶硅后可能形成C-C、C-Si和C-H三个价键。根据这三个价键对应的结合能确定其初始峰位,然后添加。具体过程见图8、9、10。

荧光分析法基本概念(20210127011514)

紫外可见吸收光谱 一紫外吸收光谱分析 基于物质对200-80Onm光谱区辐射的吸收特性而建立起来的分析测定方法称为紫外-可见吸收光谱法或紫外-可见分光光度法。它属于分子吸收光谱,是由于分子内电子跃迁而产生的光谱。 二紫外光谱的产生 物质分子的能量具有量子化的特征(即物质分子的能量具有不连续的特征)。一个分子有一系列能级,其中包括许多电子能级,分子振动能级以及分子转动能级。分子吸收特定的波长的光而产生吸收光谱分子的紫外吸收光谱是由于分子中价电子的跃迁而产生的,从化 学键的性质上考虑,与电子光谱有关的主要是三种电子:(1)形成单键的°电子;(2)形成双键的n电子;(3)分子中非键电子即n 电子。 化合物不同,所含的价电子类型不同,所产生的电子跃迁类型不同,根据分子轨道理论,分子中这三种电子能级的高低次序大致是: (c)v(n)v(n)V(n * )V (厂)°, n是成键轨道,n是非键轨道,° * , n *是反键轨道 由于电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。 二紫外光谱的表示方法

紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。 横坐标表示吸收光的波长,用nm (纳米)为单位。 纵坐标表示吸收光的吸收强度,可以用A(吸光度)、T(透射比或透光率或透过率)、1-T(吸收率)、(吸收系数)中的任何一个来表示。 吸收曲线表示化合物的紫外吸收情况。曲线最大吸收峰的横坐标 为该吸收峰的位置,纵坐标为它的吸收强度。 入/nm 翠胺的紫外光谱图 四、紫外光谱中常用的几个术语 1. 发色基团和助色基团 发色基团:是能导致化合物在紫外及可见光区产生吸收的基团,不论是否显示颜色都称为发色基团。一般不饱和的基团都是发色基团(C=C C=O N=N、三键、苯环等) 助色基团:指那些本身不会使化合物分子产生颜色或者在紫外

荧光光谱实验报告

近代物理实验报告 实验4-1 荧光光谱 【摘要】激发态分子返回基态而产生光辐射的跃迁,称为辐射跃迁,即荧光。本实验利用RF-5301PC荧光分光光度计测量了不同浓度的维生素B2溶液的光谱特性。固定激发光波长,扫描发射光波长,得到荧光发射光谱;固定发射光波长,扫描激发光波长,得到荧光激发光谱。 【关键词】荧光,光谱,激发,发射 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。以物质发射的荧光强度与浓度之间的线性关系为依据进行定量分析及以荧光光谱的形状和荧光峰对应的波长进行定性分析的方法称为荧光分析法。在荧光分析中,将荧光分为自然荧光和人工荧光,本实验所述荧光为自然荧光,即无须经过处理,当受到激发光照射时就能产生荧光的现象。 一、实验目的 ●理解并掌握荧光产生的机理。 ●学会测定不同浓度物质溶液的荧光激发光谱和发荧光射光谱。 ●了解影响荧光产生的几个主要因素。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 1.产生过程(如图1) ●光吸收:荧光物质从基态跃迁到激发态。此时,荧光分子处于激发态。 ●内转换:处于电子激发态的分子由于内部的作用,以无辐射跃迁过渡到低的能级。 ●外转换:处于电子激发态的分子由于和溶剂以及其他分子的作用,以及能量转移, 过渡到低的能级 ●荧光发射:如果不以内转换的方式回到基态,处于第一电子激发态最低振动能级的 分子将以辐射的方式回到基态,平均寿命约为10ns左右。 ●系间转换:不同多重态,有重叠的转动能级间的非辐射跃迁。 ●振动驰豫:高振动能级至低相邻振动能级间的跃迁。发生振动弛豫的时间。

荧光光谱的相关概念

实验1-4 荧光谱测量 发布时间:2008-06-23 实验1-4 荧光谱测量 某些物质受到电磁辐射而激发时,它们能重新发射出相同或较长波长的光。这种现象称为光致发光,荧光是光致发光现象中最常见的类型。如果停止照射,则荧光很快( 10-6s)地消失。通常所观察到的荧光现象是指物质吸收了波长较短的紫外光后发出波长较长的可见荧光。实际上,荧光现象并不限于上述情况。有些物质吸收了紫外光,仍然发出波长稍长的紫外荧光。有些物质吸收了比紫外光波长短得多的X射线,然后发出波长比所吸收的X射线的波长稍长的X射线荧光,据此而建立了X射线荧光分析法。通过测量荧光的强度,可用于定量测定许多无机和有机物质,它已成为一种很有用的分析方法,特别在生物化学方面有着广泛的应用。通过实验学习和掌握荧光光度计测定物质荧光光谱的原理和方法;熟悉荧光分光光度计的结构及使用方法;测量物质的荧光光谱 一、实验原理 发光物质因引起发光的原因不同可分为:热致发光、光致发光、电场致发光、阴极射线发光、高能粒子发光及生物发光等多种发光方式。光致发光的原理是分子在吸收了光能后,从基能态跃迁到高能态,在它们再从高能态返回基能态时,以光能的形式向外释放之前吸收的外来能量,即光致发光所发生的光。 (一)荧光的产生 物质吸收光能后所产生的光辐射称之为荧光和磷光单重态和三重态。分子中的电子运动包括分子

轨道运动和分子自旋运动,分子中的电子自旋状态,可以用多重态2S+1描述,S为总自旋量子数。若分子中没有未配对的电子,即S=0,则2S+1=1,称为单重态;若分子中有两个自旋方向平行的未配对电子,即S=1,则2S+1=3,称为三重态。 大多数分子在室温时均处在电子基态的最低振动能级,当物质分子吸收了与它所具有的特征频率相一致的光子时,由原来的能级跃迁至第一电子激发态或第二电子激发态中各个不同振动能级,其后,大多数分子常迅速降落至第一电子激发态的最低振动能级,在这一过程中它们和周围的同类分子或其他分子撞击而消耗了能量,因而不发射光。过程如图1-4-1所示。 处在第一激发单重态的电子跃回基态各振动能级时,将产生荧光,在这一过程中除了荧光还有磷光,以及延迟荧光等,本次实验我们主要讨论荧光。荧光的产生在10-7-10-9S内完成。荧光和磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层之间的跃迁产生的;而磷光是由激发三重态最低振动能层至基态各振动能层之间的跃迁产生的。

γ能谱的数据处理

能谱的数据处理 由多道脉冲分析器获取的谱数据需要以一定的数学方法进行处理才能得到实验要求的最终结果。能谱的数据处理大致可以分为两个步骤。首先进行峰分析,即由能谱数据中找到全部有意义的峰,并计算出扣除本底之后每个峰的净面积。第二步是放射性核素的活度或样品中元素浓度的计算,即由峰位所对应的能量识别出被测样品中含有哪些放射性核素或被激发的元素,并且由峰的净面积计算出放射性核素的活度或元素在样品中的浓度。 采用不同的物理实验方法,使用不同的探测器时,能谱的数据处理方法也有所不同。在本章中首先讨论在各种能谱数据处理中经常用到的峰分析方法,包括谱数据的平滑处理,本底扣除、寻峰、峰净面积计算和函数拟合法解谱。然后,以γ谱分析为例,讨论基于计算机的多道脉冲分析系统中的谱自动分析软件的工作原理。 第一节 常用的峰分析方法 一、谱数据的平滑处理 由于射线和探测器中固有的统计涨落、电子学系统的噪声的影响,谱数据有很大的统计涨落。在每道计数较少时,相对统计涨落更大。谱数据的涨落将会使谱数据处理产生误差。其主要表现为在寻峰过程中丢失弱峰或出现假峰、峰净面积计算的误差加大等等。谱数据的平滑就是以一定的数学方法对谱数据进行处理,减少谱数据中的统计涨落,但平滑之后的谱曲线应尽可能地保留平滑前谱曲线中有意义的特征,峰的形状和峰的净面积不应产生很大的变化。 对谱数据进行平滑处理通常使用数字滤波器。由信号分析理论的观点出发,我们可以把原始谱数据看成是噪声(即谱数据中的统计涨落)和信号(即峰函数和本底函数)的叠加。经过数字滤波器的处理可以提高信号噪声比。如图5-1-1所示,令第x 道的原始谱数据为y (x ),经过数字滤波之后的谱数据为 λλ-λ=?+∞ ∞-d x y g x y )()()( (5.1.1) 其中,)(λg 为数字滤波器的单位冲击响应函数,并有 1)(=λλ?+∞ ∞-d g (5.1.2) 图5-1-1 用数字滤波器进行谱的平滑处理 由于谱数据是离散量,公式(5.1.1)、(5.1.2)的离散量表达形式为 ∑+-=+=K K j j m j m y g y (5.1.3) y(λ) Y(x ) Y(x )

相关文档