文档库 最新最全的文档下载
当前位置:文档库 › 指数运算与指数函数专题(含详细解析)

指数运算与指数函数专题(含详细解析)

指数运算与指数函数专题(含详细解析)
指数运算与指数函数专题(含详细解析)

1

第五讲 指数运算与指数函数

时间: 年 月 日 刘满江老师 学生签名:

一、 兴趣导入

二、 学前测试

1. 已知0a >,函数2()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中为

假命题的是

(A )0,()()x R f x f x ?∈≤ (B )0,()()x R f x f x ?∈≥ (C ) 0,()()x R f x f x ?∈≤ (D )0,()()x R f x f x ?∈≥ 解析:选C.函数()f x 的最小值是0()()2b

f f x a

-

= 等价于0,()()x R f x f x ?∈≥,所以命题C 错误.

2. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()

00S t S =,则导函数()'

y S t =的图像大致为

【答案】A

【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。最初零时刻和最后终点时刻没有变化,导数取零,排除C ;总面积一直保持增加,没有负的改变量,排除B ;考察A 、D 的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,

2

产生中断,选择A 。

三、 方法培养

1.根式的概念

结论:当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==)

0()

0(||a a a a a a n n

2.分数指数幂

)1,,,0(*>∈>=n N n m a a a n m n

m )1,,,0(1

1*>∈>=

=

-

n N n m a a a

a

n

m

n

m n

m

0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r

a ·s r s

a a

+=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;

(3)()r

r

s

ab a a =),0,0(Q r b a ∈>>. 指数函数的概念

一般地,函数)1a ,0a (a y x

≠>=且叫做指数函数,其中x 是自

变量,函数的定义域为R .

注意:○

1 指数函数的定义是一个形式定义 ○

2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.

(三)指数函数的图象和性质

注意内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 指数函数的图象如右图: 4.指数函数的性质

图象特征

函数性质

1a > 1a 0<< 1a > 1a 0<<

向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R +

函数图象都过定点(0,1)

1a 0=

自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数

减函数

在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1

1a ,0x x >> 1a ,0x x <> 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1

1a ,0x x <<

1a ,0x x ><

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

3

利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x

≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x

≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;

[例1] 化简1111132168421212121212-----???

???????+++++ ???????????????????,结果是( )

A 、1

1

321122--?

?- ?

??

B 、1

1

3212--??- ???

C 、13212--

D 、1321122-??- ???

2、44

366399a a ???? ? ?????

等于( )

A 、16

a

B 、8

a

C 、4

a

D 、2

a

变式练习11.若32x +9=10?3x ,那么x 2

+1的值为( D ) A . 1 B . 2 C . 5 D . 1或 5

解:令3x

=t ,(t >0),

原方程转化为:t 2

﹣10t+9=0,

所以t=1或t=9,即3x

=1或3x =9

所以x=0或x=2,所以x 2

+1=1或5 故选D

2.若关于x 的方程=3﹣2a 有解,则a 的范围是( A ) A . ≤a <

B .

a ≥

C .

<a <

D .

a >

解:∵1﹣≤1,函数y=2x

在R 上是增函数,∴0<

≤21

=2,

故 0<3﹣2a ≤2,解得 ≤a <, 故选A .

〖例2〗已知,0a b ab >≠,下列不等式(1)2

2

a b >;(2)22a

b

>;(3)b

a 11<;(4)11

3

3a b >;

4

(5)1133a b

????

< ? ?????

中恒成立的有( )

A 、1个

B 、2个

C 、3个

D 、4个

变式练习2

1.设y 1=40.9,y 2=80.48,y 3=(12

)-

1.5,则( )

A .y 3>y 1>y 2

B .y 2>y 1>y 3

C .y 1>y 2>y 3

D .y 1>y 3>y 2

解析:选D.y 1=40.9=21.8,y 2=80.48

=21.44,

y 3=(12

)-

1.5=21.5,

∵y =2x 在定义域内为增函数, 且1.8>1.5>1.44, ∴y 1>y 3>y 2.

2.若函数f (x )=????

?

a x ,x >1(4-a

2)x +2,x ≤1

是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞)

B .(1,8)

C .(4,8)

D .[4,8)

解析:选D.因为f (x )在R 上是增函数,故结合图象(图略)知?????

a >1

4-a 2

>0

4-a 2+2≤a

,解得4≤a <8.

3.函数y =(12

)1-

x 的单调增区间为( )

A .(-∞,+∞)

B .(0,+∞)

C .(1,+∞)

D .(0,1)

解析:选A.设t =1-x ,则y =????12t

,则函数t =1-x 的递减区间为(-∞,+∞),即为y =???

?121-x 的递增区间.

4.已知函数y =f (x )的定义域为(1,2),则函数y =f (2x )的定义域为________. 解析:由函数的定义,得1<2x <2?0<x <1.所以应填(0,1). 答案:(0,1) 〖例3〗已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____.

分析:先求b c ,的值再比较大小,要注意x

x

b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =.

∴函数()f x 在(]1-,

∞上递减,在[

)1+,∞上递增. 若0x ≥,则3

21x

x ≥≥,∴(3)(2)x x f f ≥;

若0x <,则321x x

<<,∴(3)(2)x x

f f >.

5

综上可得(3)(2)x

x

f f ≥,即()()x

x

f c f b ≥.

评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论.

变式练习:

1已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.

分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2

2

25(1)441a a a ++=++>≥,

∴函数2(25)x

y a a =++在()-+,

∞∞上是增函数, ∴31x x >-,解得14x >

.∴x 的取值范围是14??

+ ???

∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.

〖例4〗求函数216x y -=-的定义域和值域.

解:由题意可得2

16

0x --≥,即261x -≤,

∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]

2-,

∞. 令2

6

x t -=,则1y t =-,

又∵2x ≤,∴20x -≤. ∴2

061x -<≤,即01t <≤.

∴011t -<≤,即01y <≤.

∴函数的值域是[

)01,.

评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

变式练习:函数221(01)x x y a a a a =+->≠且在区间[11]

-,上有最大值14,则a 的值是_______. 分析:令x

t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.

解:令x

t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.

∴当1a >时,∵[]

11

x ∈-,, ∴

1x a a a ≤≤,即1

t a a

≤≤. ∴当t a =时,2

max (1)214y a =+-=. 解得3a =或5a =-(舍去);

当01a <<时,∵[]

11

x ∈-,,

6

∴1x a a a ≤≤

,即1a t a

≤≤, ∴ 1t a =时,2

max 11214y a ??

=+-= ???

解得13a =

或15a =-(舍去),∴a 的值是3或13

四、强化练习

1.下列命题中,真命题是

(A)m R,f x x mx x R ?∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ?∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ?∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ?∈+∈2使函数()=()都是奇函数

【答案】A

【解析】本题主要考查奇偶数的基本概念,与存在量词、全称量词的含义,属于容易题。当m=0时,函数

f (x )=x 2

是偶函数,所以选A.

【温馨提示】本题也可以利用奇偶函数的定义求解。 2.用

表示a ,b 两数中的最小值。若函数

的图像关于直线x=1

2

-

对称,则t 的值为

A .-2

B .2

C .-1

D .1

7

五、训练辅导

〖例6〗.设函数2()1f x x =-,对任意2

,3x ??∈+∞????,2

4()(1)4()x f m f x f x f m m ??-≤-+ ???

恒成立,则实数m 的取值范围是 . 【答案】D

【解析】本题主要考查函数恒成立问题的基本解法,属于难题。

依据题意得2

2222214(1)(1)14(1)x m x x m m

---≤--+-

在3[,)2

x ∈+∞上恒定成立,即2

2213241m m x x -≤--+在3[,)2

x ∈+∞上恒成立。 当32x =时函数2321y x x =--+取得最小值53-,所以221543

m m -≤-,即22

(31)(43)0m m +-≥,解

得32m ≤-

或3

2

m ≥ 【温馨提示】本题是较为典型的恒成立问题,解决恒成立问题通常可以利用分离变量转化为最值的方法求解

8

变式练习

1直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是

.

2

解方程2

23

380x x +--=.

解:原方程可化为29(3)80390x x ?-?-=,令3(0)x

t t =>,上述方程可化为298090t t --=,解得9t =或

19

t =-(舍去)

,∴39x

=,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.

9

附件:堂堂清落地训练

(坚持堂堂清,学习很爽心)

1.设13<(13)b <(1

3)a <1,则( )

A .a a

B .a a

C .a b

D .a b

2.若(12)2a +1<(12

)3-

2a ,则实数a 的取值范围是( )

A .(1,+∞)

B .(1

2

,+∞)

C .(-∞,1)

D .(-∞,1

2

)

解析:选B.函数y =(1

2)x 在R 上为减函数,

∴2a +1>3-2a ,∴a >1

2

.

3.下列三个实数的大小关系正确的是( )

A .(12011)2<212011<1

B .(12011

)2

<1<212011

C .1<(12011)2<212011

D .1<21

2011<(12011

)2

解析:选B.∵12011<1,∴(12011)2

<1,21

2011>20=1.

4.设函数f (x )=a -

|x |(a >0且a ≠1),f (2)=4,则( ) A .f (-1)>f (-2) B .f (1)>f (2) C .f (2)<f (-2) D .f (-3)>f (-2)

解析:选D.由f (2)=4得a -

2=4,又a >0,∴a =12

,f (x )=2|x |,∴函数f (x )为偶函数,在(-∞,0)上单

调递减,在(0,+∞)上单调递增.

5.函数f (x )=1

2x +1

在(-∞,+∞)上( ) X k b 1 . c o m

A .单调递减无最小值

B .单调递减有最小值

C .单调递增无最大值

D .单调递增有最大值

解析:选A.u =2x

+1为R 上的增函数且u >0,

∴y =1

u

在(0,+∞)为减函数.

即f (x )=1

2x +1

在(-∞,+∞)上为减函数,无最小值.

6.若x <0且a x >b x >1,则下列不等式成立的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b

解析:选B.取x =-1,∴1a >1

b >1,∴0<a <b <1.

7.已知函数f (x )=a -1

2x +1

,若f (x )为奇函数,则a =________.

解析:法一:∵f (x )的定义域为R ,且f (x )为奇函数,

∴f (0)=0,即a -1

20+1

=0.

10

∴a =12

.

法二:∵f (x )为奇函数,

∴f (-x )=-f (x ),新 课 标 第 一 网

即a -12-x +1=12x +1

-a ,解得a =1

2.

答案:12

8.当x ∈[-1,1]时,f (x )=3x -2的值域为________.

解析:x ∈[-1,1],则13≤3x ≤3,即-5

3

≤3x -2≤1.

答案:???

?-5

3,1 9.若函数f (x )=e -(x -

u )2的最大值为m ,且f (x )是偶函数,则m +u =________. 解析:∵f (-x )=f (x ), ∴e -(x +u )2=e -(x -

u )2, ∴(x +u )2=(x -u )2, ∴u =0,∴f (x )=e -x 2.

∵x 2≥0,∴-x 2≤0,∴0<e -x 2≤1, ∴m =1,∴m +u =1+0=1. 答案:1

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

指数函数经典例题和课后习题

百度文库 - 让每个人平等地提升自我 指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

[高一数学]指数函数综合练习

指数函数典型例题 1根式的性质 例1 已知112 2 a a - +=3,求下列各式的值: (1)1a a -+; (2)22a a -+; (3)332 2112 2 a a a a - - --. 补充:立方和差公式3 3 2 2()()a b a b a ab b ±=±+. 小结:① 平方法;② 乘法公式; ③ 根式的基本性质(a ≥0)等. 注意, a ≥0十分重要,无此条件则公式不成立. . 变式:已知1 12 2 3a a - -=,求: (1)112 2a a - +; (2)332 2 a a - -. 练1. 化简:11112244 ()()x y x y -÷-. 练2. 已知x +x -1=3,求下列各式的值. (1)112 2x x - +; (2)332 2 x x - +. 2指数函数的图象和性质 比较指数函数的大小 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. ①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 求解有关指数不等式 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并

判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 求定义域及值域问题 求下列函数的定义域与值域. (1)y =23 1-x ; (2)y =4x +2x+1+1. 求函数216x y -=-的定义域和值域. 利用指数函数的单调性求值域时,要注意定义域对它的影响. 指数函数的最值问题 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值. 已知函数 ( 且 ) (1)求 的最小值; (2)若 ,求 的取值范围. 解指数方程 解方程223380x x +--=. 解指数方程通常是通过换元转化成二次方程求解,要注意验根. 单调性问题

(新)高一指数函数与对数函数经典基础练习题-

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348 .029 .0121,8 ,4 -? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围 是 . 5..函数)3(log 3 2x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f +=)(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x

指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y3(2)y(3)y 1 2x === -+- -- 2133 21 x x 解(1)定义域为x∈R且x≠2.值域y>0且y≠1. (2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0. (3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3, ∴值域是≤<. 0y3 【例2】指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c. 【例3】比较大小: (1)2 (2)0.6 、、、、的大小关系是:. 24816 3 2 3589 4 5 1 2 -- () (3) 解(1) y221() x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数, 又<<<<,∴<<<<. 22224282162 1 3 3 8 2 5 4 9 1 2 284162 1 23 1 35 2 58 3 89 4 9 3859 =====

解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()()解 (3)借助数打桥,利用指数函数的单调性,,作函数y 1=,y 2=的图像如图2.6-3,取x =,得 说明 如何比较两个幂的大小:若不同底先化为同 底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与同底与同指数的特点,即为或,如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>, >, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() () ∴<,∴<当>时,∵>,>,∴>,>a a a n n a a a n n n n n n n n n n n n 1111 1111 1 1() () ()--+--+-1a 1n 101 【例5】作出下列函数的图像: (1)y (2)y 22x ==-,()1 2 1 x + (3)y =2|x-1| (4)y

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题

指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

相关文档 最新文档