文档库 最新最全的文档下载
当前位置:文档库 › 提高电子显微镜分辨率的5个方法

提高电子显微镜分辨率的5个方法

提高电子显微镜分辨率的5个方法

5个提高电子显微镜最大分辨率的方法

电子显微镜就是利用短光波来提高分辨力以检视较小物体的。奥林巴斯显微镜尤其是生物显微镜,在北京显微镜市场十分大,显微镜价格也极具竞争力,物镜分辨力的高低与造象是否清楚有密切的关系。而目镜没有这种性能,因为目镜只放大物镜所造的象。为此,提高电子显微镜放大率的方法可从以下几个方面考虑:

①保持良好的加速电压。

加速电压不能很低,正常应保持在20~30KV。

②尽量缩短工作距离。工作距离不能太大,一般保持在5~8mm,以缩短探头接收信号的距离。③保持好样品的倾斜度,样品倾斜10~150,使二次电子发射及接收的多。

④聚光镜放在600~650 左右,(数值越大,束斑尺寸越小,分辨率越高)。

⑤对中良好,保证电子束对中,信号强,亮度好。⑥及时更换新的灯丝,使灯丝饱和,束流稳定,并使束流值保持在100~150。⑦物镜光阑合轴好(特征点在2000X 倍以上时,基本同心聚焦散焦)。⑧延长抽真空的时间以提高真空度(一般在30 分钟以上基本达到平衡)或检查真空系统的密封状态。

https://www.wendangku.net/doc/e05795611.html,

提高显微镜的分辨率,意义重大,对于科学研究,实验教学等等,会有突破性的应用。在现在的很多实验平台,传统意义的光学显微镜是用的很广泛的,特别是生物显微镜,包括北京生物显微镜,于电子显微镜的发展都密切相关。

提高显微镜分辨率的方法简述

目录 1 选题背景 (1) 2 方案论证及过程论述 (1) 2.1 像差 (1) 2.1.1 球面像差 (1) 2.1.2 慧形像差 (2) 2.1.3 色像差 (2) 2.2 照明对显微镜分辨率的影响 (2) 2.2.1 非相干光照明 (2) 2.2.2 相干光照明 (2) 2.2.3 部分相干光照明 (3) 2.2.4 临界照明 (3) 2.3 衍射 (3) 2.3.1 对两个发光点的分辨率 (3) 2.3.2 对不发光物体的分辨率 (4) 2.4 光噪声 (6) 3 结果分析 (6) 4 结论 (7) 4.1 提高光学显微镜与电子显微镜分辨率的方法 (7) 4.1.1 提高光学显微镜分辨率的方法 (7) 4.1.2 如何提高电子显微镜分辨率 (7) 参考文献 (9)

1 选题背景 显微镜是实验室最重要的设备之一,对观察微小物体细节的显微镜来说,评价光学显微镜及电子显微镜的重要指标之一是分辨本领。显微镜的分辨能力是指其分辨近距离物体细微结构的能力,它主要是显微镜的性能决定。通常是以显微镜的分辨率级即显微镜能分辨开两个物点的最小距离d来表示,d值越小,则显微镜的分辨能力越强。 人眼本身就是一台显微镜,在标准照明条件下,人眼在明视距离(国际公认为25cm)上的分辨率约等于1/10mm。对于观察两条直线来说,由于直线能刺激一系列神经细胞,眼睛的分辨率还能提高一些,这就是显微镜的分划板使用双线对准的原理所在。人眼的分辨率只有1/10mm,那么比1/10mm小的物体或比1/10mm近的两个微小物体的距离,人眼就无法分辨了。这时人们开始研制出放大镜和显微镜,显微镜的分辨率计算公式为:d=0.61入/NA;式中:d为分辨率(μm);入为光源波长(μm);NA为物镜的数值口径(也称镜口率)。 造成显微镜光学像欠缺的因素主要在物镜组,有像差、衍射和光噪声等,它们是影响显微镜分辨率的主要因素,其次照明对显微镜的分辨率也有一定的影响。 对于显微镜的使用者来讲,应该对造成显微镜分辨率下降的因素有比较清楚的认识,并知道克服和减少这些因素的方法。本文从几何像差、色像差、衍射、干涉和照明几个方面分析了对显微镜分辨率的影响,指出了孔径数的增加,从衍射角度看对显微镜分辨率的提高有好处,但从几何像差的角度看则会降低显微镜的分辨率;并指出了照明对显微镜分辨率的影响是不可忽略的等。 2 方案论证及过程论述 2.1 像差 像差可分为单色像差和色像差两大类。单色像差有五种:(1)球面像差;(2)彗形像差;(3)像散;(4)像场弯曲;(5)畴变。其中(1)和(2)是由大孔径引起的,(3)、(4)、(5)是由大视场引起的。显微镜需要大孔径,但不需要大视场,所以显微镜的单色像差主要是(1)和(2)。 2.1.1 球面像差 单球面公式只有在满足近轴光线的条件下才能成立。当孔径较大时,有许多远轴光线也进入了透镜,近轴光线和远轴光线经透镜折射后不能在同一点上会聚。换句话说,主轴上一物点经透镜成像后,像不是一个点,而是一个圆斑,这样就产生了球面像差。消除的方法有二:一是在透镜前加一光阑,用以限制远轴光线的进入。这样做,会使显微镜的孔径数降低,从而降低了显微镜的分辨率。二是用复合透镜法,显微镜物镜就是采用这种方法制作的。

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

光刻

光刻 一、概述: 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)。 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 二、光学基础: 光的反射(reflection)。光射到任何表面的时候都会发生反射,并且符合反射定律:入射角等于反射角。在曝光的时候,光刻胶往往会在硅片表面或者金属层发生反射,使不希望被曝光的光刻胶被曝光,从而造成图形复制的偏差。常常需要用抗反射涂层(ARC,Anti-Reflective Coating)来改善因反射造成的缺陷。 光的折射(refraction)。光通过一种透明介质进入到另一种透明介质的时候,发生方向的改变。主要是因为在两种介质中光的传播速度不同(λ=v/f)。直观来说是两种介质中光的入射角发生改变。所以我们在90nm工艺中利用高折射率的水为介质(空气的折射率为1.0,而水的折射率为1.47),采用浸入式光刻技术,从而提高了分辨率。而且这种技术有可能将被沿用至45nm工艺节点。 光的衍射或者绕射(diffraction)。光在传播过程中遇到障碍物(小孔或者轮廓分明的边缘)时,会发生光传播路线的改变。曝光的时候,掩膜板上有尺寸很小的图形而且间距很窄。衍射会使光部分发散,导致光刻胶上不需要曝光的区域被曝光。衍射现象会造成分辨率的下降。 光的干涉(interference)。波的本质是正弦曲线。任何形式的正弦波只要具有相同的频率就能相互干涉,即相长相消:相位相同,彼此相长;相位不同,彼此相消。在曝光的过程中,反射光与折射光往往会发生干涉,从而降低了图形特征复制的分辨率。 调制传输函数(MTF, Modulation Transfer Function)。用于定义明暗对比度的参数。即分辨掩膜板上明暗图形的能力,与光线的衍射效应密切相关。MTF=(Imax-Imin)/(Imax+Imin),好的调制传输函数,就会得到更加陡直的光刻胶显影图形,即有高的分辨率。临界调制传输函数(CMTF,Critical Modulation Transfer Function)。主要表征光刻胶本身曝光对比度的参数。即光刻胶分辨透射光线明暗的能力。一般来说光路系统的调制传输函数必须大于光刻胶的临界调制传输函数,即MTF>CMTF。 数值孔径(NA, Numerical Aperture)。透镜收集衍射光(聚光)的能力。NA=n*sinθ=n*(透镜半径/透镜焦长)。一般来说NA大小为0.5~0.85。提高数值孔径的方法:1、提高介质折射率n,采用水代替空气;2、增大透镜的半径; 分辨率(Resolution)。区分临近最小尺寸图形的能力。R=kλ/(NA)=0.66/(n*sinθ) 。提高分辨率的方法:1、减小光源的波长;2、采用高分辨率的光刻胶;3、增大透镜半径;4、采用高折射率的介质,即采用浸入式光刻技术;5、优化光学棱镜系统以提高k(0.4~0.7)值(k是标志工艺水平的参数)。 焦深(DOF,Depth of Focus)。表示焦点周围的范围,在该范围内图像连续地保持清晰。焦深是焦点上面和下面的范围,焦深应该穿越整个光刻胶层的上下表面,这样才能够保证光刻胶完全曝光。DOF=kλ/(NA)2。增大焦深的方法:1、增大光源的波长;2、采用小的数值

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

电子显微镜的景深和显微镜的分辨率

电子显微镜的景深和显微镜的分辨率 显微镜由于电子的波动性,当它通过小孔光阑时会发生衍射现象。衍射结果表现为每个物点形成的像是一个圆斑(周围的副光环可忽略不计)。定义这个衍射圆斑的半径为衍射像差。在像方或物方可分别表示为: (Ar&ff),=0.611/a(1一22a) (1rdff)o=0.61A/ao(1一22b) 式中各符号的意义同前。可以看出加大光阑孔径角as,可以减小衍射差。但实际工作中还应注意这样会带来的不利影响。 景深和焦探(11) 景深就是在保持像清晰的前提下,可允许物面在轴上的移动距离,或者说可允许物上不同部位处的凹凸差。根据图1-10,理想情况下物点P成像在Q点.如果物面在P点前后P’P"之间移动,则在Q看到的物有一定横向宽度。如果透镜有各种像差。该系统实际存在一个对物的可分辨极限(分辨率8)。显微镜价格只要P’P,,间平面上的物点宽度小于或等于s,则在Q处的成像效果与P点处几何物点造成的像斑是相同的,即其清晰度相同。因此可允许的物在轴上最大距离PP"称景深Do,它由下式定出: D0二 (1一23) 式中d一电子光学系统对物的分辨率; ao一电子束的物方有效孔径角. 对于100kV的电镜,偏光显微镜如果分辨率为lnm,物镜孔径角为5X10-1rad,则景深Do=200nm.这表示样品厚度或表面凹凸起伏不超过200nm时,能得到均匀清晰的图像.由此可见景深也常常成为对样品厚度的限制因素之一。

把景深这一特性转换到像方便可得到焦深Df。它就是为了得到清晰度相同的像,可允许的图像显示或记录平面的轴向位移量。参照(1一23)可得: Df=B;/a(1一24) 式中S;一像方的分辨率;a;一电子束的像方有效孔径角。 显微镜像方分辨率S;受观察荧光屏的分辨率所限制。通常荧光屏的分辨率为505m。如电镜最高放大倍数M=10`X,电子束孔径角ao=5X10-’rad,则最长焦深(D1),o,==100M。即使在最低放大倍数M=10’X,相应的ao=1X10-’rad时,最低焦深(Df).二50cm。可见电镜的焦深值很大.这就说明了在透射电镜中为什么我们只对荧光屏调焦,而把像记录在其下方的电子感光板或其上方的35mm胶片上时,总能得到清晰的像。 本文由广州深华实验室仪器设备整合发布

能够充分提高照片像素的方法!

能够充分提高照片像素的方法! 初玩摄影的朋友,是否为照片的像素不高而烦恼?下面分享能够提高照片素质12招,希望可以给大家带来帮助! 1. 尽量使用三脚架 很多情况下,照片图像模糊、不清晰的原因,是拍摄者在按动快门时产生“手振”或相机反光板抬升产生“机振”所造成的。如果使用了三脚架,无论快门速度设定到如何的“慢”,甚至长时间的曝光,即可防止图像由于“抖动”而产生的图像模糊。但要注意,使用三脚架时,要尽可能地使用快门线,忽视这一点,仍有可能在手指接触快门时产生的震动而影响清晰度。 2. 尽可能地使用高速快门 在手持照相机拍照的情况下,尽可能采用高速快门来拍摄。没有经验的拍摄者,快门速度设定在1/30s以下时,照片拍虚的概率较大。即使专业摄影工作者,也不能保证在低速快门拍摄时有百分之百的把握。提高快门速度,会相应提高照片清晰度的概率。当然,在手持照相机提高快门速度的情况下,势必开大光圈,因而会失去“大景深”,但为保证照片的清晰度,放弃景深是不得已的办法。 3. 尽可能使用“最佳光圈” 任何镜头都存在不同程度的成像误差,这些成像误差将使镜头的成像质量受到不同程度的影响。由于镜头球面的曲率不同,光线经过透镜中心和边缘时因折射率不同而不能聚焦于同一焦点,从而导致清晰度下降。如使用镜头的最大光圈拍摄,将导致该镜头像差缺陷的最大暴露,导致图像清晰度下降,而使用镜头的最小光圈拍摄,会产生光的衍射,也会导致图像清晰度下降。为改善像差而引起的清晰度下降问题,通常采用缩小光圈的办法来提高成像的质量。一般来说镜头的最佳光圈为该镜头最大光圈缩小2~3档左右,拍摄者可对某个镜头的最佳光圈进行比较。 4. 尽可能采用手动对焦 目前大多数相机具有自动对焦功能。然而,在景深特别小的情况下,自动对焦往往会聚焦不准确,特别是在向主体近距离对焦,使用长焦距镜头,采用大光圈拍摄人像特写的情况下,要特别小心。如果此时采用自动对焦,“靶子”非要对在人物的眼睛上,如果没有十分的把握,宁可放弃自动对焦,而采用手动对焦。人们不希望照片上人物的耳朵或鼻子是清晰的,而传神的眼睛是模糊的。 5. 尽量使用遮光罩 遮光罩的使用,很多人并不在意。在用正面光、前侧光或侧光时,遮光罩的作用并不明显。但是在逆光或侧逆光拍摄时,必须使用遮光罩,有时即便使用了遮光罩,阳光仍会直射到镜头上,造成画面“冲光”,产生雾翳,影响被摄体的色彩饱和度和清晰度。这时,应调整镜头角度,避开直射到镜头上的光线。此外,遮光罩还有助于防止镜头镜面损伤,同时避免手指接触到镜面。 6. 合理利用景深 景深的大小是根据拍摄者拍摄的目的来决定。如果是拍摄风光摄影,景深就要求大,目的是为让照片上景物的清晰范围从近至远都表现得很清楚。如果是拍摄特写,景深就要求小,目的是让照片上主体的背景(也可能是前景)虚化(模糊),突出被摄主体。用小景深来表现风光题材,或用大景深去表现被摄体特写,从摄影表现手法上来说适得其反。如何合理运用景深呢?请记住:采用小光圈、短焦距镜头、远距离对焦拍摄三种方法,景深就大。采用大光圈、长焦距镜头、近距离对焦拍摄三种方法,景深就小。采用其中一种或两种拍摄方法也行,但效果没有三种方法合起来使用作用更明显。 7. 尽可能选用低值感光度 要获得影像的高清晰度,让照片看起来具有丰富的质感,除选择使用高像素的数码照相

光刻技术新进展

光刻技术新进展 刘泽文李志坚 一、引言 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可包含约10亿个器件,其增长过程遵从一个我们称之为摩尔定律的规律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现,总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 二、当前光刻技术的主要研究领域及进展 1999年初,0.18微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G位DRAM生产。根据当前的技术发展情况,光学光刻用于2003年前后的0.13微米将没有问题。而在2006年用到的0.1微米特征线宽则有可能是光学光刻的一个技术极限,被称为0.1微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为0.07,0.05微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。

在0.1微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X射线、电子束的离子束光刻。由于光学光刻的不断突破,它们一直处于"候选者"的地位,并形成竞争态势。这些技术能否在生产中取得应用,取决于它们的技术成熟程度、设备成本、生产效率等。下面我们就各种光刻技术进展情况作进一步介绍。 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结 构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。目前,商品化光刻机的光源波长已经从过去的汞灯光源紫外光波段进入到深紫外波段(DUV),如用于0.25微米技术的KrF准分子激光(波长为248纳米)和用于0.18微米技术的ArF准分子激光(波长为193纳米)。 除此之外,利用光的干涉特性,采用各种波前技术优化工艺参数也是提高光刻分辨率的重要手段。这些技术是运用电磁理论结合光刻实际对曝光成像进行深入的分析所取得的突破。其中有移相掩膜、离轴照明技术、邻近效应校正等。运用这些技术,可在目前的技术水平上获得更高分辨率的光刻图形。如1999年初Canon公司推出的FPA-1000ASI扫描步进机,该机的光源为193纳米ArF,通过采用波前技术,可在300毫米硅片上实现0.13微米光刻线宽。 光刻技术包括光刻机、掩模、光刻胶等一系列技术,涉及光、机、电、物理、化学、材料等多个研究领域。目前科学家正在探索更短波长的F2激光(波长为157纳米)光刻技术。由于大量的光吸收,获得用于光刻系统的新型光学及掩模衬底材料是该波段技术的主要困 难。

光刻技术

1.涂胶涂胶就是在SIO2或其他薄膜表面,涂布一层粘附良好,厚度适当,厚薄均匀的光刻胶膜。涂胶前的硅片表面必须清洁干燥,如果硅片搁置较久或光刻返工,则应重新进行清洗并烘干后再涂胶。生产中,最好在氧化或蒸发后立即涂胶,此时硅片表面清洁干燥,光刻胶的粘附性较好。 涂胶一般采用旋转法,其原理是利用转动时产生的离心力,将滴在硅片的多余胶液甩去,在光刻胶表面张力和旋转离心力共同作用下,扩展成厚度均匀的胶膜。胶膜厚度可通过转速和胶的浓度来调节。 涂胶的厚度要适当,膜厚均匀,粘附良好。胶膜太薄,则针孔多,抗蚀能力差;胶膜太厚,则分辨率低。在一般情况下,可分辨线宽约为膜厚的5~8倍。 2.前烘前烘就是在一定的温度下,使胶膜里的溶剂缓慢地挥发出来,使胶膜干燥,并增加其粘附性和耐磨性。 前烘的温度和时间随胶的种类及膜厚的不同而有所差别,一般通过实验来加以确定。 前烘的温度和时间必须适当。温度过高会引起抗蚀剂的热交联,在显影时留下底膜,或者增感剂升华挥发使感光灵敏度下降;前烘温度过低或时间过短,则抗蚀剂中的有机溶剂不能充分挥发,残留的溶剂分子会妨碍光交链反应,从而造成针孔密度增加,浮胶或图形变形等。同时,前烘时还不能骤热,以免引起表面鼓泡,产生针孔甚至浮胶。一般前烘是在80℃恒温干燥箱中烘烤1015分钟;也可以用红外灯在硅片背面烘烤,使胶膜的干燥从里到外,以获得良好的前烘效果。 3.暴光暴光就是对涂有光刻胶的基片进行选择性光化学反应,使暴光部分的光刻胶改变在显影液中的溶解性,经显影后在光刻胶膜上得到和掩膜版相对应的图形。 生产上,通常都采用紫外光接触暴光法,其基本步骤是定位对准和暴光。定位对准是使掩膜版的图形和硅片上的图形精确套合,因此要求光刻机有良好的对准装置,即具有精密的微调和压紧机构,特别是在压紧时保证精确套合不发生位移。此外,光刻机还应具有合适的光学观察系统,要求有一个景深较大,同时又有足够高分辨率的显微镜。 暴光量的选择决定于光刻胶的吸收光谱,配比,膜厚和光源的光谱分布。最佳暴光量的确定,还要考虑衬底的光反射特性。在实际生产中,往往以暴光时间来控制暴光量,并通过实验来确定最佳暴光时间。 暴光时影响分辨率的因素有: ①掩膜版于光刻胶膜的接触情况若硅片弯曲,硅片表面有灰尘或突起,胶膜厚度不均匀,光刻机压紧机构不良等都会影响掩膜版与光刻胶膜的接触情况,从而使分辨率降低。 ②暴光光线的平行度暴光光线应与掩膜版和胶膜表面垂直,否则将使光刻图形发生畸变。

课程设计参考报告——提高光学光刻分辨率的方法研究

微电子工艺课程设计 提供光学光刻分辨率的方法研究

目录 摘要 (5) 关键词 (5) 引言 (5) 正文 (5) 一、提高分辨率的方法 (5) 1. 影响图形光刻分辨率的主要因素 (5) 1.1掩膜(Mask) (6) 1.2照明系统(Illumination system) (6) 1.3投影(Projection) (7) 1.4发射和过滤特性 (7) 1.5成像(Image) (8) 1.6曝光(Expose) (9) 1.7烘烤(Bake) (10) 1.8显影(Develop) (10) 1.9一些效应的影响 (12) 2. 提高分辨率的措施 (14) 2.1掩膜 (14) 2.2照明系统 (15) 2.3投影(Projection) (16) 2.4发射和过滤特性 (17) 2.5成像(Image) (18) 2.6曝光(Expose) (18) 2.7烘烤(Bake) (19) 2.8显影(Develop) (20) 2.9一些常见且有效的技术 (22) 2.10采用先进的光刻技术 (28) 二、一个优化的工艺组合方案的各参数的确定 (31) 1 掩膜版和照明窗口的设计 (31) 仿真1 (33) 仿真2 (35) 仿真3 (36) 仿真4 (37) 仿真5 (39) 仿真6 (40) 结论 (41)

2 数值孔径 (42) 3光照波长 (42) 仿真1: (42) 仿真2: (43) 仿真3: (44) 仿真4: (45) 结论 (46) 4 照明系统与光轴的角度和离轴照明技术的结合使用 (46) 仿真1: (47) 仿真2: (47) 仿真3: (48) 仿真4: (49) 仿真5: (49) 结论: (50) 5 光刻胶的厚度、光照强度和曝光剂量 (50) 仿真1 (50) 仿真2 (51) 仿真3 (52) 仿真4 (52) 仿真5 (53) 仿真6 (54) 仿真7 (54) 仿真8 (55) 仿真9 (56) 仿真10 (56) 结论 (57) 6 耀斑数 (57) 仿真1 (58) 仿真2 (58) 仿真3 (59) 结论 (60) 7 损伤因子 (60) 仿真1 (60) 仿真2 (61) 仿真3 (63) 结论 (64) 8反射的次数和POWER MIN (64) 仿真1 (64)

光刻机分辨率

第一章引言 1.1光刻背景: 受功能增加和成本降低的要求所推动,包括微处理器、NAND闪存与DRAM等高密度存储器以及SoC(片上系统)和ASSP(特殊应用标准产品)在内的集成电路不断以快速的步伐微缩化。光刻则使具有成本优势的器件尺寸微缩成为可能。 目前,集成电路已经从60年代的每个芯片上仅几十个器件发展到现在的每个芯片上可含约10亿个器件,其增长过程遵从一个我们所熟知的摩尔定律,即集成度每3年提高4倍。这一增长速度不仅导致了半导体市场在过去30年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展,光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个新一代集成电路的出现总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小,使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困难也越来越多。 图1-1 1.2集成电路微缩化趋势及其对光刻的要求 由于器件单元不同,存储器与逻辑IC芯片的关键曝光层(critical layer)有着迥然不同的特征和光刻容差,这便对给定的光刻系统提出了不同的性能要求和实用限制。图1给出了几种不同器件的图形特征和对光刻的启示。 图1-2 第二章.当前光刻技术的主要研究领域及进展 1999 年初,0.18 微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于 1G 位 DRAM 生产。根据当前的技术发展情况,光学光刻用于 2003 年前后的 0.13 微米将没有问题。而 在 2006 年用到的 0.1 微米特征线宽则有可能是光学光刻的一个技术极限,被称为 0.1 微米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为 0.07,0.05 微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。 在 0.1 微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X

1若H-800电镜的最高分辨率是05nm

一、选择题 1.若H-800电镜的最高分辨率是0.5nm,那么这台电镜的有效放大倍数是()。 A. 1000; B. 10000; C. 40000; D.600000。 2. 可以消除的像差是()。 A. 球差; B. 像散; C. 色差; D. A+B。 3. 可以提高TEM的衬度的光栏是()。 A. 第二聚光镜光栏; B. 物镜光栏; C. 选区光栏; D. 其它光栏。 4. 电子衍射成像时是将()。 A. 中间镜的物平面与与物镜的背焦面重合; B. 中间镜的物平面与与物镜的像平面重合; C. 关闭中间镜; D. 关闭物镜。 5.选区光栏在TEM镜筒中的位置是()。 A. 物镜的物平面; B. 物镜的像平面 C. 物镜的背焦面; D. 物镜的前焦面。 二、正误题 1.TEM的分辨率既受衍射效应影响,也受透镜的像差影响。() 2.孔径半角α是影响分辨率的重要因素,TEM中的α角越小越好。() 3.有效放大倍数与仪器可以达到的放大倍数不同,前者取决于仪器分辨率和人眼分辨率,后者仅仅是仪器的制造水平。() 4.TEM中主要是电磁透镜,由于电磁透镜不存在凹透镜,所以不能象光学显微镜那样通过凹凸镜的组合设计来减小或消除像差,故TEM中的像差都是不可消除的。() 5.TEM的景深和焦长随分辨率Δr0的数值减小而减小;随孔径半角α的减小而增加;随放大倍数的提高而减小。() 三、填空题 1.TEM中的透镜有两种,分别是静电透镜和电磁透镜。 2.TEM中的三个可动光栏分别是第二聚光镜光栏位于第二聚光镜焦点上,物镜光栏位于 物镜的背焦面上,选区光栏位于物镜的像平面上。 3.TEM成像系统由物镜、中间镜和投影镜组成。 4.TEM的主要组成部分是照明系统、成像系统和观察记录系统;辅助部分由真空系统、 循环冷却系统和控制系统组成。 5.电磁透镜的像差包括球差、像散和色差。 四、名词解释 1.景深与焦长—— 2.电子枪—— 3.点分辨与晶格分辨率—— 4.消像散器—— 5.选区衍射—— 6.分析型电镜—— 7.极靴——

光刻工复习题

理论部分 填空题 1、光刻中使用的两种主要的光刻胶分别为正光刻胶和负光刻胶 2、在硅片表面上涂上液体光刻胶来得到一层均匀覆盖层最常用的方法是旋转 涂胶。有四个步骤:分滴,旋转分开,旋转甩掉,溶剂挥发。 3、曝光的方式有接触式、接近式曝光和投影式曝光。 4、光刻中有使用不同紫外光波长,波长在436纳米和157纳米之间的每种波长都有各自的波名称。其中波长为436nm的波名称是g光线,波长为405nm的波名称是h光线,波长为365nm的波名称是i光线,波长为248nm的波名称是深紫外(DUV) ,波长为157nm的波名称是真空紫外(VUV) 1、曝光的方式有接触式曝光、接近式曝光和投影式曝光 2.光刻工艺一般都要经过涂胶,前烘、曝光、显影,坚膜、腐蚀、去胶等步骤。 3.正性光刻胶和负性光刻胶是两种主要的光刻胶。对于负性光刻胶,曝光部分 不会溶解,在光刻胶中形成的图形与掩膜板的图形相反对于正性光刻胶,曝光部分容易溶解,在光刻胶中形成的图形与掩膜板的图形相同。 4.刻蚀的方法主要有湿法刻蚀、干法刻蚀和和等离子体。 5、光刻工艺一般都要经过涂胶、前烘、曝光、显影、坚膜、腐蚀、去胶等步骤。 一、判断题 1.最早应用在半导体光刻工艺中的光刻胶是正性光刻胶。(F ) 2.步进光刻机的三个基本目标是对准聚焦、曝光和合格产量。(F ) 3.光刻区使用黄色荧光灯照明的原因是,光刻胶只对特定波长的光线敏感,例如深紫外线和白光,而对黄光不敏感。(T ) 4.曝光后烘焙,简称后烘,其对传统I线光刻胶是必需的。(T ) 5.对正性光刻来说,剩余不可溶解的光刻胶是掩膜版图案的准确复制。(T )6.芯片上的物理尺寸特征被称为关键尺寸,即CD。(T ) 7.光刻的本质是把电路结构复制到以后要进行刻蚀和离子注入的硅片上。

光刻

光刻 光敏高分子对微电子技术的发展起着十分重要的作用,光刻和光刻胶(光致抗蚀剂)是微电子技术中的关键技术和关键材料。微电子技术中的光刻是印刷照相制版工艺的发展,下面以刻蚀二氧化硅为例来说明光刻的基本步骤。 首先在硅片上氧化或沉积一层二氧化硅(①),然后涂布一层光敏高分子材料即光刻胶(或称光致抗蚀剂)(②),烘干后加一块有电路图形的掩模(即底片),并用紫外光曝光(③)。由于光化学作用,曝光区和非曝光区上的光刻胶溶解度发生变化,利用合适的溶剂除去可溶部分(即显影),就得一图形,烘干(后烘)(④)后用氢氟酸将裸露二氧化硅腐蚀掉(⑤),最后

除去残留的光刻胶(⑥),于是硅片上便得到一个与掩模一致或相反的图形,后者称为负图形(A),前者称为正图形(B)。硅片上的二氧化硅成为硅的保护膜,通过在裸露的硅面上进行所谓离子注入、扩散掺杂或金属化(如电镀),便可在硅片上制出二极管、电阻、电容和导线。 (光刻技术过程) 典型的光刻硅:光刻中最重要的材料便是被称为光刻胶或光致抗蚀剂的光敏高分子化合物。光刻胶也就是前面印刷技术中讲到的感光树脂,它主要有三种类型:聚乙烯醇肉桂酸酯型、橡胶-叠氮型和邻醌重氮型。其中聚乙烯醇肉桂酸酯(Polyvinyl Cinnamate,PVCN)是最早用作光刻胶的光敏高分子化合物,由美国柯达公司开发。它在光照时发生环化二聚反应,两个肉桂酸酯间形成四元环,从而发生链间的交联,表示如下: 聚乙烯醇肉桂酸酯的光敏性不够好,为了提高它的光敏性,需要添加增感剂。增感剂有很多种,但最常用的是5-硝基二氢苊。加入增感剂后,光刻胶吸收光的范围可大大地扩展,交联固化速度也大大提高。

光刻过程与问题分析

§2光刻工艺过程 在平面管和集成电路生产中,都要经过多次光刻。虽然各次光刻的目的要求和工艺条件有所差别,但其工艺过程是基本相同的。光刻工艺一般都要经过涂胶,前烘,暴光,显影,坚膜, 腐蚀和去胶等七个步骤 1.涂胶涂胶就是在SIO2或其他薄膜表面,涂布一层粘附良好,厚度适当,厚薄均匀的光刻胶膜。涂胶前的硅片表面必须清洁干燥,如果硅片搁置较久或光刻返工,则应重新进行清洗并烘干后再涂胶。生产中,最好在氧化或蒸发后立即涂胶,此时硅片表面清洁干燥,光刻胶的粘附性较好。 涂胶一般采用旋转法,其原理是利用转动时产生的离心力,将滴在硅片的多余胶液甩去,在光刻胶表面张力和旋转离心力共同作用下,扩展成厚度均匀的胶膜。胶膜厚度可通过转速和胶的浓度来调节。 涂胶的厚度要适当,膜厚均匀,粘附良好。胶膜太薄,则针孔多,抗蚀能力差;胶膜太厚,则分辨率低。在一般情况下,可分辨线宽约为膜厚的5~8倍。

2.前烘前烘就是在一定的温度下,使胶膜里的溶剂缓慢地挥发出来,使胶膜干燥,并增加其粘附性和耐磨性。 前烘的温度和时间随胶的种类及膜厚的不同而有所差别,一般通过实验来加以确定。 前烘的温度和时间必须适当。温度过高会引起抗蚀剂的热交联,在显影时留下底膜,或者增感剂升华挥发使感光灵敏度下降;前烘温度过低或时间过短,则抗蚀剂中的有机溶剂不能充分挥发,残留的溶剂分子会妨碍光交链反应,从而造成针孔密度增加,浮胶或图形变形等。同时,前烘时还不能骤热,以免引起表面鼓泡,产生针孔甚至浮胶。一般前烘是在80℃恒温干燥箱中烘烤1015分钟;也可以用红外灯在硅片背面烘烤,使胶膜的干燥从里到外,以获得良好的前烘效果。 3.暴光暴光就是对涂有光刻胶的基片进行选择性光化学反应,使暴光部分的光刻胶改变在显影液中的溶解性,经显影后在光刻胶膜上得到和掩膜版相对应的图形。

电子显微镜的最新技术和发展趋势

电子显微镜的最新技术和发展趋势分析 按照中心布置,在校图书馆电子文献库检索(电子显微镜的最新技术和发展)检索到相关文献,其中全国分析测试学会微观结构专业评议组新一代电子显微镜的发展趋势及应用特点和中科院电子显微镜实验室姚骏恩院士电子显微镜现状与展望;国家生物医学分析中心张德添教授为“2009中国科学仪器发展年会” 介绍了电镜的最新技术;主要电镜公司的产品简介整理如下: 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率 球差系数:常规的透射电镜的球差系数 Cs约为mm级;现在的透射电镜的球差系数已降低到 Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为 0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.08nm.

亚分辨率辅助图形对28纳米密集线条光刻成像的影响

亚分辨率辅助图形 对28纳米密集线条光刻成像的影响 陈权1,2,段力1,毛智彪2 (1.上海交通大学,上海,200240; 2.上海华力微电子有限公司,上海,201203) 摘要:亚分辨率辅助图形(Sub-Resolution-Assist-Feature,SRAF)是光刻工艺图形增强技术(Reso-lutionEnhancementTechnology,RET)中广泛应用的一种方法。本文设计实验在密集图形(线宽/距离比约1:1)外侧放置不同的SRAF,研究了SRAF对于密集图形内部线条成像的影响,通过实验数据总结和理论分析,提出了最佳的SRAF放置位置。此外,本文还设计了一种与设计图形线宽一样大小的SRAF,并比较了其与传统尺寸SRAF对密集图形内侧线条成像的影响。 关键词:亚分辨率辅助图形;SRAF;光学邻近效应修正;OPC;分辨率 Sub-Resolution-Assist-Feature placement effect to28nm dense line patterns CHENQuan1,2,DUANLi1,MAOZhi-biao2 (1.ShanghaiJiaoTongUniversity,Shanghai200240,China; 2.ShanghaiHualiMicroelectronicsCorporation,Shanghai201203,China) Abstract:Sub-Resolution-Assist-Feature(SRAF)playsmoreandmoreimportantroleintheResolutionEnhance-mentTechnology(RET).Inthispaper,SRAFexperimentswerecarriedouttoa28nmdenselinepattern,thebestSRAFplacementlocationwasrecommendedaccordingtoexperimentandopticalintensityanalysis.Furthermore,SRAFwithsamewidthofdesignpatternwasalsostudied. Key words:Sub-Resolution-Assist-Feature;SRAF;OPC;OpticalProximityCorrection;Resolution

最新照相制版技术综术

照相制版是利用照相复制和化学腐蚀相结合的技术制取金属印刷版的化学加工方法。 照相制版的原理是把所需的文字和图像按要求缩放到底片上,再将底片贴合在涂有感光胶的金属板上进行曝光,经过显影便可在金属板上形成所需要的文字或图像的感光胶膜。然后对胶膜进行抗蚀性处理,使之成为一种有很强的耐酸碱性、有光泽的珐琅质薄层。再将金属板浸入硝酸或三氯化铁溶液中,无珐琅质胶膜的金属表面便被腐蚀溶解,形成凸出的文字或图像的印刷版。 1822年,法国的涅普斯首先进行了照相制版的实验。1839年,苏格兰的庞顿阐明了现代照相制版方法。1850年,法国的吉洛发明了铜锌版的照相制版法。1948年,美国发明了无粉腐蚀法,照相制版开始获得广泛使用。 照相制版是光刻和化学雕刻等加工工艺的基础。 19世纪的一个法国人将抗酸的沥青涂在铜板上,放进照相机后经一系列操作得到了凹凸的图像,有如雕刻出的雕版,从而发明了"照相制版术"。现在有四种主要印刷方式,即凸版印刷、平版印刷(胶版印刷)、凹版印刷和丝网印刷。下面简单介绍一下胶印PS版制版的原理。胶印PS版(预涂版),即预先涂布好的感光树脂的板材,由感光层和版基组成。版基中使用最广的是铝板,PS 版的感光层只有几个微米厚,按光敏高分子材料的不同可分为阳图和阴图两大类。在PS版上加上图文的底片,然后用紫外灯照射(曝光),由于光化学反应,感光层的溶解性能便会明显变化。如果光照部分的感光树脂发生光固化形成不溶的区域,那么在溶剂或水溶液中冲洗(显影)后,便得到一个阴图型(A)。相反,如果光照部分因光分解由溶剂(如碱水)不能溶解的变成溶剂可溶解的,那么用溶剂冲洗(显影)后,便可得到一个阳图(B)。 成电路的制备技术即微电子技术的发展,是感光材料在印刷上的使用引起的电子工业革命的另一个内容。集成电路,就是利用照相制版技术,制备电路(晶体管、电阻、电容、导线)的技术。 描述集成电路的发展有个摩尔定律:集成电路的集成度以每18个月翻一番的速度前进。集成度越高,它的价格越低,性能越好,因此用集成电路芯片装配的计算机也愈来愈小,运算速度愈来愈快,价钱也愈来愈便宜。 光刻中最重要的材料便是被称为光刻胶或光致抗蚀剂的光敏高分子化合物。光刻胶也就是前面印刷技术中讲到的感光树脂,它主要有三种类型:聚乙烯醇肉桂酸酯型、橡胶-叠氮型和邻醌重氮型。其中聚乙烯醇肉桂酸酯(Polyvinyl Cinnamate,PVCN)是最早用作光刻胶的光敏高分子化合物,由美国柯达公司开发。它在光照时发生环化二聚反应,两个肉桂酸酯间形成四元环,从而发生链间的交联,表示如下: 聚乙烯醇肉桂酸酯的光敏性不够好,为了提高它的光敏性,需要添加增感剂。增感剂有很多种,但最常用的是5-硝基二氢苊。加入增感剂后,光刻胶吸收光的范围可大大地扩展,交联固

光刻技术新进展

《光刻技术新进展》 作者: luoandzhou 发布日期: 2006-3-23 查看数: 115 出自: https://www.wendangku.net/doc/e05795611.html,/sup 一、引言 目前,集成电路已经从60 年代的每个芯片上仅几十个器件发展到现在的每个芯片上可包 含约10 亿个器件,其增长过程遵从一个我们称之为摩尔定律的规律,即集成度每3 年提高4 倍。这一增长速度不仅导致了半导体市场在过去30 年中以平均每年约15%的速度增长,而且对现代经济、国防和社会也产生了巨大的影响。集成电路之所以能飞速发展, 光刻技术的支持起到了极为关键的作用。因为它直接决定了单个器件的物理尺寸。每个 新一代集成电路的出现,总是以光刻所获得的线宽为主要技术标志。光刻技术的不断发 展从三个方面为集成电路技术的进步提供了保证:其一是大面积均匀曝光,在同一块硅 片上同时作出大量器件和芯片,保证了批量化的生产水平;其二是图形线宽不断缩小, 使用权集成度不断提高,生产成本持续下降;其三,由于线宽的缩小,器件的运行速度 越来越快,使用权集成电路的性能不断提高。随着集成度的提高,光刻技术所面临的困 难也越来越多。 二、当前光刻技术的主要研究领域及进展 1999 年初,0.18 微米工艺的深紫外线(DUV)光刻机已相继投放市场,用于1G 位DRAM 生产。根据当前的技术发展情况,光学光刻用于2003 年前后的0.13 微米将没有问题。而 在2006 年用到的0.1 微米特征线宽则有可能是光学光刻的一个技术极限,被称为0.1 微 米难关。如何在光源、材料、物理方法等方面取得突破,攻克这一难关并为0.07,0.05 微米工艺开辟道路是光刻技术和相应基础研究领域的共同课题。 在0.1 微米之后用于替代光学光刻的所谓下一代光刻技术(NGL)主要有极紫外、X 射线、电子束的离子束光刻。由于光学光刻的不断突破,它们一直处于“候选者”的地位,并形成竞争态势。这些技术能否在生产中取得应用,取决于它们的技术成熟程度、设备 成本、生产效率等。下面我们就各种光刻技术进展情况作进一步介绍。 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形“刻”在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分 辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长 光源光刻机一直是国际上的研究热点。目前,商品化光刻机的光源波长已经从过去的汞 灯光源紫外光波段进入到深紫外波段(DUV),如用于0.25 微米技术的KrF 准分子激光(波长为248 纳米)和用于0.18 微米技术的ArF 准分子激光(波长为193 纳米)。 除此之外,利用光的干涉特性,采用各种波前技术优化工艺参数也是提高光刻分辨率的 重要手段。这些技术是运用电磁理论结合光刻实际对曝光成像进行深入的分析所取得的 突破。其中有移相掩膜、离轴照明技术、邻近效应校正等。运用这些技术,可在目前的 技术水平上获得更高分辨率的光刻图形。如1999 年初Canon 公司推出的FPA-1000ASI 扫描步进机,该机的光源为193 纳米ArF,通过采用波前技术,可在300 毫米硅片上实 现0.13 微米光刻线宽。 光刻技术包括光刻机、掩模、光刻胶等一系列技术,涉及光、机、电、物理、化学、材 料等多个研究领域。目前科学家正在探索更短波长的F2 激光(波长为157 纳米)光刻技术。由于大量的光吸收,获得用于光刻系统的新型光学及掩模衬底材料是该波段技术的

相关文档