文档库 最新最全的文档下载
当前位置:文档库 › 氧气转炉留渣-冶金之家

氧气转炉留渣-冶金之家

氧气转炉留渣-冶金之家
氧气转炉留渣-冶金之家

氧气转炉“留渣+双渣”炼钢工艺技术研究

王新华1,朱国森2,李海波2,吕延春2

(1.北京科技大学冶金与生态工程学院,北京100083;2.首钢技术研究院,北京100043)

摘要:首钢迁钢公司和首秦公司大规模采用了“留渣+双渣”转炉炼钢新工艺,大幅度减少了炼钢渣量和石灰、白云石消耗。文章介绍了其中所开发的3项重要技术:①脱磷阶段采用低碱度(w(CaO)/w(SiO2)∶1.3~1.5)和低MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了脱磷阶段结束难以快速足量倒渣和渣中金属铁质量分数高这两大问题;②针对脱磷阶段底吹搅拌弱问题,采用了低枪位和高供氧强度吹炼方法,利用顶吹氧气流加强金属熔池搅拌,获得了良好脱磷效果;③通过加快生产速度,特别是对“炼钢-精炼-连铸”生产合理组织调配,在转炉冶炼时间增加大约4min情况下,钢产量并没有减少。

关键词:转炉炼钢;少渣;石灰消耗;脱磷;炉渣

中国钢铁工业近20年来发展迅速,对国民经济快速增长发挥了重要作用,但在节省资源、能源和减少炉渣等固体废弃物排放等方面,目前面临着巨大的压力和挑战。以占中国产钢量90%以上氧气转炉炼钢为例,每年生产约6.2亿t粗钢,要产生6000万t以上炉渣,消耗3100万t以上石灰和700万t以上轻烧白云石,而用于生产炼钢石灰和轻烧白云石的石灰石与生白云石矿产均为重要的不可再生资源。

2001年Ogawa等[1]报道了新日铁开发的MURC转炉炼钢新工艺及其在8t转炉的试验情况,该工艺将转炉冶炼分为2个阶段,在第1阶段主要进行脱硅、脱磷,结束后倒出部分炉渣,然后进行第2阶段吹炼,吹炼结束后出钢但将炉渣保持在炉内,下一炉在炉内留渣情况下装入废钢、铁水,然后进行第1和第2阶段吹炼,并以此循环往复。近年来,新日铁陆续报道了MUCR工艺相关情况[2-10],新日铁公司的大分、八幡、室兰、君津等钢厂采用了该工艺,产钢占新日铁总产钢量55%左右,转炉炼钢石灰消耗减少40%以上,但对其中许多关键技术,如液态渣固化、脱磷阶段炉渣碱度、供氧参数、脱磷工艺、倒渣控制等基本没有报道。

20世纪50~70年代,中国一些转炉钢厂在铁水硅、磷质量分数高时,为了降低石灰消耗,减少吹炼过程喷溅,改善脱磷效果,曾采用过出钢后留渣或“留渣+双渣”炼钢工艺。后来,随着高炉生产水平提高(铁水硅质量分数降低),高磷铁矿石用量减少(铁水磷质量分数降低),以及顾忌留渣造成铁水喷溅安全隐患,留渣或“留渣+双渣”炼钢工艺没有在更大规模推广采用。

近年来中国国内钢厂开始试验采用“留渣+双渣”转炉炼钢工艺,其中首钢在其迁钢公司5座210t复吹转炉和首秦公司3座100t复吹转炉大规模采用了该工艺方法,取得了炼钢石灰消耗减少47%以上,轻烧白云石消耗减少55%以上,渣量降低30%以上的效果。

1 首钢采用“留渣+双渣”炼钢工艺情况

首钢迁钢公司第一和第二炼钢分厂共拥有5座210t顶底复吹转炉,氧枪采用5孔喷头,马赫数为2.0,供氧强度在3.3~3.4m3/(min·t)范围,年产钢810万t,主要产品包括汽车、家电用冷轧钢板、电工钢板、管线钢板、容器板、造船板等。首秦公司拥有3座100t顶底复吹转炉,氧枪采用4孔喷头,马赫数为2.0,供氧强度在3.6~3.8m3/(min·t)范围,年产钢260万t,主要生产优质中厚板(管线、造船、桥梁、高层建筑、海洋平台用钢板等)。如图1所示,迁钢公司和首秦公司采用的氧气转炉“留渣+双渣”炼钢工艺主要包括以下环节:

①转炉冶炼结束出钢后将炉渣留在炉内;②采用溅渣护炉将部分炉渣溅至炉衬表面加以固化,再补加一定量石灰、白云石对炉底液态渣进行固化;③对炉渣固化加以确认,然后装入废钢、铁水;④进行第1阶段吹炼(脱磷阶段),结束后倒出炉内60%左右炉渣;⑤进行第2阶段(脱碳阶段)吹炼,结束后出钢,但将炉渣留在炉内,进入下炉次冶炼并以此循环往复。

炼钢脱磷反应可由(1)式表示,图2为根据(2)式[10-11]计算得到的脱磷反应平衡常数与温度的关系。可以看到,温度对脱磷反应的影响非常显著,当温度由1680℃降低至1350℃时,脱磷反应平衡常数可大幅度增加6个数量级以上。

“留渣+双渣”炼钢工艺的基本原理便是利用转炉冶炼前期温度低这一有利于脱磷反应热力学条件,将上炉终渣(由于温度高已基本不具备脱磷能力),用于下炉吹炼初期(由于温度低,炉渣重新具备脱磷能力)进行脱磷,并在温度上升至对脱磷不利之前,将炉渣部分倒出,然

后加入少量渣料造渣进行第2阶段吹炼(可进一步脱磷)。由于上炉炉渣可以被下炉再利用,因而能够大幅度减少炼钢石灰、轻烧白云石等原材料消耗和炼钢渣量。根据该工艺能够显著减少炼钢渣量的特点,首钢将其简称为“SGRS”工艺(SlagGenerationReducedSteelmaking)。

SGRS炼钢工艺除能够减少石灰、轻烧白云石等原材料消耗和炼钢渣量之外,还具有以下优点:①炼钢炉渣通常含14%~25%氧化铁,渣量减少因而可以降低钢铁料消耗;②常规炼钢工艺外排炉渣碱度高(大于3.0),渣中自由CaO质量分数多。采用41SGRS工艺,外排炉渣主要为脱磷阶段的低碱度渣,因此可以简化炉渣处理;③常规工艺炼钢,出钢后留在炉内部分钢水随炉渣倒出,采用新工艺吹炼终点不倒渣,因而可以提高钢水收得率。

至2012年底,首钢迁钢公司和首秦公司采用SGRS工艺产钢比率分别达到了63.8%和81.5%,与常规转炉炼钢工艺相比,转炉炼钢石灰消耗分别降低了47.3%和48.5%(迁钢公司降低至22.0kg/t,首秦公司降低至32.1kg/t),轻烧白云石消耗分别降低了55.2%和70.0%(迁钢公司降低至8.0kg/t,首秦公司降低至5.7kg/t),转炉炼钢渣量分别减少了32.6%和30.7%,钢铁料消耗分别降低了6.517kg/t和8.250kg/t,取得了显著经济效益。

2 关键工艺技术

2.1 脱磷阶段炉渣流动性控制与足量倒渣

采用SGRS炼钢工艺,脱磷阶段结束后能否快速倒出足量炉渣具有重要意义。如倒渣量不足,会出现:

①炉内渣量逐炉蓄积,碱度不断增加,倒渣愈加困难的情况,最后导致SGRS工艺无法接续,循环被迫停止;②炉渣流动性会逐炉变差,渣中裹入金属铁珠量大,钢铁料消耗增加;

③倒渣困难会增加冶炼时间,炉内渣量波动也会对吹炼过程控制稳定性造成很大影响。

能否快速倒出足量脱磷炉渣,主要取决于炉渣流动性控制,为此须做到:①炉渣充分熔化,不含未溶石灰颗粒以及MgO、2CaO·SiO2等高熔点析出相;②炉渣具有较低黏度;③适当提高脱磷阶段温度。

由图3所示CaO-SiO2-FeO系相图[11]可以看到,在SGRS工艺脱磷阶段炉渣氧化铁质量分数范围(9%~15%),为使炉渣全部熔化(均匀液相),炉渣碱度w(CaO)/w(SiO2)须控制在1.3以下。考虑到渣中还含少量Al2O3、MnO等,能够适当扩大该三元系液相区范围,因此为使炉渣充分熔化,炉渣碱度不应超过1.5。

图4[11]为1400℃下CaO-SiO2-FeO系黏度值(Pa·s),可以看到,在脱磷阶段炉渣氧化铁质量分数9%~15%范围,当碱度在0.82~1.5范围时,炉渣具有较低的黏度(0.2~0.4Pa·s),而当碱度超过1.5时,等黏度线变得密集,黏度值随碱度增加而快速提高,炉渣流动性显著变差。

图5为迁钢公司210t转炉和首秦公司100t转炉采用SGRS炼钢工艺,脱磷阶段结束后倒渣量与炉渣碱度的关系。可以看到,倒渣量随碱度降低而增加,当脱磷阶段炉渣碱度控制在1.5左右时,迁钢210t转炉倒渣量可大于8.0t,首秦100t转炉倒渣量可多于5.0t,保证了SGRS 工艺顺利稳定运行。

为了使炉渣具有良好流动性,还须对MgO质量分数进行严格控制。图6为210t转炉脱磷阶段结束倒渣量与渣中MgO质量分数关系,当将MgO控制在7.5%以下时,倒渣量可在8t以上,能够满足SGRS稳定运行要求,为此规定对脱磷阶段炉渣MgO质量分数按低于7.5%控制。这一MgO质量分数控制目标低于常规工艺初期渣MgO控制目标值,采用后并未发现对炉龄有不利影响。

采用了以上所述较低碱度和MgO质量分数渣系后,基本上解决了倒渣这一影响SGRS 工艺稳定运行的关键难题。目前,迁钢210t转炉脱磷阶段倒渣量在6.0~12.5t(铁水[Si]质量分数变化影响),倒渣时间在4.0~5.0min;首秦100t转炉脱磷阶段倒渣量在4.0~8.0t,倒渣时间在3.0~4.5min。

2.2 脱磷阶段高效脱磷工艺技术

采用SGRS炼钢工艺,由于所留炉渣中已含1.5%以上P2O5,而且为使炉渣流动性良好以快速足量倒渣,脱磷阶段必须采用较低碱度渣系,脱磷阶段脱磷难度显著加大。而如果在脱磷阶段不能够充分脱磷,势必加重脱碳阶段的负担,严重时会造成终点钢水[P]不合格而必须进行后吹、补吹。由(2)式给出的脱磷反应平衡常数式和高碳铁液中[P]的活度相互作用系数[12]、渣中P2O5活度系数[10],可得到磷在渣/铁间分配比的计算式(3),式中N(P2O5)为渣中P2O5克分子浓度,a[O]为铁液中氧活度。

在SGRS炼钢工艺的脱磷阶段,由于[C]质量分数高(3.3~3.8%),铁液中氧的活度a[O]由[C]控制。由(4)和(5)式[2]给出的[C]-[O]反应平衡常数计算式和相关的活度相互作用系数eCC[11],计算得到的1330~1380℃范围铁液中氧的活度仅为0.00010~0.00015,将其代入(3)式计算得到的磷分配比(N(P2O5)/w([P])2)在10-5数量级,表明脱磷阶段在金属熔池内部脱磷反应基本不能进行。

但是,氧气转炉由于采用顶吹氧,即便铁液碳质量分数高,也可通过调整枪位、供氧速率等将渣中氧化铁控制在较高质量分数范围(8%~15%),进而将渣/铁界面氧活度控制在较高水平。

(7)式[2]和(8)式为(6)式所示Fe-O反应的标准自由能和铁液中氧活度与温度和炉渣氧化铁活度的关系,将(8)式代入(3)式,并取脱磷阶段铁水和炉渣的组成以及相关组元的活度数据[11](f[C]、a(FeO))等,可计算出在炉渣氧化铁含量为8%~15%情况下,磷的分配比(N(P2O5)/w([P])2)在165左右,表明在渣/铁界面脱磷反应可以进行。

由上述分析可知,采用SGRS工艺在脱磷阶段高效脱磷的关键是:

①加强金属熔池搅拌,促进熔池内部[P]向渣/铁界面传输;

②通过调整供氧或加入铁矿石、氧化铁皮等提高渣中氧化铁活度。

为保证较长的底吹元件寿命,国内顶底复吹转炉大多采用较低的底吹搅拌强度,迁钢公司、首秦公司炼钢转炉实际底吹强度在0.03~0.06m3/(min·t)。针对底吹搅拌弱的问题,为了提高SGRS工艺脱磷效率,开发了脱磷阶段高效脱磷技术,主要特点如下:

1)采用了低枪位、高供氧强度吹炼工艺,氧枪枪位较常规工艺吹炼前期枪位降低100~200mm,供氧强度控制在3.0m3/(min·t)以上,通过加强顶吹氧气流对熔池搅拌促进磷向渣/铁界面传输。

2)针对低枪位、高供氧速率吹炼引起的渣中氧化铁质量分数降低问题,增加了铁矿石加入量和加入批次,以在加强熔池搅拌同时,使渣中能够保持足够氧化铁质量分数。

3)采用添加小粒石灰,合理控制炉渣碱度和MgO质量分数(防止碱度、MgO质量分数过高)等方法,加快脱磷阶段渣料熔化,促进脱磷反应。

图7和图8分别为氧枪枪位和炉渣FetO质量分数对脱磷阶段结束[P]质量分数的影响,可

以看到,采用较低枪位和高强度供氧,由于熔池搅拌显著加强,尽管炉渣FetO质量分数降低至9.5%附近,脱磷效率非但没有降低,反而有较大幅度提高。

采用上述高效脱磷工艺,在铁水磷质量分数为0.075%左右情况下,脱磷阶段结束可将[P]平均降低至0.029%左右,脱碳阶段终点钢水[P]最低可脱除至0.0060%,平均为0.0096%,能够满足除少数超低磷钢种外绝大多数钢种对磷质量分数的控制要求。

2.3 液态终渣快速固化技术

采用“留渣+双渣”炼钢工艺,对上炉留在炉内的液态渣必须加以固化,才能确保装入铁水时不发生激烈喷溅,引发重大安全事故。迁钢公司在采用SGRS工艺后,曾采用加入多量石灰、白云石或废钢直接冷却对液态炉渣进行固化的方法,但发现存在以下问题:

①如固化炉渣用石灰加入量多(包括白云石),会造成脱磷阶段炉渣碱度和MgO质量分

数过高,导致倒渣困难;

②如采用废钢对液态渣进行冷却固化,由于废钢尺寸不均衡,常发生炉内废钢“搭棚”情况,炉底液态渣不能被充分固化,存在安全隐患。

通过大量试验,开发了将溅渣护炉与炉渣固化相结合的液态终渣快速固化工艺,其主要特点为:①上炉出钢后立即向炉内液态渣吹入氮气,将部分炉渣溅至炉衬表面直接固化;②吹入大量氮气使炉底液态渣快速降温,渣中析出大量高熔点相(3CaO·SiO2、2CaO·SiO2等),形成固态高熔点相与残余液态“RO相”(FeO-MnO-CaO系固溶体)共存的炉渣体系(图9);③溅渣结束后向炉内加入少量石灰、白云石,目的是与残余液态“RO相”作用使其快速固化。为此在加入石灰、白云石后,还须前后倾动转炉使加入的石灰、白云石与残余液态渣快速混合。

采用上述液态终渣快速固化技术后,绝大多数炉次炉渣固化操作时间控制在5.5min以内,在采用SGRS炼钢工艺生产的6万多炉次中,未发生任何铁水喷溅事故。

2.4 SGRS工艺快速生产技术

采用SGRS炼钢工艺,与常规冶炼工艺相比,增加了液渣固化和脱磷阶段结束倒渣操作时间。为了不降低产能,不影响“转炉—精炼—连铸”工序周期匹配,必须加快SGRS工艺过程,对此采取了以下主要对策:

①采用高供氧强度吹炼,将脱磷阶段吹炼时间控制在4~5min;②为了加快倒渣,在脱磷阶段临近结束时提高枪位,增加渣中表面活性组元氧化铁含量,以加强炉渣泡沫化程度;

③开发了SiO2+C为主要成分的抑渣剂,用于抑制泡沫渣从渣罐中溢出;④采用了计算机生产组织调度辅助系统,利用“甘特图”对“转炉―精炼―连铸”生产进行组织调度。

迁钢公司一炼钢分厂和首秦公司炼钢厂均拥有3座转炉,常用2台板坯连铸机,“炼钢―精炼―连铸”生产周期匹配采取图10所示模式,即3座转炉向2座精炼炉和2台铸机供钢。由于转炉炼钢能力富余,在采用SGRS炼钢工艺后,尽管转炉炼钢生产周期有所增加,但由于连铸生产并未受到影响,钢产量没有减少。

迁钢公司二炼钢分厂拥有2座转炉和2台板坯主机,“炼钢―精炼―连铸”生产周期的匹配采用图11所示模式。根据迁钢公司产品分工,二炼钢分厂主要生产窄断面铸坯,采用SGRS

炼钢工艺后,转炉炼钢周期有所延长,但仍能按时向2台窄断面铸机供应钢水,钢产量也没有降低。

表1为迁钢公司210t转炉常规工艺炼钢与SGRS工艺炼钢的作业时间对比,可以看到,采用SGRS炼钢工艺,总冶炼周期较常规工艺增加了大约4min。

3 结论

1)首钢迁钢公司5座210t复吹转炉和首秦公司3座100t复吹转炉采用了“留渣+双渣”转炉炼钢新工艺,转炉炼钢石灰消耗减少了47%以上,轻烧白云石消耗减少了55%以上,渣量降低30%以上,获得了显著经济效益。

2)脱磷阶段通过采用低碱度(w(CaO)/w(SiO2)∶1.3~1.5)和低MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了“留渣+双渣”炼钢工艺快速足量倒渣和渣中金属铁质量分数高这两大难题。

3)针对转炉底吹搅拌弱的问题,在脱磷阶段采用低枪位和高强度供氧方法,利用顶吹氧气流加强金属熔池搅拌以促进脱磷,脱磷阶段结束时[P]平均降低至0.029%左右,脱碳阶段终点[P]降低至0.0096%左右,满足了绝大多数钢种对磷质量分数控制要求。

4)通过加快生产速度,尤其是对“炼钢—精炼—连铸”生产进行合理组织调配,采用“留渣+双渣”炼钢工艺后,钢产量没有减少。

参考文献:

[1] Ogawa Y,Yano M,Kitamura S,et al.Development of theContinuous Dephosphorization and Decarburization Process Using BOF[J].Tetsu-to-Hagane,2001,87(1):21.

[2] Matsumiya T,Ichida M.Recent Progress and Topics in Ironand Steelmaking Technology in Japan[C]//The 10th Japan-China Symposium on Science and Technology of Iron andSteel.Chiba:2004.

[3] Morita K,Kumakura M,Washizu T.Efficiency Promotion ofRefining Process in Nippon Steel Corporation[C]//The 4ThInternational Congress on the Science and Technology of Steelmaking.Gifu:2008.

[4] Ueshima Y,Saito K.Recent Advances and Topics of Iron andSteelmaking Technology in Japan[C]//The 12th Japan-ChinaSymposium on Science and Technology of Iron and Steel.Nagoya:2010.

[5] Iwasaki M,Matsuo M.Change and Development of Steel-MakingTechnology[J].Nippon Steel Technical Report,2011(391):88.

[6] Kumakura M.Advances in the Refining Technology and the FutureProspects[J].Nippon Steel Technical Report,2012(394):4.

[7] Sasaki N,Ogawa Y,Mukawa S,et al.Improvement of HotMetal Dephosphorization Technique[J].Nippon Steel Technical Report,2012(394):26.

[8] Hashimoto T,Iiboshi H,Kume K,et al.Improvement in Production Capacity at Oita Works[J].Nippon Steel Technical Report,2012(394):84.

[9] Kobayash M,Isobe K,Arai M.Technical Progress in Steelmaking and Casting for Special Bar and Wire Steel at MuroranWork[J].Nippon Steel Technical Report,2012(394):119.

[10] Turkdogan E T.Assessment of P2O5Activity Coefficients in Molten Slags[J].ISIJ International,2000,40(10):964.

[11] Turkdogan E T.Fundamentals of Steelmaking[M].London:Carlton House Terrace,1996.

氧气转炉留渣-冶金之家

氧气转炉“留渣+双渣”炼钢工艺技术研究 王新华1,朱国森2,李海波2,吕延春2 (1.北京科技大学冶金与生态工程学院,北京100083;2.首钢技术研究院,北京100043) 摘要:首钢迁钢公司和首秦公司大规模采用了“留渣+双渣”转炉炼钢新工艺,大幅度减少了炼钢渣量和石灰、白云石消耗。文章介绍了其中所开发的3项重要技术:①脱磷阶段采用低碱度(w(CaO)/w(SiO2)∶1.3~1.5)和低MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了脱磷阶段结束难以快速足量倒渣和渣中金属铁质量分数高这两大问题;②针对脱磷阶段底吹搅拌弱问题,采用了低枪位和高供氧强度吹炼方法,利用顶吹氧气流加强金属熔池搅拌,获得了良好脱磷效果;③通过加快生产速度,特别是对“炼钢-精炼-连铸”生产合理组织调配,在转炉冶炼时间增加大约4min情况下,钢产量并没有减少。 关键词:转炉炼钢;少渣;石灰消耗;脱磷;炉渣 中国钢铁工业近20年来发展迅速,对国民经济快速增长发挥了重要作用,但在节省资源、能源和减少炉渣等固体废弃物排放等方面,目前面临着巨大的压力和挑战。以占中国产钢量90%以上氧气转炉炼钢为例,每年生产约6.2亿t粗钢,要产生6000万t以上炉渣,消耗3100万t以上石灰和700万t以上轻烧白云石,而用于生产炼钢石灰和轻烧白云石的石灰石与生白云石矿产均为重要的不可再生资源。 2001年Ogawa等[1]报道了新日铁开发的MURC转炉炼钢新工艺及其在8t转炉的试验情况,该工艺将转炉冶炼分为2个阶段,在第1阶段主要进行脱硅、脱磷,结束后倒出部分炉渣,然后进行第2阶段吹炼,吹炼结束后出钢但将炉渣保持在炉内,下一炉在炉内留渣情况下装入废钢、铁水,然后进行第1和第2阶段吹炼,并以此循环往复。近年来,新日铁陆续报道了MUCR工艺相关情况[2-10],新日铁公司的大分、八幡、室兰、君津等钢厂采用了该工艺,产钢占新日铁总产钢量55%左右,转炉炼钢石灰消耗减少40%以上,但对其中许多关键技术,如液态渣固化、脱磷阶段炉渣碱度、供氧参数、脱磷工艺、倒渣控制等基本没有报道。 20世纪50~70年代,中国一些转炉钢厂在铁水硅、磷质量分数高时,为了降低石灰消耗,减少吹炼过程喷溅,改善脱磷效果,曾采用过出钢后留渣或“留渣+双渣”炼钢工艺。后来,随着高炉生产水平提高(铁水硅质量分数降低),高磷铁矿石用量减少(铁水磷质量分数降低),以及顾忌留渣造成铁水喷溅安全隐患,留渣或“留渣+双渣”炼钢工艺没有在更大规模推广采用。 近年来中国国内钢厂开始试验采用“留渣+双渣”转炉炼钢工艺,其中首钢在其迁钢公司5座210t复吹转炉和首秦公司3座100t复吹转炉大规模采用了该工艺方法,取得了炼钢石灰消耗减少47%以上,轻烧白云石消耗减少55%以上,渣量降低30%以上的效果。 1 首钢采用“留渣+双渣”炼钢工艺情况 首钢迁钢公司第一和第二炼钢分厂共拥有5座210t顶底复吹转炉,氧枪采用5孔喷头,马赫数为2.0,供氧强度在3.3~3.4m3/(min·t)范围,年产钢810万t,主要产品包括汽车、家电用冷轧钢板、电工钢板、管线钢板、容器板、造船板等。首秦公司拥有3座100t顶底复吹转炉,氧枪采用4孔喷头,马赫数为2.0,供氧强度在3.6~3.8m3/(min·t)范围,年产钢260万t,主要生产优质中厚板(管线、造船、桥梁、高层建筑、海洋平台用钢板等)。如图1所示,迁钢公司和首秦公司采用的氧气转炉“留渣+双渣”炼钢工艺主要包括以下环节: ①转炉冶炼结束出钢后将炉渣留在炉内;②采用溅渣护炉将部分炉渣溅至炉衬表面加以固化,再补加一定量石灰、白云石对炉底液态渣进行固化;③对炉渣固化加以确认,然后装入废钢、铁水;④进行第1阶段吹炼(脱磷阶段),结束后倒出炉内60%左右炉渣;⑤进行第2阶段(脱碳阶段)吹炼,结束后出钢,但将炉渣留在炉内,进入下炉次冶炼并以此循环往复。

世界氧气顶吹转炉炼钢技术发展史

世界氧气顶吹转炉炼钢技术发展史 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史 空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二

次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的

转炉留渣操作技术

转炉留渣操作技术 1 前言 氧气顶吹转炉留渣操作在20世纪80年代初期就已经提出,由于没有掌握留渣后操作安全规律,在兑铁时时常出现大喷,因此,留渣操作一直没有得到推广应用,但氧气顶吹转炉留渣操作可以大大降低钢铁料消耗、节约石灰,在转炉吹炼初期可以快速成渣,而且是高碱度氧化渣,有利于提高生产率,我们知道,钢铁料消耗占转炉生产成本80%左右的水平,因此,留渣操作具有显著的经济效益,特别是对于我们某厂公司,铁水资源不足的钢厂效益更是立竿见影,所以,只要从理论上找出留渣后兑铁发生大喷的根本原因,从操作上找出切实可行的规避措施,留渣操作从可持续发展和循环经济的层面上是大有可为的。2转炉留渣操作的可行性 某厂二炼钢铁水成分如下: 铁水平均温度1250~1300℃冶炼终渣成分为:CaO:52%、MgO:8%、Si02:10%、FeO:18%。 兑铁时发生喷溅的主要原因是在兑铁瞬间,铁水中的碳和钢渣中的FeO发生激烈的C-O反应,生成的CO气体急剧膨胀,把铁水和钢渣带出炉口,因此,只有解决兑铁时的C-O激烈反应,才能避免大的喷溅。 3留渣操作的特点 由于炼钢生产节奏快,一炉钢在冶炼过程中,其吹炼时间只有十几分钟,也就是说要在十几分钟的吹氧时间内形成具有一定碱度、良好流动性、合适且

TFe和MgO含量正常泡沫化的炉渣,以保证冶炼成分和温度同时双命中的钢水,并减少对炉衬的侵蚀,留渣操作贯穿于炼钢整个冶炼周期,主要是靠所留炉渣的物理热和炉渣化学性能,使其具有迅速参与反应、并促进前期炉渣的快速形成、提高去除P、S的效率、节省石灰用量。 3.1有利于去磷 在氧气顶吹转炉中,磷的氧化是在炉渣-金属界面中进行的,其反应式为: 生成的磷酸铁在高温下极其不稳定,它可以重新分解生成P2O5,而P2O5是不稳定的化合物,因此,仅靠生成P2O5。不能去除磷,但P2O5是酸性化合物,若用碱性化合物与其结合生成稳定的化合物可以去除。研究认为,在碱性渣中P2O5与CaO形成稳定的(CaO)x P2O5型的化合物,其中x为3或4,因此,操作中需加入石灰,使其生成稳定的化合物3CaO· P2O5。或4CaO·P2O5存在于渣中,才能有效去磷,其反应为: 从式中可以看出脱磷的条件,(1)提高CaO含量即提高炉渣碱度,(2)提高炉渣氧化性,即FeO含量,(3)降低熔池温度。 以上分析可以说明,留渣操作对脱磷是有利的,因为(1)冶炼初期熔池温度比较低,碱度一般在1.8~2.2之间,且渣中含有一定的FeO,满足脱磷的热力学条件,(2)留渣操作可以使初期成渣速度更快、流动性好,满足脱磷的动力学条件。 3.2提高钢水收得率 一般转炉终渣FeO含量在15%左右,渣中游离的铁渣按8%计算,每炉留渣

转炉脱磷热力学及双渣操作分析(精)

转炉脱磷热力学及双渣操作分析 一、转炉脱磷的冶金条件 众所周知, FeO 和 CaO 是生成稳定磷酸盐的最主要的氧化物。在转炉炼钢中, 我们以 FeO 为氧化剂,以 CaO 为磷氧化产物的稳定剂。通常炼钢脱磷反应如下: 1 在渣钢界面上 ][5][5 (5O Fe FeO += (1 2在与渣相相邻的金属层中 (][5][252O P O P =+ (2 3 在与金属相相邻的渣层中4( ( 4 (5252O P CaO CaO O P ?=+ (3 总反应描述为 []((([]Fe O P CaO CaO FeO P 5445252+?=++ (4 根据萨马林的数据 (5 在式(5中,氧化物和磷酸四钙的活度甩摩尔分数表示。 K p 随温度的升高急剧减小,在 1673 、 1773 和 1873K 下。 K p 相应为 7.8 ×108、 3.5 ×107、 2.1 ×106 。 根据式(5 ,在金属与炉渣平衡的情况下, (6 由式(6可见,促进炉渣对金属脱磷的热力学因素有: 1加人固体氧化剂(铁矿石、铁皮或用高枪位向熔池吹氧以增大 a (FeO 2加入石灰和促进石灰在碱性渣中迅速溶解的物质以增大 a (CaO ,亦即增大自由 CaO (不与酸性氧化物结合的的浓度; 3用更新与金属接触的渣相的方法,亦即放渣和加入 CaO 与 FeO 造新渣的方法来减小4(52O P CaO a ?

4保持适当的低温,因为温度从 1673 增到 1873K ,使反应(4的平衡常数 K p 减小到 1/370 。 应当指出, 上述关于温度对脱磷影响的结论, 仅仅是从热力学观点看是正确 06. 1547008 lg lg 4 (5 ( 4(52-==?T a a K a K CaO FeO p O P CaO p 4 (5 ( 4(52][%CaO FeO p O P CaO a a K a P ?= 的,为了加速脱磷必须有适当的高温,因为高温可以迅速生成高碱度铁质炉渣, 和保证得到均质流动的炉渣使传质过程加速。 我们引入脱磷指数 L P —熔渣的脱磷在渣—铁间的分配比作为衡量熔渣的脱磷能力的大小,其值越大则表明熔渣的脱磷能力越大。 L P 可由如下反应式推得 2[P]+5[O]=(P 2O 5 (7 [][] 5 5 2 2

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

氧气底吹转炉炼铅法

金属硫化物精矿不经焙烧或烧结焙烧直接生产出金属的熔炼方法称为直接熔炼。 对硫化铅精矿来说,这种粒度仅为几十微米的浮选精矿因其微粒小,比表面积大,化学反映和熔化过程都有可能很快进行,充分利用硫化矿粒子的化学活性和氧化热,采用高效、节能、少污染的直接熔炼流程处理是合理的。传统的烧结—鼓风炉流程将氧化——还原两过程分别在两台设备中进行,存在许多难以克服的弊端。随着能源、环境污染控制以及生产效率和生产成本对冶炼过程的要求越来越严格,传统炼铅法受到多方面的严峻挑战。具体说来,传统法有如下主要缺点: (1)随着选矿技术的进步,铅精矿品位一般可以达到60%,这样精矿给正常烧结带来许多困难,导致大量的熔剂、反粉或还有炉渣的加入,将烧结炉料的含量降至40%~50%。送往熔炼的是低品位的烧结块,致使每生产1t多炉渣,设备生产能力大大降低。 (2)1t PbS精矿氧化并造渣可放出2x106kJ以上的热量,这种能量在烧结作业中几乎完全损失掉,而在鼓风炉熔炼过程中又要另外消耗大量昂贵的冶金焦。 (3)铅精矿一般含硫15%~20%,处理1t精铅矿可生产0.5t硫酸,但烧结焙烧脱硫率只有70%左右,故硫的回收率往往低于70%,还有30%左右,还有30%左右的硫进入鼓风炉烟气,回收很困难,容易给环境造成污染。 (4)流程长,尤其是烧结及其返粉制备系统,含铅物料运转量大,粉尘多,大量散发的铅蒸汽、铅粉尘严重恶化了车间劳动卫生条件,容易造成劳动者铅中毒。 近30年来,冶金工作者力图通过PbS受控氧化即按反映式PbS+O 2=Pb+SO 2 的途径来实现硫化铅精矿的直接熔炼,以简化生厂流程,降低生产成本,利用氧化反应的热能以降低能耗,产出高浓度的SO 2 烟气用于制硫,减小对环境污染。但由于直接熔炼产生大量铅蒸汽、铅粉尘,且熔炼产物不是粗铅含硫高就是炉渣含铅高,致使许多直接熔炼方法都不很成功。 冶金工作者通过Pb-S—O系化学势图的研究,找到了获得成分稳定的金属铅的操作条件,但也明确指出,直接熔炼要么产出高硫铅,要么形成高铅渣;要

试谈转炉炼钢法的分类

转炉炼钢工艺 转炉炼钢工艺 绪论 1、转炉炼钢法的分类 转炉是以铁水为主要原料的现代炼钢方法。该种炼钢炉由圆台型炉帽、圆柱型炉身和球缺型炉底组成。炉身设有可绕之旋转的耳轴,以满足装料和出钢、倒渣操作,故而得名。 酸性空气底吹转炉——贝塞麦炉(英国1856年) 空气转炉{ 碱性空气底吹转炉——托马斯炉(德国1878年) 碱性空气侧吹转炉(中国1952年) 转炉{ 氧气顶吹转炉——LD(奥地利1952年) 氧气转炉{ 氧气底吹转炉——OBM(德国1967年) 顶底复吹转炉(法国1975年) 2、氧气顶吹转炉炼钢法简介 (1) 诞生的背景及简称 现代炼钢生产首先是一个氧化精炼过程,最初的贝氏炉和托马斯炉之所以采用空气吹炼正是利用其中的氧。二次世界大战以后,工业制氧机在美国问世,使利用纯氧炼钢成为可能,但原来的底吹方式炉底及喷枪极易烧坏。美国联合碳化物公司于1947年在实验室进行氧气顶吹转炉的实验并获成功,命名为BOF。奥地利闻之即派有关专家前往参观学习,回来后于1949年在2吨的转炉上进行半工业性实验并获成功,1952年、1953年30吨氧气顶吹转炉分别在Linz和Donawitz建成投产,故常简称LD。 1967年12月德国与加拿大合作发明了氧气底吹转炉,使用双层套管喷嘴并通以气态碳氢化合物进行冷却。 1975年法国研发了顶底复吹转炉,综合了LD和OBM的优点,77年在世界年会上发表。 (2) 氧气顶吹转炉的特点 1)优点 氧气顶吹转炉一经问世就显示出了极大的优越性,世界各国竟相发展,目前成为最主要的炼钢法。其优点主要表现在: (1)熔炼速度快,生产率高(一炉钢只需20分钟); (2)热效率高,冶炼中不需外来热源,且可配用10%~30%的废钢; (3)钢的品种多,质量好(高低碳钢都能炼,S、P、H、N、O及夹杂含量低); (4)便于开展综合利用和实现生产过程计算机控制。 2)缺点 当然,LD尚存在一些问题,如吹损较高(10%,)、所炼钢种仍受一定限制(冶炼含大量难熔元素和易氧化元素的高合金钢有一定的困难)等。 3 氧气转炉的发展趋势

转炉溅渣护炉技术的工艺参数优化_高泽平

第5期2002年9月 湖 南 冶 金HU N AN M ET AL L U RG Y N o.5Sept.2002 收稿日期: 2002—03—10 转炉溅渣护炉技术的工艺参数优化 高泽平 (湖南冶金职业技术学院,湖南 株洲 412000) 摘 要:着重对溅渣护炉技术的工艺参数优化过程进行了探讨。确立了溅渣调渣原则,对转炉留渣量、 出钢温度、氮气压力和流量、溅渣枪位与时间、溅渣率等工艺参数的控制进行了分析。指出了湘钢条件下的溅渣工艺参数的适宜范围。 关键词:转炉;溅渣护炉;工艺参数;优化 中图分类号:T F702+ .9 文献标识码:A 文章编号:1005—6084(2002)05—0031—04 PARAMETERS OPTIMIZATION OF CONVERTER SLAG SPLASHING G AO Ze ping (Hunan Metallurgy College of Professional Technology ,Zhuzhou 412000,Hunan )ABSTRACT : The optimisatio n o f some techno logical pa ram eters of the co nv er ter slag splashing w as discussed in this papers.Th e principle of adjustment of spla sh slag com po-sitio n was established by this discussio n .The controlling of splash slag quantity ,the tap-ping temperature,the nitrog en pressure a nd flux,the lance height in splashing slag ,and the rate o f splashing slag w ere analy zed too in this.The rang e of technological param e-ters of slag splashing a t the Xia ng tan Iro n a nd Steel Group Co .was described .KEY W ORDS :co nver ter ;slag splashing patching ;technological parameter ;optimizatio n 1 前 言 转炉溅渣护炉技术是近年来提高转炉炉龄的一项新技术。我国于1996年开始研究开发适合中国国情的溅渣护炉工艺。湘钢采用该技术后,转炉炉龄由原来的2000多炉提高到现在的平均炉龄过万炉,并在2001年成功突破了15000炉大关,转炉作业率上升到91%,年钢产量达200万t 。溅渣护炉的综合经济效益可达8.5元/t ,年创效益1700万元,达到国内先进水平。 溅渣护炉就是用喷枪将高压氮气喷出,使渣从喷射撞击区的孔穴外侧喷溅并粘附到转炉炉衬 上形成渣层,对下一炉冶炼起到保护炉衬的作用。因此,转炉终渣不仅满足冶炼过程的要求,而且 还应符合溅渣护炉的条件,即炉渣易于喷溅到炉衬上;溅到炉衬上的炉渣能很好地与之结合;所溅炉渣具有一定的抗高温侵蚀与耐火能力。这三个条件除与炉渣的成分有关外,溅渣动力学条件也极为重要。本文结合湘钢正常吹炼条件及溅渣工艺,对溅渣护炉技术参数的优化作进一步的研究。 2 溅渣护炉技术应用条件 湘钢转炉炼钢厂主体设备有80t 氧气顶吹

《安全技术》之炼钢厂氧气转炉安全管理措施

炼钢厂氧气转炉安全管理措施 1、设备与相关设施 1.1 150t以下的转炉,最大出钢量应不超过公称容量的120%;200t以上的转炉,按定量法操作。 1.2转炉的炉容比应合理。 1.3转炉氧枪与副枪升降装置,应配备钢绳张力测定、钢绳断裂防坠、事故驱动等安全装置;各枪位停靠点,应与转炉倾动、氧气开闭、冷却水流量和温度等联锁;当氧气压力小于规定值、冷却水流量低于规定值、出水温度超过规定值、进出水流量差大于规定值时,氧枪应自动升起,停止吹氧。转炉氧枪供水,应设置电动或气动快速切断阀。 1.4氧气阀门站至氧枪软管接头的氧气管,应采用不锈钢管,并应在软管接头前设置长1.5m以上的钢管。氧气软管应采用不锈钢体,氧枪软管接头应有防脱落装置。 1.5转炉宜采用铸铁盘管水冷炉口;若采用钢板焊接水箱形式的水冷炉口,应加强经常性检查,以防止焊缝漏水酿成爆炸事故。 1.6转炉传动机构应有足够的强度,应能承受正常操作最大合成力矩;不大于150t的转炉,按全正力矩设计,靠自重回复零位;150t以上的转炉,可采用正负力矩,但必须确保两路供电;若采用直流电机,可考虑设置备用蓄电池组,以便断电时强制低速复位。 1.7从转炉工作平台至上层平台之间,应设置转炉围护结构。炉前后应设活动挡火门,以保护操作人员安全。 1.8烟道上的氧枪孔与加料口,应设可靠的氮封。转炉炉子跨炉口以上的各层平台,宜设煤气检测与报警装置;上述各层平台,人员不应长时间停留,以防煤

气中毒;确需长时间停留,应与有关方面协调,并采取可靠的安全措施。 1.9采用“未燃法”或“半燃法”烟气净化系统设计的转炉,应符合GB6222的规定;转炉煤气回收系统的设备、风机房、煤气柜以及可能泄漏煤气的其他设备,应位于车间常年最小频率风向的上风侧。转炉煤气回收时,风机房属乙类生产厂房、二级危险场所,其设计应采取防火、防爆措施,配备消防设备、火警信号、通讯及通风设施;风机房正常通风换气每小时应不少于7次,事故通风换气每小时应不少于20次。 1.10转炉煤气回收,应设一氧化碳和氧含量连续测定和自动控制系统;回收煤气的氧含量不应超过2%;煤气的回收与放散,应采用自动切换阀,若煤气不能回收而向大气排放,烟囱上部应设点火装置。 1.11转炉煤气回收系统,应合理设置泄爆、放散、吹扫等设施。 1.12转炉余热锅与汽化冷却装置的设计、安装、运行和维护,应遵守国家有关锅炉压力容器的规定。 2、生产操作 2.1炉前、炉后平台不应堆放障碍物。转炉炉帽、炉壳、溜渣板和炉下挡渣板、基础墙上的粘渣,应经常清理,确保其厚度不超过0.1m。 2.2废钢配料,应防止带入爆炸物、有毒物或密闭容器。废钢料高不应超过料槽上口。转炉留渣操作时,应采取措施防止喷渣。 2.3兑铁水用的起重机,吊运重罐铁水之前应验证制动器是否可靠;不应在兑铁水作业开始之前先挂上倾翻铁水罐的小钩;兑铁水时炉口不应上倾,人员应处于安全位置,以防铁水罐脱钩伤人。 2.4新炉、停炉进行维修后开炉及停吹8h后的转炉,开始生产前均应按新炉开炉的要求进行准备;应认真检验各系统设备与联锁装置、仪表、介质参数是否符合工作要求,出现异常应及时处理。若需烘炉,应严格执行烘炉操作规程。 2.5炉下钢水罐车及渣车轨道区域(包括漏钢坑),不应有水和堆积物。转炉生产期间需到炉下区域作业时,应通知转炉控制室停止吹炼,并不得倾动转炉。无关人员不应在炉下通行或停留。

降低钢铁料消耗实践.

降低钢铁料消耗实践 在炼钢生产中,钢铁料成本占炼钢生产总成本的80%以上,因此抓好钢铁料成本是控制炼钢生产成本的关键。为进一步减少钢铁料消耗,改进转炉原料结构和炉前冶炼工艺,采用少渣炼钢工艺,减少喷溅,降低吹损,减少倒渣带钢等措施来降低钢铁料消耗,有效地降低了钢铁料消耗,增加了企业经济效益。 1 影响钢铁料消耗的主要原因 氧气顶吹转炉的吹损用下式表示: 吹损=(装入量—出钢量)/装入量×100% 影响钢铁料消耗的主要因素包括原料中杂质元素化学损失、烟尘损失、炉渣中铁的损失、喷溅及倒渣带钢造成的铁耗等。为了减少转炉吹损,降低钢铁料损耗,应采取合理的原料结构,合适的装入制度以及合适的造渣工艺并稳定转炉操作实现。 2 降低钢铁料消耗工艺措施 2.1 优化入炉原料结构 在合适的用量范围内,通过增加矿石用量,可有效增加钢水量,从而降低钢铁料消耗,因此在实际炉料结构中可采用增大入炉原料中铁水比例,降低废钢铁块消耗,增加矿石消耗的工艺措施。济钢第一炼钢厂2002年与2001年吨钢入炉原料对比情况见表1。 表1 2002年与2001年吨钢入炉原料对比 kg 年份铁水废钢铁块矿石 2002年979.6 29.2 91.4 40.0 2001年942.1 65.8 101.1 26.4 对比37.5 -36.6 -9.7 13.6 济钢所用各种矿石的原料成分及价格见表2。在单炉矿石用量为1500kg时使用不同种类矿石的使用效果见图1。

图1 三种矿石使用效益对比图表2 各种矿石原料成分及价格 % 种类TFe Fe 2O 3 SiO 2 价格/元·t-1 黑旺矿43.5 62.1 13.0 162 澳矿65.0 92.0 3.0 297 球团矿65.0 92.0 3.0 400 实际生产中,由于黑旺矿中SiO 2 含量较高,因此即便造渣料加入总量相同情况下,使用黑旺矿产生渣量也较多,造成渣中铁耗也较高,同时由于黑旺矿块度较大,在转炉吹炼过程中往往熔化不好,既降低了使用效果,又不利于转炉化渣。球团品位高,含氧量相应较高,有利于减少供氧消耗,同时又为熟料,有利于转炉化渣,但由于价格较高,使用成本较高。对于澳矿,其品位较高,块度也合适,其主要成分为赤铁矿,有利于矿石还原,增加矿石还原和提高吹炼节奏,同时使用效益也最高。通过统计计算,进行成本分析比较,品位高的矿石不仅Fe的回收率高,有利于冶炼操作,而且经济效益可观。因此,在2002年生产中大量采用了进口澳矿,从使用情况和使用经济效益情况看均取得良好的效果。 为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼稳定的影响,在实际生产中,对矿石加入工艺进行了调整。配合留渣操作,转炉溅完渣后直接将2/3左右的矿石加入炉内后再装铁,在装铁和废钢过程中搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅原则下尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅;吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 2.2 改进造渣工艺,减少炉渣铁耗 2.2.1 炉渣量分析根据实际造渣料加入情况与炉渣成分,进行渣量推算如下: 化验炉渣成分:CaO 50%,MgO 9%,SiO 2 17%,TFe 14% 钢铁料装入量:铁水41.5t,废钢4.5t

氧气底吹转炉炼钢

通过转炉底部的氧气喷嘴,把氧气吹入炉内熔池进行炼钢的方法。 简史?? 氧气底吹转炉始于改造托马斯转炉(见托马斯法)。西欧富有高磷铁矿资源,用它炼出的生铁含磷高达1.6%~2.0%。以这种高磷铁水为原料的传统炼钢方法即托马斯法,也即碱性空气底吹转炉法,其副产品钢渣可作磷肥。对于高磷铁水,托马斯法过去一直是综合技术经济指标较好的一种炼钢方法。直至20世纪60年代,西欧还存在年产能力约1000万t钢的托马斯炉。但作为炼钢氧化剂的空气,其中氧气仅占1/5,其余4/5的氮气不仅吸收大量热量,并使钢中氮含量增加,引起低碳钢的脆性。为此人们一直试图用纯氧代替空气,以改进钢的质量和提高热效率。但采用氧气后,化学反应区的温度很高,底吹所用氧气喷嘴很快被烧坏。1965年加拿大空气液化公司为了抑制氧气炼钢产生的大量污染环境的褐色烟尘,试验在氧枪外层通气态或液态冷却剂,取得了预期效果,并同时解决了氧枪烧损快的问题。1967年联邦德国马克西米利安冶金厂(Maximilianshttte)引进了这项技术,以丙烷为氧喷嘴冷却剂,用于改造容量为24t的托马斯炉,首先试验成功氧气底吹转炉炼钢,取名OBM 法。1970年法国文代尔一西代尔公司(Wendel—Sidelor?? Co.)的隆巴(Rombas)厂以燃料油为氧喷嘴冷却剂,也成功地将24t托马斯炉改造成氧气底吹转炉,称为LWS法。随后用氧气底吹氧枪改造的托马斯炉在西欧得到迅速推广,炉容量大多为25~70t,用于高磷铁水炼钢,脱磷仍在后吹期完成,副产品钢渣作磷肥。1971年美国钢铁公司(U.S.Steel? Corp.)引进COBM法,为了解决经济有效地吹炼低磷生铁和设备大型化问题,在该公司炼钢实验室的30t试验炉上作了系列的中间试验,增加了底部吹氧同时喷吹石灰粉的系统,吹炼低磷普通铁水可在脱碳同时完成脱磷,称为Q—BOP法。随后,在菲尔菲德(Fairfield)厂和盖里(Gary)厂分别建设了两座200tQ—BOP炉和3座235tQ—BOP炉。前者取代原有平炉,后者取代正在建设的氧气顶吹转炉。从而实现了氧气底吹转炉的大型化,并扩大了应用范围。到20世纪70年代末氧气底吹转炉年产钢能力总计约3500万t。在中国,1973年钢铁研究总院在300kg 氧气底吹试验转炉上进行了底吹氧气和石灰粉的炼钢试验。随后,该院与北京钢铁设计研究总院及有关单位合作,在唐山钢厂、首都钢铁公司、济南第二钢厂及马鞍山钢铁公司先后完成了5t氧气底吹转炉炼钢的工业性试验。同时还进行了铁水提铌、提钒的试验。后由于顶底复吹转炉的出现和发展而停止。 工艺特点?? 氧气底吹转炉所用炉衬耐火材料、原材料及基本工艺和氧气顶吹转炉相同或相似。主要金属炉料是铁水和约10%~25%的废钢。供氧压力约为0.6~1.0MPa(6~10atm)。每炉吹炼时间(吹氧时间)一般为15~20min。每炉冶炼周期(本炉出钢到下炉出钢时间)一般为30~40min。氧耗量为50~60m3/t。主要工艺特点是从转炉底部供氧。(见图1)装有氧喷嘴的转炉炉底可以拆卸、更换。氧喷嘴由同心的双层套管组成。内层为铜管或不锈钢无缝管,外层用碳素钢无缝管。内层通氧气,并可同时喷吹石灰粉。两层套管之间的间隙通冷却剂。冷却剂通常为气态或液态的碳氢化合物,如天然气、丙烷或燃料油等。依靠碳氢化合物裂解吸热,并在氧流周围形成保护气膜,以及高速气流带走热量,以降低氧喷嘴及其附近反应区的温度,达到保护氧气喷嘴、减缓烧损的目的。为了使熔池搅拌均匀,反应界面大,吹炼平稳,并避免氧喷嘴个数少、直径过大、氧流比较集中而导致氧气穿透熔池,因此采用多支氧喷嘴,分散供氧。每支氧喷嘴的内径尺寸不超过熔池深度的1/35。这个数据适用于吹氧压力约为0.5~1MPa的中、小型转炉。例如:容量为30t的转炉,熔池平均深度为700mm,据此每支氧喷嘴最大内径为20mm;氧气压力为0.8MPa;氧气含石灰粉为1~2kg/m3,则氧气流量约为130m3/h?cm2;耗氧量为60m3/t;吹炼时间最多为20min。因此可以算出:需要供氧流量为5400m3/h,所需氧喷嘴内管总横截面约为42cm2,所需氧喷嘴数为14个。大型氧气底吹转炉的氧喷嘴直径与熔池深度之比可以大于上述数据,一般不超过熔池深度的1/15。例如200~240t氧气底吹转炉所用氧喷嘴数可采用10~16个。氧喷嘴之间以及氧喷嘴与炉壁之间要有适当间距,使熔池搅拌均匀和反应平稳,并减轻对炉衬耐火材料的侵蚀。氧喷

转炉高磷铁水的冶炼

转炉高磷铁水的冶炼 刘春森唐山德龙炼钢厂 摘要:随着市场形势的恶化,高炉大量廉价高磷矿的使用和烧结配加钢渣粉等一系列降本措施的应用,使我厂铁水磷含量不断升高,铁水最高磷含量达到0.160%,传统冶炼工艺已经无法满足现有钢种的脱磷要求,通过采用留渣双渣法解决了转炉高磷铁水的冶炼问题,达到了转炉高效脱磷的目的,但采用留渣双渣进行脱磷会对生产节奏造成一定的影响。 关键词:转炉炼钢;高效脱磷;留渣双渣 1 前言 2013随着钢铁市场形势的恶化,成本最低化成为每个企业亟需解决的问题。唐山德龙毗邻京唐港,具有临港优势,原料以外矿为主,但目前使用的主流外矿普遍磷含量偏高,造成高炉铁水磷偏高,平均在0.120%左右。如果烧结要配加钢渣粉,则铁水磷含量还会继续提高,据以往经验,最高可到0.160%左右。转炉脱磷负担重,不仅制约到下一步继续开发低磷钢种,也阻碍了烧结配加钢渣粉降成本的途径。鉴于以上两点,唐山德龙提高转炉脱磷效率的研究,无论对于继续开发低磷钢,还是放开铁水磷含量,降低铁前成本,具有重要意义。 2 传统转炉冶炼工艺 2.1 单渣法 就是在冶炼过程中只造一次渣,中途不倒渣、不扒渣、直到终点出钢。当铁水Si、P、S含量较低时,或者钢种对P、S要求不严格,以及冶炼低碳钢种时,均可以采用单渣操作。单渣操作工艺比较简单,吹炼时间短,易于实现自动控制。 2.2 双渣法 双渣法是在冶炼过程中到两次渣,第一次倒渣后继续冶炼再次造渣,第二次倒渣后才出钢。双渣法主要是在冶炼高硅铁水时应用,目的是为了减少喷溅的发生。双渣法能够冶炼硅比较高的铁水但是增加钢铁料消耗。 2.3 留渣法 留渣法是将上一炉的终点渣部分或全部留给下一炉使用,此方法的有优点是能够降低白灰消耗,实现少渣冶炼。留渣法的缺点是兑铁过程容易喷溅造成安全隐患。 以上三种冶炼方法在我厂均有采用,在冶炼Q195时采用用单渣法操作平均

120t转炉单渣—留渣法低成本高效冶炼工艺的研究与应用

120t转炉“单渣—留渣”法低成本高效冶炼工艺的研究与应用 温福新1,王明杰1,于亮涛1,王,强1,沈彬彬2 (1.莱芜钢铁集团银山型钢有限公司炼钢厂,莱芜271104;2.莱钢集团技术中心莱芜271104) 摘要:介绍了莱钢120t转炉“单渣—留渣”操作的基本工艺技术条件及应用效果。针对终渣状态和铁水条件,规范了留渣操作所需铁水的基本条件,确定了转炉开氧基本模式及过程基本操作模式,提高了脱磷效率,有效降低了石灰、白云石吨钢消耗,取得显著效益。 关键词:转炉;单渣—留渣;留渣操作;脱磷率;工艺 0 前言 在当前钢铁市场环境下,“单渣—留渣”操作已成为各钢铁企业作为降本增效的手段之一。该工艺早在十几年前就已实践,但是由于留渣后下炉兑铁水时易出现喷溅、泄爆等安全问题,使这项工艺很长时间内在生产实践中受阻。但随着工艺技术及其设备的不断改进,留渣操作伴随着的相关问题已基本解决。并且留渣操作已被证实可以大幅降低吨钢石灰消耗,及在转炉吹炼初期可以快速成渣,高效脱磷,具有显著的经济效益。 1 留渣喷溅的根本原因与预防机理 转炉终渣中含有一定量FeO成分。这种终渣留待下一炉,在兑入铁水时,必会同时发生以下式(1)、式(2)的反应。当终渣中(FeO)过高时,式(1)、(2)反应激烈,瞬间产生大量的气体并附带炉渣、铁水冲出,造成爆发性喷溅事故。 (FeO)+[C]=[Fe]+CO (1) 2(FeO)+[C]=2[Fe]+CO2(2) 要防止喷溅,最直接的办法是控制炉中气体,杜绝或减缓式(1)、式(2)的反应[1]。 2 留渣操作具体工艺技术措施 2.1 留渣操作条件 1)铁水成分[Si]不高于0.80%。[Si]高时,为保证炉渣碱度,渣料加入量大,产生的炉渣量较多,如果再采取留渣操作,将使冶炼条件恶化,过程不易控制,易发生喷溅等安全事故。 2)终点碳不低于0.05%,根据碳氧平衡原理得知:终点碳过低时,渣中全铁含量高,不适合留渣。 3)终点钢水温度不高于1680℃。终点温度过高时,会直接导致终渣偏稀,渣中(FeO)偏高。 2.2 溅渣操作 为避免所留炉渣偏稀、氧化性强、兑铁易发生喷溅等情况,需要根据炉渣情况判断是否加碳镁球等物料进行改渣处理,以达到稠化炉渣,降低渣中(FeO)含量。碳镁球具体指标如表1所示。 2.3 开吹操作 2.3.1 “单渣—留渣”开吹打火曲线 鉴于留渣操作开吹时铁水表面炉渣较厚,影响开吹打火效果,易发生开吹泄爆等安全事故,特制定开吹打火曲线,有效避免了开吹泄爆问题。具体开吹打火曲线,如图1所示。2.3.2 开吹操作模式 开吹采用手动开吹模式,先将氧枪调节阀调至开吹氧压0.5MPa左右,将氧枪降至开吹枪位1.6m,再开氧吹炼,至1min30s左右将氧压提至正常0.88MPa。 2.4 过程控制 2.4.1 枪位控制 采用“高→低→低”的控制模式,开吹采取固定枪位模式操作,吹炼平稳时,缓慢下降枪位直至过程正常操作枪位。冶炼前期渣中FeO含量较高,前期采取手动开氧,恒枪位开吹

浅论底吹氧枪

浅论底吹氧枪 高长春袁培新陈汉荣 摘要:本文较系统的论述有色金属氧气底吹熔炼氧枪基本原理,介绍氧枪设计计算方法,提出延长氧枪使用寿命的技术措施。 关键词:氧气底吹熔炼,氧枪结构、材质、气力学参数,氧枪蚀损机理。 有色金属氧气底吹熔炼在国内外已有二十多年历史。近几年国内氧气底吹炼铅工艺发展迅速,预计到2010年用该工艺生产粗铅将超过100万吨/年,占全国总产量的40%;氧气底吹炼铜工艺也在起步,发展前景看好。氧枪是氧气底吹熔炼工艺中的核心技术,这种技术已比较成熟,但氧枪使用寿命仍然是关键问题。本文围绕延长氧枪使用寿命问题,就氧枪基本原理,主要技术参数计算方法等方面作粗浅分析论述,以期起到抛砖引玉的作用。 1、氧枪和底吹熔池运动 氧气底吹熔炼熔池的运动是喷入氧气和其他气体的结果。气体射流由喷嘴喷出后,沿射流的纵轴向熔池面伸展,这时射流四周的熔池沿射流束的径向流来。射流束的流速愈大,熔池流向射流束的速度亦愈大。射流带动熔池向上运动,熔池衰减射流的能量,减缓射流的运动,互相运动的同时发生物理化学反应,射流则逐渐扩大。但主射流仍保持着“气柱”或“气舌”的形状,直到达到一定高度后,方在主射流的顶部发生气—液交混,而形成气泡带向熔池面伸展。气体到达熔池面时便逸出,熔池则再向下流动形成回流,形成熔池熔液不断循环流动。这个不断循环流动的过程,便是氧气和其他气体不断地把能量传送给熔池的过程;这个不断循环流动的过程,造成底吹熔炼有别于顶吹或侧吹熔炼过程的反应特性和流动特性,使熔池得到充分搅拌,具有更为优越的传质、传热功能,喷入氧气得到极高的利用率。水力学模型实验和底吹熔炼生产实践发现,喷咀喷出气体的压力和喷枪结构选择不当,会出现严重的“气泡后座”现象、严重的喷溅现象、严重的熔池振荡现象,甚至气流射穿熔池。 底吹气体传送给熔池的能量,有气体的动量、冲量、功能和膨胀功。动量、

《安全技术》之炼钢企业转炉安全操作要点

炼钢企业转炉安全操作要点 1、炉前、炉后平台不应堆放障碍物。转炉炉帽、炉壳、溜渣板和炉下挡渣板、基础墙上的粘渣,应经常清理,确保其厚度不超过0.1m。 2、废钢配料,应防止带入爆炸物、有毒物或密闭容器。废钢料高不应超过料槽上口。转炉留渣操作时,应采取措施防止喷渣。 3、兑铁水用的起重机,吊运重罐铁水之前应验证制动器是否可靠;不应在兑铁水作业开始之前先挂上倾翻铁水罐的小钩;兑铁水时炉口不应上倾,人员应处于安全位置,以防铁水罐脱钩伤人。 4、新炉、停炉进行维修后开炉及停吹8小时后的转炉,开始生产前均应按新炉开炉的要求进行准备;应认真检验各系统设备与联锁装置、仪表、介质参数是否符合工作要求,出现异常应及时处理。若需烘炉,应严格执行烘炉操作规程。 5、炉下钢水罐车及渣车轨道区域(包括漏钢坑),不应有水和堆积物。转炉生产期间需到炉下区域作业时,应通知转炉控制室停止吹炼,并不得倾动转炉。无关人员不应在炉下通行或停留。 6、转炉吹氧期间发生以下情况,应及时提枪停吹:氧枪冷却水流量、氧压低于规定值,出水温度高于规定值,氧枪漏水,水冷炉口、烟罩和加料溜槽口等水冷件漏水,停电。 7、吹炼期间发现冷却水漏入炉内,应立即停吹,并切断漏水件的水源;转炉应停在原始位置不动,待确认漏入的冷却水完全蒸发,方可动炉。 8、转炉修炉停炉时,各传动系统应断电,氧气、煤气、氮气管道应堵盲板隔离,煤气、重油管道应用蒸汽(或氮气)吹扫;更换吹氧管时,应预先检查氧气管道,如有油污,应清洗并脱脂干净方可使用。 9、安装转炉小炉底时,接缝处泥料应铺垫均匀,炉底车顶紧力应足够,均匀挤

出接缝处泥料;应认真检查接缝质量是否可靠,否则应予处理。 10、倾动转炉时,操作人员应检查确认各相关系统与设备无误,并遵守下列规定: ——测温取样倒炉时,不应快速摇炉; ——倾动机械出现故障时,不应强行摇炉; 11、倒炉测温取样和出钢时,人员应避免正对炉口;采用氧气烧出钢口时,手不应握在胶管接口处。 12、火源不应接近氧气阀门站。进入氧气阀门站不应穿钉鞋。油污或其他易燃物不应接触氧气阀及管道。 13、有窒息性气体的底吹阀门站,应加强检查,发现泄漏及时处理。进入阀门站应预先打开门窗与排风扇,确认安全后方可入内,维修设备时应始终打开门窗与排风扇。

转炉炼钢安全操作规程标准范本

操作规程编号:LX-FS-A10073 转炉炼钢安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

转炉炼钢安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (1)准备工作 转炉炼钢开炉前的准备工作非常重要,稍有忽视就可能酿成重大人身事故。吹炼时,发现烟罩漏水,应马上停吹,关闭中压水阀门,检修焊接,直至不漏水为止。 检查管道与阀门时,要有监护和检查二人同时进行,严禁吸烟,周围不得有明火,防止漏氧燃烧。在氧气管道周围,不准堆放易燃易爆和油污物。 炉盖上面焊有水箱,转炉倒炉时,钢水不能碰水冷炉口,以免引起事故。冶炼过程中如发现水冷炉口漏水,应立即停吹,派二人检查进水阀门并修复。

相关文档