文档库 最新最全的文档下载
当前位置:文档库 › 一种耦合卡通_纹理分解及边缘检测的方法_张力娜

一种耦合卡通_纹理分解及边缘检测的方法_张力娜

一种耦合卡通_纹理分解及边缘检测的方法_张力娜
一种耦合卡通_纹理分解及边缘检测的方法_张力娜

第39卷 第5期 激光与红外Vol.39,No.5 2009年5月 LASER & I N FRARE D May,2009

文章编号:100125078(2009)0520542204?图像与信号处理?一种耦合卡通-纹理分解及边缘检测的方法

张力娜1,2,冯象初2,刘晨华2

(1.咸阳师范学院数学系,陕西咸阳712000;2.西安电子科技大学理学院数学系,陕西西安710071)

摘 要:在Lu m inita A.Vese和Stanley J.O sher提出的基于总变差最小化的纹理图像分解模型

的基础上,运用半二次规整化方法(half2quadratic regularizati on)得到联合纹理特征提取和边缘

检测的耦合变分模型。数值计算的结果表明,本文方法对图像的卡通-纹理分解以及边缘的

提取都有较好的效果。

关键词:总变差;半二次规整化;卡通;纹理;边缘提取

中图分类号:TP751.1 文献标识码:A

M ethod co mbi n i n g texture extracti on with contour detecti on

ZHANG L i2na1,2,FE NG Xiang2chu2,L I U Chen2hua2

(1.Depart m ent of M athe matics,Xianyang Nor mal University,Xianyang712000,China;

2.Depart m ent ofM athe matics,Xidian University,Xi′an710071,China)

Abstract:Lu m inita A.Vese and Stanley J.O sher p r oposed a model f or decomposing a given i m age int o a cart oon and

an oscillat ory component,witch based on t otal variati on m ini m izati on.By using the method of half2quadratic regulariza2

ti on in the model of Vese and O sher,this paper p r oposes a model that combines extracting texture with detecting con2

t our.Finally,nu merical experi m ents show that the p r oposed method can decompose a given i m age int o a cart oon and

an oscillat ory component better while detecting cont our well and truely.

Key words:t otal variati on;half2quadratic regularizati on;cart oon;texture;cont our detecti on

1 引 言

在图像处理中一项重要的工作就是从已有的图像中提取有用的信息,如图像轮廓的提取及纹理特征的提取,基于Kass[1]提出的主动轮廓线模型是一种有效的目标轮廓提取方法。另一方法是采用Mu mf ord2Shah模型[2]的图像分割和轮廓提取技术,以及Chan和Vese[3]提出的基于Mumf ord2Shah模型的水平集图像分割方法等。

一幅自然的图像中往往同时含有纹理、轮廓等信息,此时要提取轮廓特征,就会受到纹理信息的影响,因此考虑先将纹理提取出来,再检测边缘。基于小波的方法是提取纹理的一种有效地方法。另外, Lu m inita A.Vese和Stanley J.O sher[4]基于总变差最小化及Yves Meyer[5]振荡函数空间理论提出了卡通-纹理分解的模型,也能有效地提取纹理特征。但是,在纹理提取的过程中总会有一些边缘信息的损失,或者部分边缘随纹理一起被提取出来,这样在提取纹理后,再提取的边缘就不准确。本文在Vese 和O sher的卡通-纹理分解模型的基础上,运用半二次规整化方法(half2quadratic regularizati on)[6-8]得到联合纹理特征提取和边缘检测的耦合变分模型,有效地分解图像的卡通-纹理部分,同时得到较

基金项目:咸阳师范学院专项科研基金重点项目(No. 07XSYK107,07XSYK214)资助。

作者简介:张力娜(1978-),女,硕士研究生,主要研究方向为小波理论及其应用,偏微分方程理论,图像处理。E2mail:ricky_lxl@ https://www.wendangku.net/doc/0f5449494.html,

收稿日期:2008209212;修订日期:2008212224

好的边缘特征。

2 Vese和O sher的纹理提取模型

令原图像为f∈L2(R2),总变差最小化的ROF 模型[9]为:

inf

u∈BV

F(u)=∫ u+λ‖v‖2L2,f=u+v(1)其中,参数λ>0,u∈BV(R2)由分片光滑的区域及清晰的边缘构成,被视为我们所求的真实图像,v就是被扔掉的噪声或细小的纹理。

在ROF模型的基础上,在文献[5]中Y.Meyer 提出了如下函数空间的定义:

定义一个Banach空间G={v(x,y)= 9x g1(x,y)+9y g2(x,y),g1,g2∈L∞(R2)},范数为

‖v‖3=inf

g1,g2‖g21(x,y)+g22(x,y)‖

L∞

,其中g?=

(g

1

,g2),g?=g21+g22。

Y.Meyer指出当函数v表示的是纹理或噪声时,‖v‖3为最小,并提出了模型:

inf

u∈BV

E(u)=∫ u+λ‖v‖3,f=u+v(2)

由于对任意的g

1

,g2∈L∞(R2),有

‖g21+g22‖L∞=li m

p?∞‖g21+g22‖

L p

,在Y.Meyer

工作的基础上,Vese和O sher[4]提出了新的能量泛函最小化模型:

inf

u,g1,g2

G p(u,g1,g2)=∫ u+λ∫f-u-9x g1-9y g22?

d x d y+μ∫(g21+g22)p d x d y 1

p(3)

其中,v=div g?;参数λ,μ>0,p?∞。

f与u,v的关系可以叙述为:f=u+v+w,其中u 是卡通(分片光滑)图像,v是纹理或带噪声的图像, w则是被扔掉的噪声或小部分纹理。模型中第一项确保u∈BV(R2),第二项确保原图像f与u+v的逼近程度,第三项是函数v=div g?构成的空间G中范数的补偿项。当λ?∞,p?∞时,模型(3)近似于Y.Meyer提出的模型(2)。Vese和O sher的数值实验结果表明,对于p取值为1≤p≤10时,得到的结果十分相似,特别当p=1时,公式较为简单,运算量较少。

3 联合纹理特征提取和边缘检测的耦合变分模型3.1 Vese和O sher的纹理-卡通分解模型的二次逼近

将Vese和O sher的纹理-卡通分解模型变形为:

inf u,g1,g2G(u,g1,g2)=∫<( u)+λ∫f-u-

9xg1-9yg22d x d y+μ∫g21+g22d x d y(4)

其中,函数<(s)满足条件:(a)<∶[0,+∞)?[0,

+∞)为严格凸的非减函数,<(0)=0;(b)存在常

数c>0及b≥0,使得对Πs≥0,有cs-b≤<(s)≤

cs+b。

对上述函数<(s),定义函数<ε(s)如下:

<ε(s)=

<′(ε)

s2+<(ε)-

ε<′(ε)

2

0≤s≤ε

<(s)ε≤s≤1/ε

ε<′(1/ε)

2

s2+<(1/ε)-

<′(1/ε)

 s≥ε

则对Πε,<ε≥0以及Πs,有li m

ε?0

<ε(s)=<(s)。

于是可以构造一列能量泛函Gε如下:

Gε(u,g1,g2)=∫<ε( u)+

λ∫f-u-9xg1-9yg22d x d y+μ∫g21+g22d x d y(5)

其中,<ε≥0,对Πs≥0,li m

ε?0

<ε(s)=<(s)。此方程存

在最小化问题的唯一解uε,根据Γ-收敛理

论[10-12],可得uε收敛于u。

3.2 构造半二次规整化方法的模型

半二次规整化的基本思想,即引入一个新的能

量泛函,它与原来的能量泛函有相同的极小化子,但

更容易进行数值处理[6-8]。

定理3.2.1设<∶[0,+∞)?[0,+∞)使得

<(s)在[0,+∞)上是凹函数,<(s)为非递减函数,

令L=li m

s?+∞

<′(s)

2s

,M=li m

s?0

<′(s)

2s

,则存在一个凸的

递减函数ψ∶[L,M]?[β

1

,β2],使得:

<(s)=inf

L≤b≤M

(bs2+ψ(b))

其中,β

1

=li m

s?0+

<(s),β2li m

s?+∞

(<(s)-s<′(s)/2),并

且上述极小化问题中附加变量b=

<′(s)

2s

为对偶

变量。

根据定理3.2.1对式(5)进行半二次规整化处

理<ε( u)=inf

L≤b≤M

(b u2+ψε(b)),得到新的

能量泛函为:

Gε(u,g1,g2,b)=∫(b u2+ψε(b))+

λ∫f-u-9xg1-9yg22d x d y+μ∫g21+g22d x d y(6)

考虑Ambr osi o和Tort orelli对Mumford2Shah泛

函提出的辅助变量模型[13],对式(6)的模型改进为:

Gε(u,g1,g2,b)=∫(b2 u2+ψε(b))+

345

激光与红外 No.5 2009 张力娜等 一种耦合卡通-纹理分解及边缘检测的方法

α∫η( b )+λ∫f -u -9xg 1-9yg 22

d x d y +

μ∫g 2

1

+g 22

d x d y

(7)

其中,第二项是关于辅助变量b 的正则化项。

本文中采用函数<ε(s )=s 2/(1+εs 2

),由定理3.2.1,<ε( u )=inf L ≤b ≤M

(b u

2

+ψε(b )),经计

算将b 变换为b 2

,得到ψε(b )=

(b -1)

2

ε

,取函数

η(s )=s 2

/(1+s 2

),得到改进的模型:

G ε(u,g 1,g 2,b )=∫b

2

u

2

+

(b -1)

2

ε

+

α∫η(b b )+λ∫f -

u -9xg 1-9yg 2

2

d x d y +

μ∫g 21+g 22d x d y

(8)

u v b

图2 图像u 和v 是Vese 和O sher 的模型对原图

(a )分解的卡通和纹理图,b 是对卡通u 提取的边缘

其中,参数α,λ,ε>0,由变分法基本原理得到纹理特征提取和边缘检测耦合的P DE 系统:u =f -9xg 1-9yg 2+12

λdiv (b 2

u )

μg 1

g 21+g 22

=2λ99x (u -f )+92xx g 1+92

xy g 2μ

g 2

g 21+g 22

=2λ99y (u -f )+92xy g 1+92yy g 2[b (ε u

2

+1)-1]-γdiv

η′( b )

2 b

b =0(9)

其中,参数γ=12εα。3.3 数值计算

对本文模型(8)算法的描述:

初始化(u 0,b 0

)

第一步:固定b,求(u n +1,g n +11,g n +1

2)=arg m in u,g 1,g 2

G ε(u,g 1,g 2,b n

),等价于求解相应的方程: 

 

u =f -9x g 1-9y g 2+12

λdiv ((b n )2

u )

μg 1g 21+g 2

2=2λ99x

(u -f )+92xx g 1+92

xy g 2μ

g 2g 21+g 2

2

=2

λ99y

(u -f )+92xy g 1+92

yy g 2边界条件:

(b n

)2

(n x ,n y )=0(f -u -9x g 1-9y g 2)n x =0(f -u -9x g 1-9y g 2)n y =0

其中,(n x ,n y )为边界的外法线。

第二步:固定u,求b n +1

=

arg m in b

G ε(u

n +1

,g n +1

1

,g n +1

2

,b ),等价于求解相应的方

程:

b =

1+γdiv

φ′( b )

2 b

b

ε u n +12+1

第三步:重复以上步骤至(u n +1,g n +11,g n +1

2,

b

n +1

)收敛。

在算法中,序列b n +1

是图像边缘信息的函数,如

果b

n +1

(x )?0,则x 为边缘点;如果b n +1

(x )?1,则

x 为光滑区域的点。

4 数值实验结果

本文以图1所示的带纹理图像(a )(b )为实验图像。比较图2与图3的结果,图2中用Vese 和O sher 模型分解的卡通u 的边缘不清晰,尖角的地

方被磨圆,其中还带有一些纹理痕迹;而提取的纹理v 中,又含有明显的边缘;于是用卡通u 提取的边缘不清晰也不是很准确。图3是本文模型(8)处理的结果,其中卡通u 与纹理v 的分解比较彻底,并且卡通u 中保持了清晰的边缘,同时提取的边缘也比较清晰准确。比较图4V ese 和O sher 模型处理的结果与图5本文模型(8)处理的结果,也有类似的情况,图5的结果明显好于图4的结果。

(a ) (b )

图1 带纹理的两个原始图像

445激光与红外 第39卷

5 结 论

本文在Vese和O sher模型的基础上,运用半二次规整化方法得到耦合卡通-纹理分解与边缘提取的模型,将卡通-纹理分解与边缘提取同时进行。从实验的结果来看,本文模型的算法,在保持卡通图像u一定光滑度的情况下,有效地保护了边缘信息,相应地减少了纹理图像v中的边缘信息,使得卡通-纹理的分解更加完全,同时也提取了较好的图像边缘b。关于参数的选取和迭代终止的时间,以及模型在函数空间理论上的发展,是值得我们进一步探讨的问题。

参考文献:

[1] KassM,W itkin A,Terzopoul os D.Snakes:Active cont our

models[J].I nternati onal Journal of Computer V isi on,

1988,1(4):321-332.

[2] M u mf ord D,Shah J.Op ti m al app r oxi m ati on by p iece wise

s mooth functi ons and ass ociated variati onal

p r oble m s[J].Communicati ons on Pure and

App lied Mathe matics,1989,42(5):577-

685.

[3] Chan F T,Vese L.Active cont ours with2

out edges[J].I EEE Transacti ons on

I m age Pr ocessing,2001,10(2):

266-277.

[4] Lu m inita A Vese,Stanley J O sher.Mod2

eling textures with t otal variati on m ini2

m izati on and oscillating patterns in i m2

age p r ocessing[J].Journal of Scientific

Computing,2003,19(1-3):

553-572.

[5] Y Meyer.O scillating patterns in i m age

p r ocessing and nonlinear evoluti on e2

quati ons[J].University Lecture Series,

2001,22:1047-3998.

[6] Ge man S,Ge man D.St ochastic relaxa2

ti on,Gibbs distributi ons and the Bayes2

ian rest orati on of i m ages[J].I EEE

Trans.On P AM I,1984,6:721-741.

[7] Ge man D,Yang C.Nonlinear i m age re2

covery with half2quadratic regularizati on

[J].I EEE Transacti on on I m age Pr o2

cessing,1995,4(7):932-945.

[8] Charbomm ier P,Feraud L B,et al.De2

ter m inistic edge p reserving regulariza2

ti on in computed i m aging[J].I EEE

Transacti on on I m age Pr ocessing,1997,

6(2):298-311.

[9] L Rudin,S O sher,E Fatem i.Nonlinear t otal variati on

based noise re moval algorith m s[J].Physica D,1992,60:

259-268.

[10]E De Gi orgi,T Franzoni.Su un ti po di convergenza varia2

zi onale.A tti Accad.Naz.L incei Rend.Cl.Sci.Fis.Mat.

Natur.,1975,58:842-850.

[11]E De Gi orgi.Convergence p r oble m s for functi onals and

operat ors.Recent methods in non2linear analysis[C].

Pr oc.I nt.Meet.,Rome,1978:131-188.

[12]G DalM as o.An intr oducti on t oΓ2Convergence[M].Bos2

t on:B irkhauser,1993.

[13]Ambr osi o L,Tort orelli V.App r oxi m ati on of functi onals de2

pending on ju mp s by elli p tic functi onals viaΓ2conver2

gence[J].Communicati on on Pure and App lied Mathe2 matics.1990,43(8):999-1036.

545

激光与红外 No.5 2009 张力娜等 一种耦合卡通-纹理分解及边缘检测的方法

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

张力计的操作方法

张力计操作方法 张力计是利用负压计测定土壤水分是从能量角度研究土壤水分运动的实用手段。他是反映土壤墒情状况,指导灌溉最好的仪器设备。 张力计操作方法: 1.开水冷却:将自来水煮沸20分钟后,放置冷却备用。 2.注水:开启集气管的盖子,并将仪器倾斜,用塑料瓶徐徐注入经煮沸后冷却的无气水,直到加满为止,仪器直立10—20分钟(不要加盖子),让水把陶土管湿润,并见水从陶土头表面滴出。 3.排气:再将仪器注满无气水,用干布或吸水性能好的纸从陶土头表面吸水(或在注水中处塞入一个插有注射针头的橡皮器,用注射器进行抽气,抽气时注意针尖必需穿过橡皮塞并伸入仪器内部。同时用左手顶住橡皮塞,不让其松动漏气)。此时,可以看到真空表的指针,指向40Kpa左右,并有气泡从真空表内逸出,逐渐聚集在集气管中。缓缓拔去塞子,让真空表指针缓慢退回零位。继续将仪器注满无气水,仍用上述方法进行抽气。这样重复3-4次,真空表内的空气即可除去大部份。 4.集气:将仪器注满无气水,加上塞子,加以密封,并将仪器直立,让陶土管在空气中蒸发,约二小时后,即可见真空表的指针指向40Kpa或更高。此时从陶土管真空表塑料管及集气管中会有埋藏的气泡逸出,同时,轻轻将仪器上下倒置,使气泡集中到集气管中。 5.再蒸发:将陶土管浸入无气水中,此时,可见真空表指针回零,打开盖子,重新注满无气水,加上盖子,再让陶土管在空气中蒸发。此时,真空表的指针可升至50Kpa或更高。同时轻轻将仪器上下倒置,收集逸出的空气。 6.重复:按以上步骤进行2-3次,每进行一次之后真空表的指针可升得更高,直到指针达到80Kpa时将陶土管浸入无气水中,真空指针转动回零。打开盖子,注满水,盖子盖紧,将陶土管浸在无气水中备用。

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

调压器的分类

第三部分调压器的分类、常用术语与技术要求 第一节调压器分类 调压器的种类较多,可以从适用压力、用途、作用原理上加以区分。 一、按压力划分 为了明确表示调压器的压力性能,根据调压器的进口压力与出口压力的级别 加以区分,分为:①低一低压; ②中压A —低压; ③中压B —低压; ④中压A —中压B; ⑤高压—中压A; ⑥高压—中压B; ⑦超高—高压。 二、按用途划分 按用途或供应对象加以区分,分为: 1. 区域调压器 用于供应某一地区的居民用户或企事业单位用户的调压器,称为区域调压器。在三级制供气城市中,一般为高—中压、中—低压调压器。 2. 专用调压器 调压器的设置是专供某一单位的特殊需要而设置,如玻璃厂、冶炼厂等大型工业用户,他们一般需要高于区域供应压力的气源,因此必须为它们设置专用调压器。 3. 用户调压器 用户调压器是一种小型调压器,一般用于一幢楼或一户居民。这主要用于高、中压供气系统。民用液化石油气的减压阀也是一种用户调压器。拥护调压器一般分为高—低,中—低压两种。 、按作用原理划分

调压器按不同作用原理分为直接作用式和间接作用式两种。 直接作用式调压器只依靠敏感元件(薄膜)所感受的出口压力变化来对阀门进行移动和调节。敏感元件就是传动装置的受力元件,,使调节阀门移动的能源是被调介质。 通俗讲,直接作用式调压器就是直接依靠调压器薄膜所感受的出口压力的变化,来移动阀门和进行调节。使阀门移动和调节的能量,是被调燃气的压力。 间接作用式调压器是当出口压力变化时没,使操纵机构(指挥器)动作,接通能源(或给出信号),使调节阀门移动。它的敏感元件(即感应出口压力的元件)和传动装置(即受力动作并进行调节的元件)是分开的。 通俗讲,间接作用式调压器就是多了一个指挥器部分。指挥器与调压器结果相似,也由阀门、皮膜、弹簧等组成。指挥器的作用是放大出口压力P2 升高或 降低的信号,从而加快调压器的动作,提高调压器的精度和灵敏度。 1. 直接作用式调压器有 ①液化石油气减压阀 ②小流量的用户调压器 2. 间接作用式调压器有 ①雷诺式调压器 ②T 型调压器 ③活塞式调压器 ④自力式调压器 ⑤曲流式调压器 ⑥衡量式调压器 ⑦轴流式调压器 四、调压器的型号编制原则 调压器的型号编制按以下原则: 1. 燃气调压器名称用汉语拼音字头表示 2. 调压器产品型号组成含义 ①产品型号分为两节,中间用“一”隔开

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

张力计使用方法

高真空值读数表明土壤干燥. 读数

偏低则表明土壤湿润. 通常,在灌溉区域 应布置一定数量的监测点.每一个点应有 顶盖 2-3支不同长度的张力计管.这样不仅可 以了解每个点不同深度的水分含量而且 可以了解水分在灌溉期间的运移情况 . 该张力计系统仅需少量维护便可多年 可靠使用. 仪表毋需标定和置零 . 使用时在田间定期直读并记录. 例如每周2--3次. 然后绘制成土壤水分 运动图. 测试结果应与从农业部门了解 到的不同作物需水量结合, 使灌溉者能 够估计出下一个灌溉周期的需水量以及 能在灌溉日的前几天做好准备. 张力计测量系统 张力计是一种较为简单的仪器.它可以测量 土壤中任意点的土壤湿度情况. 仪器操作简单,易于保养.是一种用于灌溉管 理的可靠仪器.该张力计系统具有下列优点 土壤张力计由两个部分组成: 低价格的测管. 这意味着可以设置较多 ?张力计探测管-- 由聚碳酸酯管和透气陶的观测点. 易于更换补充. 瓷头加密封橡胶塞组成. 在管内注入适量水不锈钢指针直读仪表用于各张力计探测管的后埋入土壤中使用. 读数直观,快速,准确无误. ?仪表--非常准确的不锈钢指针直读仪表.采用耐侯性聚碳酸酯探管,强度高,寿命长. 用于从探测管读数.各部件均可拆卸,易于更换维护。 标准探测管长度为15--90CM(测量深度)工作原理可以满足大部分情况的使用要求. 当土壤变干, 与陶瓷头接触的湿度表面特殊长度可根据用户要求加工. 张力势趋于将管内的水分吸出. 从而在管内注意: 探管内用水应为冷却后的开水. 顶部形成局部真空.当灌溉或降雨后,水分被新探管使用前应排空气泡. 吸回管内使真空度减少.

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

图像边缘检测方法比较研究

图像边缘检测方法比较研究 作者:关琳琳孙媛 来源:《现代电子技术》2008年第22期 摘要:边缘检测在数字图像处理中有着重要的作用。系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。 关键词:边缘检测;检测算子;高通滤波;小波变换 中图分类号:TP391文献标识码:A 文章编号:1004-373X(2008)22-096-03 Comparison of Image Edge Detection Methods GUAN Linlin1,SUN Yuan2 (1.Department of Resource Science and Technology,Beijing Normal University,Beijing,100875,China; 2.96656 Unit of Second Artillery F orces,Chinese People′s Liberation Army,Beijing,100820,China) Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection. Keywords:edge detection;detective operators;high-pass filtering;wavelet transform 1 引言 边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。近年来,边缘检测技术被广泛地应用在各个领域,例如工程技术中零件检查[1]、医学中器官病变状况观察[2]、遥感图像处理中道路等典型地物的提取[3]以及估算遥感平台的稳定精度[4]等。这使得如何快速、准确地获得边缘信息成为国内外研究的热点。边缘检测方法在空间域和频域中均可以实现,而且不断涌现出新技术新方法。这些方法

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

造纸网张力计操作说明

凯特测量技术有限公司 造纸网张力计操作说明 测力类型造纸网张力计品牌凯特KTE 型号KTE200 类型织物张力计测量范围0-200N (N) 测量精度- 外形尺寸228×150 (mm) 重量 1.5(kg)适用范围 各类造纸 织物 加工定制否 技术参数: 量程:0-200N/CM 或0-20KG/CM (10N/CM≈1KG/CM) 误差:±2.5% 尺寸:底盘长×宽=228mm×150mm

总高=190mm 总重=1.15KG 注意事项: 严禁用手指过力按压半圆柱传感器 严禁将仪表置于硬质平板上,否则将会损坏仪表或降低仪表精度 仪表使用完毕,用干燥抹布擦拭干净,放置于箱内。 张力计在不使用时要置于箱内保存和携带。 张力计读数单位N/CM是所测网布部位(即张力计底盘范围内)平均每厘米宽度网布所承受的纵向拉紧力N。无论多宽网布均可对其任何部位测量。但由于网布存在自重,所以在距离造纸机张紧辊筒越近处实际测量值越大。最好在相对张紧辊一定距离的位置进行测量,建议距张紧辊80CM左右为标准测试点,或用户根据设备情况自定。 附表一 各种网布张力经验值参考值 织物张力参考表 网布名称KG/CM N/CM 聚酯成型网 3.5-6 35-60 聚酯螺旋网3-3.5 30-35 聚酯干网2-2.5 20-25 铜网 2 20 压榨毛毯 1.5 15 干毯 1.5 15 KTE200造纸网张力计操作说明:

●基本安全注意事项 了解基本安全注意事项和安全使用指导是安全和顺利使用本设备的基本先决条件。操作指南详细说明了安全使用仪表的注意事项。操作人员必须遵守操作 指导,特别是安全注意事项。 另外,使用该装置的人也必须遵守当地有效的防止事故的法令和规定。 ●使用用途: KTE200型织物张力计用于各类造纸织物,包括造纸成型网,铜网,压榨毛毯,干毯,干网等张力测量。特别是目前普遍应用的聚酯成型网对张力的 要求更为严格,张力过大或过小都会造成各类事故发生,导致网纹变形, 降低织物的性能和使用寿命。 ●结构和使用方法: KTE200型张力计表由底盘,操作手柄,表头,薄膜橡胶防水圈及若干内部零件组成。 KTE200型张力计的表盘未非均匀刻度,可以直接测出织物张力的数据,无需查表换算。 KTE200型张力计有读书指针“I”不返回指针“II”.使用前先将可转动表盘的零位对准指针“I”,再把指针“II”沿逆时针方向拨至零位,手握仪表手柄,使其底盘逐渐压向被测网面,直到底盘的底平面全部接触实网 面,然后即可读数。同时,指针“I”顺时针方向转动,推动指针“II”至读数位置,当测试完毕取下仪表时,指针“I”迅速回零,指针“II”仍停留在读书位置不动。 KTE200型张力计不需要任何电源,结构合理,使用方便,防水性能良好,便于携带,适用于聚酯成型网,聚酯干网,造纸铜网,干湿毛毯以及其他 运动织物和静止织物的张力测量。

Canny边缘检测

Canny边缘检测 图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。 本文所述内容均由编程验证而来,在实现过程中,有任何错误或者不足之处大家共同讨论(本文不讲述枯燥的理论证明和数学推导,仅仅从算法的实现以及改进上进行原理性和工程化的描述)。 1、边缘检测原理及步骤 在之前的博文中,作者从一维函数的跃变检测开始,循序渐进的对二维图像边缘检测的基本原理进行了通俗化的描述。结论是:实现图像的边缘检测,就是要用离散化梯度逼近函数根据二维灰度矩阵梯度向量来寻找图像灰度矩阵的灰度跃变位置,然后在图像中将这些位置的点连起来就构成了所谓的图像边缘(图像边缘在这里是一个统称,包括了二维图像上的边缘、角点、纹理等基元图)。 在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。这就使得在边缘检测中首先要进行的工作是滤波。 1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。 2)增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。在具体编程实现时,可通过计算梯度幅值来确定。

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

图像边缘检测技术综述

第 42 卷增刊 1 中南大学学报(自然科学版) V ol.42 Suppl. 1 2011 年 9 月 Journal of Central South University (Science and Technology) Sep. 2011 图像边缘检测技术综述 王敏杰 1 ,杨唐文 1, 3 ,韩建达 2 ,秦勇 3 (1. 北京交通大学 信息科学研究所,北京,100044; 2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳,110016; 3. 北京交通大学 轨道交通控制与安全国家重点实验室,北京,100044) 摘要:边缘检测是图像处理与分析中最基础的内容之一。首先介绍了几种经典的边缘检测方法,并对其性能进行 比较分析;然后,综述了近几年来出现的一些新的边缘检测方法;最后,对边缘检测技术的发展趋势进行了展望。 关键词:数字图像;边缘检测;综述 中图分类号:TP391.4 文献标志码:A 文章编号:1672?7207(2011)S1?0811?06 Review on image edge detection technologies W ANG Min-jie 1 , Y ANG Tang-wen 1,3 , HAN Jian-da 2 ,QIN Y ong 3 (1.Institute of Information Science,Beijing Jiaotong University, Beijing 100044, China? 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academic of Science,Shenyang 110016, China? 3.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China) Abstract: Edge detection is one of the most fundamental topics in the research area of image processing and analysis. First, several classical edge detection methods were introduced, and the performance of these methods was compared? then, several edge detection methods developed in the latest years were reviewed? finally, the trend of the research of the image edge detection in the future was discussed. Key words:digital image?edge detection?review 图像是人们从客观世界获取信息的重要来源 [1?2] 。 图像信息最主要来自其边缘和轮廓。所谓边缘是指其 周围像素灰度急剧变化的那些象素的集合,它是图像 最基本的特征。边缘存在于目标、背景和区域之 间 [3?4] ,它是图像分割所依赖的最重要的依据。边缘检 测 [5?8] 是图像处理和计算机视觉中的基本问题, 图像边 缘检测是图像处理中的一个重要内容和步骤,是图像 分割、目标识别等众多图像处理的必要基础 [9?10] 。因 此,研究图像边缘检测算法具有极其重要的意义。 边缘检测是计算机视觉和图像处理领域的一项基 本内容。准确、高效地提取出边缘信息一直是该领域 研究的重点内容 [11] 。最初的经典算法可分为边缘算子 法、曲面拟合法、模板匹配法、门限化法等。近年来, 随着数学理论和人工智能的发展,又出现了一些新的 边缘检测的算法 [12?13] ,如基于数学形态学的边缘检 测 [14] 、小波变换和小波包变换的边缘检测法 [15] 、基于 模糊理论的边缘检测法 [16?17] 、基于神经网络的边缘检 测法 [18] 、基于分形几何的边缘检测算法 [19] 、基于遗传 算法的边缘检测法 [20?21] 、漫射边缘的检测方法 [22] 、多 尺度边缘检测技术 [23] 、亚像素边缘的定位技术 [24] 、 收稿日期:2011?04?15;修回日期:2011?06?15 基金项目:轨道交通控制与安全国家重点实验室开放基金资助项目(RCS2010K02);机器人学国家重点实验室开放基金资助项目(RLO200801);北 京交通大学基本科研业务费资助项目(2011JBM019) 通信作者:王敏杰(1988-), 女, 黑龙江五常人, 硕士研究生, 从事图像处理和计算机视觉研究; 电话: 010-51468132; E-mail: wangminjie1118@https://www.wendangku.net/doc/0f5449494.html,

实验三 图像的边缘检测

实验三图像的边缘检测 一、实验目的与要求 1、了解图像边缘提取的基本概念; 2、了解进行边缘提取的基本方法; 3、编程实现对所给图像的边缘进行提取。 二、知识点 1、边缘检测的思想和原理 图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导,差分公式参考相关教材。 2、常用的梯度算子 (1)Roberts Cross算子,它的2个2 X2模板如图3所示。 图3 Robert Cross算子模板 (2)Prewitt 算子,它的2个3×3模板如图4所示。 图4 Prewitt算子模板 (3)Sobel 算子,它的2个3×3模板如图5所示。 图3 Sobel算子模板 3、高斯拉普拉斯(LoG)算法 高斯拉普拉斯(LoG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度

图像边缘检测方法的研究与实现刘法200832800066

青岛大学 专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班 学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日 题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] i且处在强度显著变化的位置上的点. ,[j 边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.

边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。 Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。 Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是拉普拉斯高斯(LOG)算子。前边介绍的边缘检测算法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。 1.3 边缘检测算法 对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成。两个具有不同灰度值的相邻区域之间总存在灰度边缘。灰度边缘是灰度值不连续(或突变) 的结果,这种不连续常可利用求一阶和二阶导数方便地检测到。已有的局部技术边缘检测方法,主要有一次微分(Sobel 算子、Robert s 算子等) 、二次微分(拉普拉斯算子等)。这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像,大多数提取算法均可以取得较好的效果。但对于边缘复杂、采光不均匀的图像来说,则效果不太理想。主要表现为边缘模糊、边缘非单像素宽、弱边缘丢失和整体边缘的不连续等方面。 用算子检测图像边缘的方法是用小区域模板对图像进行处理,即采用卷积核作为掩模模板在图像中依次移动,完成图像中每个像素点同模板的卷积运算,最终输出的边缘幅度结果可以检测出图像的边缘。卷积运算是一种邻域运算。图像处理认为:某一点像素的结果不但和本像素灰度有关,而且和其邻域点值有关。运用模板在图像上依此对每一个像素进行卷积, 即模板上每一个点的值与其在图像上当前位置对应的像素点值相乘后再相加,得出的值就是该点处理后的新值。 边缘检测算法有如下四个步骤:

相关文档
相关文档 最新文档