文档库 最新最全的文档下载
当前位置:文档库 › 二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解
二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解

张金战

( 陇南师范高等专科学校, 甘肃成县 742500)

摘要: 在已知二阶变系数齐次微分方程的一个非零特解的条件下, 可以得到

该齐次微分方程和与它对应的非齐次微分方程的通解, 本文给出了在二阶变系数齐次微分方程的系数满足一定条件下的特解形式.

关键词: 线性微分方程; 特解; 通解

中图分类号: O 175.1 文献标识码: A 文章编号: 1008- 9020( 2007) 02- 014- 02 1 、引言对于方程( 2) 的特解的确定, 有以下结论: 2二阶变系数线性微分方程是指定理 1 若存在实数 a,使 a+ap(x)+q(x)=0, 则方程( 2) 有特 ax

解 y=e. 1y"+p(x)y'+q(x)y=f(x) ( 1) 2axax2ax 证明 : 设 a+ap(x)+q(x)=0, 将 y=e,y'=ae, y"=ae代入方 111y"+p(x)y'+q(x)y=0 ( 2) 2axaxaxax 2程( 2) 的左端得 : ae+aep (x)+eq (x)=e[a+ap (x)+q (x)]=0, 即其中

p( x) ,q(x),f(x)都是关于 x 的连续函数, 方程( 1) 称为 ax y=e是方程( 2) 的特解. 1二阶变系数非齐次线性微分方程, 方程( 2) 称为方程( 1) 对应 x推论1 若 q(x)+p(x)+1=0,则方程( 2) 有特解 y=e. 1的齐次微分方程. 在已知方程( 2) 的一个非零特解的条件下, - x推论 2 若 q(x)- p(x)+1=0,则方程( 2) 有

特解 y=e. 1文[1]给出了求方程( 2) 的通解的刘维尔公式, 文[2]、文[3]给出

推论 3 若 q(x)=0,则方程( 2) 有特解 y=1. 1了方程( 1) 的一个通解公式.这样将求解方程( 1) 和( 2) 的问题 2 定理 2 若 k?1 且 k(k- 1)+kxp(x)+xq(x)=0,则方程( 2) 有特就转化成了找出方程( 2) 的一个非零特解的问题 , 但求方程 k解 y=x. 1( 2) 的特解没有一般方法, 通常用观察法, 多数情况下难以操 2kk- 1证明 : 设 k (k- 1)+kxp (x)+xq (x)=0, 将 y=x,y'=kx,y"=k

111作.本文给出在方程( 2) 的系数满足一定条件下的特解形式, k-2 k- 2k-

1kk-2 (k- 1)x代入方程( 2) 的左端得 : k(k- 1)x+kxp(x)+xq(x)=x从而

解决方程( 1) 和( 2) 在某些条件下的求解问题. 2k [k(k- 1)+kxp(x)+xq(x)]=0,即 y=x是方程( 2) 的特解. 12 、主要结论推论 4 若 p(x)+xq(x)=0,则方程( 2) 有特解 y=x. 1[1] 引理 1若 y(x)是方程( 2) 的一个非零特解 , 则

方程( 2) 122推论 5 若 xq(x)+2xp(x)+2=0,则方程( 2) 有特解 y=x. 1的通解

为 2定理 3 若[p(x)+q(x)+1]x+kx[p(x)+2]+k(k- 1)=0, 则方程( 2) kx有特

解 y=xe. 12kx证明 : 设 [p (x)+q (x)+1]x+kx [p (x)+2]+k (k- 1)=0 将

y=xe, 1- p(x)dxkxk- 1xkxk- 1xk- 1xk- 2x !y'=xe+kxe,y"=xe+kxe+kxe+k (k- 1)xe代入方程( 2) 11 e y=cy+cydx1121 ! 2 的左端得: y 1kxk- 1xk-1 xk-

2xkxk-1 xkxxe+kxe+kxe+k(k- 1)xe+(xe+kxe)p(x)+xeq(x)

k- 2x2其中表示的一个原函数, 是任意常数p(x)dx p(x)c,c.12

=xe{[p(x)+q(x)+1]x+kx[p(x)+2]+k(k-1 )}=0 !

[2,3] 引理 2若 y(x)是方程( 2) 的一个非零特解, 则方程( 1) 1

的通解为

- p(x)dx- p(x)dx! ! p(x)dx! k x e e 即 y=x e 是方程( 2) 的特解.

1( yf(x)e dx) dx] y=cy+cydx+y[1121 11! !!2 2 yy 11推论 6 若 [p (x)+q (x)+1]x+p( x)+2=0, 则方程( 2) 有特解

xy=xe. 1其中表示的一个原函数, 是任意常数p(x)dx p(x)c,c.12 !

收稿日期: 2007- 01- 21

作者简介: 张金战( 1965— ) , 男, 甘肃礼县人, 陇南师范高等专科学校数

学系讲师, 教育硕士。

14

张金战: 二阶变系数线性微分方程的特解 Vol.12 No.2( 2007) 第 12 卷第 2 期( 2007)

2- p(x)dx推论 7 若[p(x)+q(x)+1]x+2x[p(x)+2]+2=0, 则方程( 2) 有

特 ! 即 y=e 是方程(2)的特解. 2x1解 y=xe. 13 应用举例 k- 122k-2 k- 2定理4 当 k>1 时, 若 q(x)+kxp(x)+kx+k(k- 1)x=0, 则例 1 求解微分方程(x- 1)y"- 2xy'+4y=1 k x 方程( 2) 有特解 y=e. 1 2x 4 1 2x 解将方程变形为: y"- y'+ y= ,则 p(x)=- , k x- 1 x- 1 x- 1 x- 1 k- 122k-2 k-2 x 证明: 设 k>1,且

q(x)+kxp(x)+kx+k(k- 1)x=0, 将 y=e, 1 k k k 4 1 4 4x k-1 x k-2 x 22k-2 x 由于 , 由定q(x)= ,f(x)= .q(x)+2p(x)+4= - +4=0y'=kxe,y"=k(k- 1)xe+kxe代入方程( 2) 的左端得: 11 x- 1 x- 1 x- 1 x- 1 k k k k k-2 x 22k-2 x k-1 x x 2xk(k- 1)xe+kxe+kxep(x)+eq(x) 理 1 知, 方程所对应的齐次方程有非零特解

y=e,再由引理 2 1得方程的通解为: k x k- 122k-2 k-2

=e[q(x)+kxp(x)+kx+k(k- 1)x]=0

1 1 1 k 2x

2 x 仍记为 y=ce +c(x - x+ )+ . (- cc)122 2即 y=e是方程

(2)的特解. 1 2 4 2 2 2x 2推论 8 若 q(x)+2xp(x)+4x+2=0,则方程(2)有特解

y=e. 例 2 求解微分方程 xy"+2xy'- 2y=x 1

定理 5 若 p(x)cosx+q(x)sinx=sinx, 则方程( 2) 有特解 2 2 1 2 2 解将

方程变形为:y"+ , 则 y'- = p(x)= ,q(x)=- ,2 2 y=sinx;若 p(x)sin x-

q(x)cosx=- cosx, 则方程( 2) 有特解 y=cos x. x xx x x11

证明: 设 p(x)cosx+q(x)sinx=sinx, 将 y=sinx, y'=cosx, 11 1 2 2 由于 , 由推论知, 方程所对应f(x)= .p(x)+xq(x)= - x=04 2 x x xy"=- sinx 代入方

程( 2) 的左端得: 1

的齐次方程有特解 y =x, 再由引理 2 得方程的通解为: -

sinx+p(x)cosx+q(x)sinx=- sinx+sinx= 0.1

即 y=sinx 是方程( 2) 的特解. 1c1 2 y=cx+ + xlnx. 12 x3 同理可证第二

个结论.

- p(x)dx参考文献: ! 定理 6 若 p'(x)- q(x)=0, 则方程( 2) 有特解 y=e . 1[1]东北师范大学数学系.常微分方程[M].北京: 高等教育 - p(x)dx- p(x)dx !!出版社, 1982.132~134. 证明: 设 p'(x)- q(x)=0, 将 y=e , y'=- p(x)e , 11[2]李姝菲, 赵明.二阶线性微分方程解的讨论[J].吉林师范 - p(x)dx- p(x)dx! ! 学院学报,1998.19(1) .2y"=p(x)e - p'(x)e 代入方程(2)的左端得: 1[3]胡劲松等.一种二阶变系数线性微分方程的求解方法 - p(x)dx- p(x)dx- p(x)dx-

p(x)dx !!!!22[J].重庆工商大学学报( 自然科学版) ,2005,22(3). p(x)e -

p'(x)e - p(x)e +q(x)e

- p(x)dx !=- e [p'(x)- q(x)]=0

The special Solution to Or der2 Var ious Coefficient Linear

Differ ential Equation

ZHANG Jin-zhan

(Department of Mathematics,Longnan Teachers College,Chengxian,Gansu 742500) Abstr act: On the basis of knowing a special solution of the various coefficient linear differential equation of order 2, We can find the general solution to the homogeneous differential equation and its responding non-homogeneous differential equation.This article gives the special solution at the requirement of certain order of the order 2 various coefficient linear differential eauation. Key wor d: Linear Differential Equation; General Solution; Special Solution.

责任编辑: 蒲向明

15

二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解 张金战 ( 陇南师范高等专科学校, 甘肃成县 742500) 摘要: 在已知二阶变系数齐次微分方程的一个非零特解的条件下, 可以得到 该齐次微分方程和与它对应的非齐次微分方程的通解, 本文给出了在二阶变系数齐次微分方程的系数满足一定条件下的特解形式. 关键词: 线性微分方程; 特解; 通解 中图分类号: O 175.1 文献标识码: A 文章编号: 1008- 9020( 2007) 02- 014- 02 1 、引言对于方程( 2) 的特解的确定, 有以下结论: 2二阶变系数线性微分方程是指定理 1 若存在实数 a,使 a+ap(x)+q(x)=0, 则方程( 2) 有特 ax 解 y=e. 1y"+p(x)y'+q(x)y=f(x) ( 1) 2axax2ax 证明 : 设 a+ap(x)+q(x)=0, 将 y=e,y'=ae, y"=ae代入方 111y"+p(x)y'+q(x)y=0 ( 2) 2axaxaxax 2程( 2) 的左端得 : ae+aep (x)+eq (x)=e[a+ap (x)+q (x)]=0, 即其中 p( x) ,q(x),f(x)都是关于 x 的连续函数, 方程( 1) 称为 ax y=e是方程( 2) 的特解. 1二阶变系数非齐次线性微分方程, 方程( 2) 称为方程( 1) 对应 x推论1 若 q(x)+p(x)+1=0,则方程( 2) 有特解 y=e. 1的齐次微分方程. 在已知方程( 2) 的一个非零特解的条件下, - x推论 2 若 q(x)- p(x)+1=0,则方程( 2) 有 特解 y=e. 1文[1]给出了求方程( 2) 的通解的刘维尔公式, 文[2]、文[3]给出 推论 3 若 q(x)=0,则方程( 2) 有特解 y=1. 1了方程( 1) 的一个通解公式.这样将求解方程( 1) 和( 2) 的问题 2 定理 2 若 k?1 且 k(k- 1)+kxp(x)+xq(x)=0,则方程( 2) 有特就转化成了找出方程( 2) 的一个非零特解的问题 , 但求方程 k解 y=x. 1( 2) 的特解没有一般方法, 通常用观察法, 多数情况下难以操 2kk- 1证明 : 设 k (k- 1)+kxp (x)+xq (x)=0, 将 y=x,y'=kx,y"=k

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

变系数线性常微分方程的求解

变系数线性常微分方程的求解 张慧敏,数学计算机科学学院 摘要:众所周知,所有的常系数一阶、二阶微分方程都是可解的,而变系数 二阶线性微分方程却很难解,至今还没有一个普遍方法。幂级数解法是一个非常有效的方法,本文重点讨论二阶变系数线性常微分方程的解法,从幂级数解法、降阶法、特殊函数法等方面探究了二阶微分方程的解法,简单的介绍了几种高阶微分方程的解法,并讨论了悬链线方程等历史名题。 关键词:变系数线性常微分方程;特殊函数;悬链线方程;幂级数解法 Solving linear ordinary differential equations with variable coefficients Huimin Zhang , School of Mathematics and Computer Science Abstract:As we know, all of ordinary differential equations of first, second order differential equations with constant coefficients are solvable. However, the linear differential equations of second order with variable coefficients are very difficult to solve. So far there is not a universal method. The method of power-series solution is a very efficient method. This article focuses on solving linear ordinary differential equations of second order with variable coefficients, and exploring the solution of in terms of power-series solution, the method of reducing orders, the method of special functions. Also, this paper applies the above methods to solve several linear differential equations of higher order and especially discusses the famous catenary equation. Key words:Linear ordinary differential equations with variable coefficients; Special Functions; catenary equation; Power Series Solution.

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

二阶变系数齐次微分方程

毕业论文 题目二阶变系数齐次线性微分方程的若干解法 院系滨江学院 专业信息与计算科学 学生姓名xxx XX 学号xxxXX 指导教师XXX 职称教授 二O一二年五月二十日

目录 摘要 ...................................................................... 3 引言 . (3) 1、 用常数变易法求解二阶变系数齐次微分方程的解 (3) 1.1 已知方程的一个特解求通解 (3) 2、 化为恰当方程通过降阶法求解二阶变系数齐次微分方程的解 (5) 2.1求满足定理1的恰当方程的通解 ......................................... 5 2.2 求满足定理2的恰当方程的通解 (6) 3、 化为RICCAIT 方程求二阶变系数齐次线性微分方程的解 (6) 3.1若方程系数满足()'()p x q x =情况 ....................................... 8 3.2若方程系数满足()()1p x q x +=-情况 ................................... 9 3.3 若方程系数满足()()1p x q x -=情况 (10) 结束语 ................................................................... 11 参考文献 . (11)

二阶变系数齐次线性微分方程的若干解法 姓名 xx大学xx专业,南京 210044 摘要:二阶线性齐次微分方程无论是在微分方程理论上还是在应用上都占有重要位置。现在对于常系数的线性微分方程的解法研究已经比较完备。但对于变系数线性微分方程如何求解,却没有通用的方法,因此探求二阶变系数微分方程的解法就很有必要。本文主要讨论二阶变系数齐次线性微分方程的解法问题,通过利用常数变易法,和系数在满足特定条件下,化为恰当方程和riccati方程来求解二阶变系数齐次微分方程的解法,直接通过具体例题解决具有满足相同条件关系的二阶变系数齐次微分方程的解,从而进一步加深对二阶变系数齐次线性微分方程的解法的理解。 关键词:二阶变系数齐次线性微分方程;常数变易法;降阶法;恰当方程;riccati方程;通解; 引言:尽管由于计算数学和计算技术的迅猛发展,通过电子计算机可以迅速而且比较准确 地处理有关微分方程的求解问题。但是,在实际学习生活中对于一个常微分方程,不论从理论研究的角度,或从实际应用的角度看,都具有十分重要的地位。现在我们对于常系数线性微分方程的解法,已非常完备,但是对于理论比较完整的、有广泛应用的线性变系数微分方程至今却没有一般的求解方法,因此二阶变系数齐次微分方程的求解问题一直是人们感兴趣的研究课题。本文对系数满足特定条件的二阶变系数微分方程,通过观察其形式,巧妙利用常数变易法,化为恰当方程,和化为riccati方程来求解。主要针对不同类型的二阶变系数方程用不同的方法实现解决部分满足一定条件下的方程的解的目的。诣在通过具体例题的解法,解决系数满足特定条件下的二阶变系数齐次线性微分方程求解的问题,从而使我们能更进一步加深对二阶变系数齐次微分方程解法的理解,以便适应在工程技术的实际领域或学生在学习相关专业中的需要。 本文主要通过把方程转化为我们所熟悉形式,来讨论二阶变系数齐次微分方程 y p x y q x y ++= ''()'()0 (1)p x q x是关于x的连续函数。 的解,其中(),() 1、用常数变易法求解二阶变系数齐次微分方程的通解 1.1 已知方程一个特解求方程通解 在我们课本上所学的关于求解二阶常系数齐次线性微分方程,我们可以通过特征方程法求其线性无关的特解, 然后再利用微分方程解的相关性质从而求得其通解,对于这个方法我们已经很熟悉了。那对于二阶变系数齐次线性微分方程求解怎么进行?因为二阶变系数齐

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

几类二阶变系数常微分方程解法论文

几类二阶变系数常微分方程解法论文

二阶变系数常微分方程几种解法的探讨 胡博(111114109) (湖北工程学院数学与统计学院湖北孝感 432000) 摘要:常系数微分方程是我们目前可以完全解决的一类方程,而求变系数常微分方程的通解是比较困难的,一般的变系数常微分方程目前是还没有通用解法的。本文主要对二阶变系数常微分方程求解进行了探究,利用特解、常数变易法、变量变换等方法求出了某些二阶变系数线性微分方程的通解,并初步归纳了二阶变系数线性方程的求解基本方法及步骤。 关键词:二阶变系数线性微分方程;变换;通解;特解 To explore the solution of some ordinary differential equations of two order variable coefficient Zhang jun(111114128) (School of Mathematics and Statistics Hubei Engineering University Hubei Xiaogan 432000) Abstract:Differential equation with constant coefficients is a class of equations we can completely solve the present general solution, and change coefficient differential equations is difficult, the variable coefficient ordinary differential equation is at present there

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

二阶常微分方程解

二阶常微分方程解 Document number:BGCG-0857-BTDO-0089-2022

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 § 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 2 2dx y d +p dx dy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它 的特点是2 2dx y d ,dx dy ,y 各乘以常数因子后相加等于零,如果能找到一个函数y ,其2 2dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y =e rx (其中r 为待定常数)来试解

将y =e rx ,dx dy =re rx ,2 2dx y d =r 2 e rx 代入方程 得 r 2e rx +pre rx +qe rx =0 或 e rx (r 2 +pr +q )=0 因为e rx ≠0,故得 r 2+pr +q =0 由此可见,若r 是二次方程 r 2+pr +q =0 的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题。称式为微分方程的特征方程。 特征方程是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解。 因为 x r x r 2 1e e =e x )r r (21-≠常数 所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为 y =C 1e r1x +C 2e r2x (2)若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即 有r 1 =r 2 =2 p -,这样只能得到方程的一个特解y 1 =e r 1x ,因此,我

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

(整理)二阶常系数线性微分方程的解法word版.

第八章 8.4讲 第四节 二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)

的通解. 2.线性相关、线性无关的概念 设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 2 2 sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若 =21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且 ≠=x y y tan 2 1 常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子,

相关文档