文档库 最新最全的文档下载
当前位置:文档库 › 高三数学二轮复习,第一讲三角函数图象性质

高三数学二轮复习,第一讲三角函数图象性质

高三数学二轮复习,第一讲三角函数图象性质
高三数学二轮复习,第一讲三角函数图象性质

高2014届数学 二轮复习 专题二

第一讲 三角函数图象与性质

1.函数x x y cos sin =

的单调减区间是( )

A.]4

,4

ππ

π+

-

k k (z k ∈) B.)](4

3

,4[z k k k ∈++

πππ

π C. )](2,4

[z k k k ∈+

ππ

π

D. )](2

2,4

2[z k k k ∈+

+

π

ππ

π

备注:

2.为了得到函数??

?

?

?

-

=62sin πx y 的图象,可以将函数x y 2sin =的图象( ) A. 右移6π个单位 B. 右移12π个单位 C. 左移6π

个单位 D.左移12

π个单位 备注:

二、热点透析 【热点一】

)0,0)(sin(>>+=ω?ωA x A y 的图象与解析式

例1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( ).

A .f (x )=2sin ????12x +π4

B .f (x )=2sin ????12x +3π

4 C .f (x )=2sin ????12x -π4 D .f (x )=2sin ????12x -3π4 【变式训练】1.已知函数)

2

,0)(sin(2)(π

?ω?ω<>+=x x f 图象如图,试确定?ω,.

【热点二】三角函数的性质

例2.设函数)2

,0)(cos()sin()(π

?ω?ω?ω<

>+++=x x x f 的最小正周期为π,且

)()(x f x f =-,则( )

A. )(x f y =在区间??? ??2,

0π上单调递减 B. )(x f y =在区间??

?

??43,4ππ上单调递减 C. )(x f y =在区间??? ??2,0π上单调递增 D. )(x f y =在区间??

?

??4

3,4π

π上单调递增 备注:

三、直击高考

1.如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M 、N 是图象与x

轴的交点,若PM ·PN

=0,则ω=( )

A .8 B.π8 C.π

4

D .4

2.已知函数f (x )= (3sin ωx +cos ωx ) cos ωx ,其中0<ω<2. (1)若f (x )的周期为π,求当- π6≤x ≤π

3

时f (x )的值域;

(2)对?m ∈R 函数y =f (x ),x ∈[m ,m +π)图象与y =3

2有且仅有一个交点,求y =f (x )的

单调递增区间.

【拓展延伸】

1.下列说法正确的是 .

①“0=?”是“))(cos()(R x x x f ∈+=?为偶函数”的充分不必要条件 ②)(|,3sin |3sin )(x f x x x f 则+=为周期函数,且最小正周期为23

π

③函数f (x )=sinx -cos (x +

)的值域为④函数()sin()4

f x x πω=+(0ω>)在(,)2

ππ上单调递减.则ω的取值范围是15

[,]24

【作业】

必做题:二轮资料专题二,三角函数图象与性质(1);预习(2) 选做题:

1.若函数)0)(2

sin(

)(>+=A x A x f ?π

满足0)1(=f ,则( )

A. )2(-x f 一定是奇函数

B. )1(+x f 一定是偶函数

C. )3(+x f 一定是偶函数

D. )3(-x f 一定是奇函数

2.为使变换后的函数图象关于点(-π12,0)成中心对称,只需将函y =sin (2x +π

3)的图象( )

A .左移π12个单位长度

B .左移π6个单位长度

C .右平π12个单位长度

D .右移π

6个单位长度

3.函数cos(2)()y x ?π?π=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3

y x π

=+的图象重合,则?=_________.

本节反思:

真题欣赏

2010年全国新课标卷

(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为

P 0

,, 角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为( )

2011全国新课标卷

(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则

cos 2θ=( )

(A )45- (B )35- (C )35 (D )4

5

2012年全国新课标卷

(9)已知0>ω,函数)4

sin()(πω+

=x x f 在),2(ππ

单调递减,则ω的取值范围是()

(A )]45,21[ (B )]43,21[ (C )]2

1

,0( (D )(0,2]

2013年全国新课标卷

(15)设当x =θ 时,函数 f (x )=sinx -2cosx 取得最大值,则 cosθ= ______ 2012年四川卷

(4)如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =连接EC 、ED 则sin CED ∠=( )

A 、

10

B 、10

C 、10

D 、15

(18 )

函数2

()6cos

3(0)2

x

f x x ωωω=+->在一个周期内的图象如图所示,A

为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ?为正三角形.

(Ⅰ)求ω的值及函数()f x 的值域;

(Ⅱ)若0()f x =

,且0102

(,)33

x ∈-,求0(1)f x +的值。 2013年四川课标卷

(5)函数f (x )=2sin (ωx +φ)ππ0,22ω??

?

>-

<< ??

?

的部分图象 如图所示,则ω,φ的值分别是( ).

A .2,3

π

- B .2, 6

π

-

C .4,6π

-

D .4

3

π

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数二轮复习学案.docx

三角函数二轮复习学案 三角函数是高考数学的必考内容,从题型的角度,高考中三角函数问题主要有以下几种: 1. 同角、和差倍三角函数的应用; 2. 正弦定理和余弦定理的应用; 3. 三角函数的图象和性质; 4. 三角函数的综合问题; 5. 三角函数与其它知识的综合问题。 结合2012年全国各地高考的实例,我们从以上五方面探讨三角函数问题的求解。 一、同角、和差倍三角函数的应用: 3 2. (1)己知G 为第二象限角,sinQ = —,则sin2 OC = 5 3-(1)已知sin6r-cos6Z = V2 , ae (0,町,贝0sin 2a = (2)已知G 为第二象限角, sin a + cos a=——,贝ij cos 2a= 3 5. (1)设。为锐角,若cos 4 7T I ,贝ijsin(2a +令)的值为 (2)设 QW (0,彳),0w (彳,龙),且 cos0 = -t ,sin (Q + 0) = ?,贝 0 sin a 6 ?已知函数广⑴=A cos(— + —), x G R '且/(T )=近? 4 6 J (1) 求/的值; (2) 设Q ,0W [O,彳],/(4a +乎)二一善,/(40— 年)=£,求cos(a + 0)的值. 二、正弦定理和余弦定理的应用: ⑵若&普,f], sin2*攀则sin* 71 7 1 4' 2 4. (1)若 tan & ——— = 4 , tan& z 、卄 sina + coso 1 (2) 若 ------------ sino-coso 2 jr (3) 已知 tan(— + a)二2, 4 则 sin 2^ 则 tan 2a = 则 ---------- ------ -- 的值为 2sin cr cos<2 +cos" a 1. sin 47T" cos 3(T cos 17° tan a =

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

最新三角函数+立体几何知识点

三角函数 解三角形 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα?<

常用的三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A =2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+

tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = - 2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2

高三三角函数专题复习(题型全面)

三 角 函 数 考点1:三角函数的有关概念; 考点2:三角恒等变换;(两角和、差公式,倍角半角公式、诱导公式、同角的三角函数关系式) 考点3:正弦函数、余弦函数、正切函数的图象和性质;(定义域、值域、最值;单调区间、最小正周 期、对称轴对称中心) 考点4:函数y =Asin()0,0)(>>+???A x 的图象与性质;(定义域、值域、最值;单调区间、最小 正周期、对称轴对称中心、图像的变换) 一、三角函数求值问题 1. 三角函数的有关概念 例1. 若角θ的终边经过点(4,3)(0)P a a a -≠,则sin θ= . 练习1.已知角α的终边上一点的坐标为(3 2cos ,32sin π π),则角α的最小正值为( ) A 、65π B 、32π C 、35π D 、6 11π 2、公式法: 例2.设(0,)2πα∈,若3 sin 5α=)4 πα+=( ) A. 75 B. 15 C. 75- D. 15 - 练习1.若πtan 34α??-= ??? ,则cot α等于( ) A.2- B.12 - C.12 D.2 2.α是第四象限角,5 tan 12 α=-,则sin α=( ) A .15 B .15- C .513 D .513 - 3. cos 43cos77sin 43cos167o o o o +的值为 。 4.已知1sin cos 5θθ+=,且324 θππ ≤≤,则cos2θ的值是 . 3.化简求值 例3.已知α为第二象限角,且sin α,求sin(/4)sin 2cos21 απαα+++的值 练习:1。已知sin α=,则44sin cos αα-的值为( ) A .15 - B .35 - C .15 D .35

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

中考复习专题之三角函数与几何结合

与三角函数有关的几何题 例1、如图3,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,⊙O 交直线 OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是⊙O 的切线; (2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1 tan 2 CED ∠= ,⊙O 的半径为3,求OA 的长. 析解:(1)证明:如图6,连接OC . OA OB = ,CA CB =,OC AB ∴⊥. AB ∴是⊙O 的切线. (2)BC 2=BD ×BE . ED 是直径,90ECD ∴∠= . 90E EDC ∴∠+∠= . 又90BCD OCD ∠+∠= ,OCD ODC ∠=∠, BCD E ∴∠=∠. 又CBD EBC ∠=∠ ,BCD BEC ∴△∽△. BC BD BE BC ∴ =.∴BC 2=BD ×BE . (3)1tan 2CED ∠= ,1 2 CD EC ∴ =. BCD BEC △∽△,1 2BD CD BC EC ∴==. 设BD x =,则2BC x =. 又BC 2=BD ×BE ,∴(2x )2=x (x +6) 解之,得10x =,22x =.0BD x => ,2BD ∴=. 325OA OB BD OD ∴==+=+=.

2、已知:如图,AB 是⊙O 的直径,10AB =, DC 切⊙O 于点C AD DC ⊥,,垂足 为D , AD 交⊙O 于点E . (1)求证:BC EC =; (2)若4 cos 5 BEC ∠=, 求DC 的长. 3、如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是的中点, OM 交AC 于点D ,∠BOE=60°,cosC=,BC=2 . (1)求∠A 的度数; (2)求证:BC 是⊙O 的切线; (3)求MD 的长度. 分析:(1)根据三角函数的知识即可得出∠A 的度数. (2)要证BC 是⊙O 的切线,只要证明AB ⊥BC 即可. (3)根据切线的性质,运用三角函数的知识求出MD 的长度. 解答:(1)解:∵∠BOE=60°,∴∠A=∠BOE=30°. (2)证明:在△ABC 中,∵cosC=,∴∠C=60°. 又∵∠A=30°,∴∠ABC=90°,∴AB ⊥BC .∴BC 是⊙O 的切线. (3)解:∵点M 是 的中点,∴OM ⊥AE . 在Rt △ABC 中,∵BC=2,∴AB=BC ?tan60°=2 × =6. ∴OA= =3,∴OD=OA=,∴MD=. 点评:本题综合考查了三角函数的知识、切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 4、如图,已知Rt △ABC 和Rt △EBC ,∠B=90°.以边AC 上的点O 为圆心、OA 为半径的⊙O 与EC 相切,D 为切点,AD ∥BC . (1)用尺规确定并标出圆心O ;(不写作法和证明,保留作图痕迹) (2)求证:∠E=∠ACB ; (3)若AD=1, ,求BC 的长. B

三角函数公式大全2

三角函数公式大全 一谜槢痌激乼2014-11-28 优质解答 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切

高考数学二轮复习三角函数专题

高考数学二轮复习:三角函数的专题 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。 A .21 B .21- C .41 D .4 1- 分析:tg α+ctg α=4 1cos sin 4cos sin 1=?=αααα

三角函数与立体几何(二)教师版

1.如图,在ABC ?中,点D 在边BC 上, 4 CAD π ∠= , 72AC = , cos 10 ADB ∠=-. (1)求sin C ∠的值; (2)若ABD ?的面积为7,求AB 的长. 【答案】(1) sin C ∠= 4 5 ;(2) AB = 【解析】试题分析:(1)由同角三角函数基本关系式可求sin ADB ∠,由4 C ADB π ∠=∠- ,利用两角差 的正弦函数公式及特殊角的三角函数值即可求值得解;(2)先由正弦定理求AD 的值,再利用三角形面积公式求得BD ,与余弦定理即可得解AB 的长度. 试题解析:(1 )因为cos 10ADB ∠=- ,所以sin 10 ADB ∠=, 又因为4 CAD π ∠= ,所以4 C ADB π ∠=∠- , 所以sin sin 4C ADB π? ? ∠=∠- ?? ? sin cos cos sin 4 4 ADB ADB π π =∠-∠ 4 1021025 = +?=. (2)在ADC ?中,由正弦定理 sin sin AD AC C ADC =∠∠, 故( )74sin sin sin sin sin sin AC C AC C AC C AD ADC ADB ADB π? ?∠?∠?∠==== ∠-∠∠ = 又11sin 72210 ABD S AD AB ADB BD ?= ???∠=??=,解得5BD =. 在ADB ?中,由余弦定理得 2 2 2 2cos AB AD BD AD BD ADB =+-??∠ 8252537AB ?=+-??=?= ?? 2.在ABC ?中,内角A,B,C,所对应的边为,,a b c 且b c ≠,且 22sin sin cos cos C B B B C C -=

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

高三数学第二轮专题复习系列(4)-- 三角函数

三角函数 一、本章知识结构: 应用 二、高考要求 一.理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 二.掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 三.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 四.会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωχ+φ)的简图、理解A、ω、 的物理意义。 五.会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示角。 三、热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现 在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看, 大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技 巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 4.立足课本、抓好基础.从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换 和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础.在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度. 四、复习建议 本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点: (1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。 (2)对公式要抓住其特点进行记忆。有的公式运用一些顺口溜进行记忆。

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数相关几何计算训练(附参考答案)

三角函数相关几何计算训练 1.(2011?南宁)如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,则AC?BC的值为() A.14 B.16C.4D.16 2.如图,在?ABCD中,AB:AD=3:2,∠ADB=60°,那么cosA的值等于() A.B.C.D. 3.(2013?遵义模拟)如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC?tanB=() A.2B.3C.4D.5 4.路边路灯的灯柱BC垂直于地面,灯杆BA的长为2m,灯杆与灯柱BC成120度角,锥形灯罩轴线AD与灯杆AB 垂直,且灯罩轴线AD正过道路路面的中心线(D在中心线上),已经点C与D点之间的距离为12m,则BC的高()m. A.B.12 C.D. 5.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是() A.B.C.D. 6.(2011?西城区一模)如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于()

A.B.C.D. 7.将一副直角三角板中的两块按如图摆放,连AD,则tan∠DAC的值为() A.B.C.D. 8.如图,在△ABC中,∠A=30°,E为AC上一点,且AE:EC=3:1,EF⊥AB于F,连接FC,则tan∠CFB等于() A.B.C.D. 9.(2007?临沂)如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,在C处测得A的方位角为北偏东20°,则C到A的距离是() A.15km B.15km C.15(+)km D.5(+3)km 10.(2004?武汉)已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为() A.B.C.2D.3 11.如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于()

中考数学一轮复习(几何篇)13.三角函数的综合运用

13. 三角函数的综合运用 知识考点: 本课时主要是解直角三角形的应用,涉及到的内容包括航空、航海、工程、测量等领域。要求能灵活地运用解直角三角形的有关知识,解决这些实际问题。熟悉仰角、俯角、坡度、方位角等概念,常用的方法是通过数形结合、建立解直角三角形的数学模型。 精典例题: 【例1】如图,塔AB 和楼CD 的水平距离为80米,从楼顶C 处及楼底D 处测得塔顶A 的仰角分别为450和600 ,试求塔高与楼高(精确到0.01米)。 (参考数据:2=1.41421…,3=1.73205…) 分析:此题可先通过解Rt △ABD 求出塔高AB ,再利用CE =BD =80米,解Rt △AEC 求出AE ,最后求出CD =BE =AB -AE 。 解:在Rt △ABD 中,BD =80米,∠BAD =600 ∴AB =56.13838060tan 0 ≈=?BD (米) 在Rt △AEC 中,EC =BD =80米,∠ACE =450 ∴AE =CE =80米 ∴CD =BE =AB -AE =56.5880380≈-(米) 答:塔AB 的高约为138. 56米,楼CD 的高约为58. 56米。 【例2】如图,直升飞机在跨河大桥AB 的上方P 点处,此时飞机离地面的高度PO =450米,且A 、B 、O 三点在一条直线上,测得大桥两端的俯角分别为0 30=α,045=β,求大桥AB 的长(精确到1米,选用数据:2=1.41,3=1.73) 分析:要求AB ,只须求出OA 即可。可通过解Rt △POA 达到目的。 解:在Rt △PAO 中,∠PAO =0 30=α ∴OA =345030cot 450cot 0 ==∠?PAO PO (米) 在Rt △PBO 中,∠PBO =0 45=β ∴OB =OP =450(米) ∴AB =OA -OB =3294503450≈-(米) 答:这座大桥的长度约为329米。 评注:例1和例2都是测量问题(测高、测宽等),解这类问题要理解仰角、俯角的概念,合理选择关系式,按要求正确地取近似值。 【例3】一艘渔船正以30海里/小时的速度由西向东追赶鱼群,在A 处看见小岛C 在 船的北偏东600方向,40分钟后,渔船行至B 处,此时看见小岛C 在船的北偏东300 方向,已知以小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能? 分析:此题可先求出小岛C 与航向(直线AB )的距离,再与10海里进行比较得出结论。 0450 60 例1图 F E D C B A 例2图 β α A B O P

(完整版)高中三角函数公式大全,推荐文档

1- cos A 2 1+ cos A 2 1- cos A 1+ cos A 1+ cos A 1- cos A 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tanA + tanB tanA - tanB 三角函数公式 cotAcotB-1 cotAcotB +1 tan(A+B) = ,tan(A-B) = ,cot(A+B) = ,cot(A-B) = 1- tanAtanB 1+ tanAtanB cotB + cotA cotB - cotA 倍角公式 tan2A =2tanA ,Sin2A=2SinA?CosA,Cos2A = Cos 2A-Sin2A=2Cos2A-1=1-2sin2A 1- tan 2A 三倍角公式 sin3A = 3sinA-4(sinA)3,cos3A = 4(cosA)3-3cosA,tan3a = tana·tan( +a)·tan( -a) 3 3 半角公式 A A A A A 1- cos A sin( )= ,cos( )= ,tan( )= ,cot( )= ,tan( )= = 2 sin A 1+ cos A 和差化积 a +b 2 2 2 a -b 2 sin A sina+sinb=2sin cos 2 a + b sina-sinb=2cos sin 2 a + b 2 a - b 2 a -b cosa+cosb = 2cos cos 2 a + b cosa-cosb = -2sin sin 2 sin(a +b) 2 a - b 2 tana+tanb= 积化和差cos a cos b 1 sinasinb = - [cos(a+b)-cos(a-b)] 2 1 cosacosb = [cos(a+b)+cos(a-b)] 2 1 sinacosb = [sin(a+b)+sin(a-b)] 2 1 cosasinb = [sin(a+b)-sin(a-b)] 2 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( -a) = cosa 2 cos( -a) = sina 2 sin( +a) = cosa 2

高数三角函数公式大全

高数三角函数公式大全 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

三角函数公 式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = - 21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin

相关文档
相关文档 最新文档