文档库 最新最全的文档下载
当前位置:文档库 › 汽车减震器弹簧盘疲劳仿真分析_陈芳芳

汽车减震器弹簧盘疲劳仿真分析_陈芳芳

汽车减震器弹簧盘疲劳仿真分析_陈芳芳
汽车减震器弹簧盘疲劳仿真分析_陈芳芳

第2期(总第177期)

2013年4月机械工程与自动化

MECHANICAL ENGINEERING & AUTOMATIONNo.2

Ap

r.文章编号:1672-6413(2013)02-0004-0

3櫜

汽车减震器弹簧盘疲劳仿真分析

陈芳芳1,杜艳平2

(1.太原科技大学机械工程学院,山西 太原 030024;2.北京印刷学院,北京 102600

)摘要:基于有限元疲劳分析方法提取弹簧盘力学模型,建立了弹簧盘的有限元模型。针对某种型号轿车的悬架采用Workbench软件对弹簧盘进行应力计算,并对其进行了疲劳寿命预测。利用S-N曲线和Goodman修正理论分析随机载荷状况下弹簧盘的疲劳寿命,并对弹簧盘薄弱部位进行了结构优化设计。关键词:弹簧盘;疲劳分析;有限元分析;仿真

中图分类号:U463.213∶TP391.9 文献标识码:櫜A

国家自然科学基金资助项目(

51175028);北京市属高等学校人才强教计划资助项目(201106125);北京市优秀人才培养资助项目(2010D005017000007

)收稿日期:2012-04-20;修回日期:2012-10-2

8作者简介:陈芳芳(1985-)

,女,山东德州人,在读硕士研究生,研究方向:车辆动态特性及仿真。0 引言

汽车在道路行驶时会受到各种交变载荷的作用,交变载荷一般低于零件材料的拉伸强度极限,在载荷的反复作用下零部件会有裂纹萌生和扩展并导致突然断裂,这种现象就是疲劳破坏。弹簧盘作为重要的承载零件,

其可靠性不仅与汽车行驶的平顺性和汽车操纵的稳定性有关,还关系到汽车行驶的安全性问题。

本文结合工程实例通过对前悬架系统力学建模,采用Workbench软件对弹簧盘进行应力计算,

并利用S-N曲线和Goodman修正理论分析不同载荷状况下弹簧盘疲劳寿命,对弹簧盘进行疲劳寿命预测和结构优化,并通过疲劳台架试验验证了其有效性。1 有限元和疲劳分析理论

Workbench是ANSYS公司提出的协同仿真环境,用于解决企业产品研发过程中CAE软件的异构问题,它提供了一个加载和管理API的基本框架。1.1 疲劳分析方法

当材料或结构受到多次重复变化的载荷作用会产生破坏现象,称为疲劳破坏,其承受起破坏作用的循环载荷的循环次数或时间被称为疲劳寿命。疲劳寿命分析是指确定疲劳寿命的方法。

根据载荷类型的不同,疲劳分析方法可分为静态疲劳分析、

瞬态疲劳分析和动态疲劳分析。通常当结构的一阶固有频率大于3倍载荷频率时,

可采用静态疲劳分析方法;若是结构固有频率与载荷频率接近则

适用动态疲劳分析方法;

在对随机载荷作用下的零件进行疲劳分析时应采用瞬态疲劳分析方法。1.2 名义应力寿命法

常用的计算疲劳寿命的方法有名义应力寿命法、裂纹扩展计算法和局部应变寿命法。其中,名义应力寿命法又被称为S-N法,

其设计思路为:把材料S-N曲线作为出发点,

考虑各种系数的影响,并根据曲线进行抗疲劳设计。其流程如图1所示。

图1 名义应力寿命法流程图

2 减震器弹簧盘分析实例

应用ADAMS动力学仿真软件,通过从系统载荷谱求得结构动力响应的时间历程,

利用有限元法计算出各危险部位的应力,并结合材料的基本疲劳性能数据进行结构寿命的估算。多体有限元疲劳分析流程见图2。

根据悬架中各零部件之间的相对运动关系,建立四分之一悬架系统动力学模型。利用ADAMS路面谱模生成程序生成一组随机路面数据并导入,采用

AKISPL的样条函数将生成的路谱随机序列作为驱动

激励源。系统动力学模型如图3所示。图2 

多体有限元疲劳分析流程图

图3 四分之一悬架系统动力学模型

弹簧盘材料为冷轧钢板2.0-GB/T708-88,材料选择结构钢(Structural 

Steel),冷轧钢板弹性模量为2×1011 

Pa,泊松比为0.3,屈服极限为221MPa

,强度极限为300MPa。考虑平均应力对疲劳寿命的影响,选择Goodman理论对平均应力进行修正,结合等效应力云图和疲劳寿命图可知,弹簧盘应力集中与疲劳损伤均发生于凸包区域。

3 弹簧盘结构优化设计

针对分析的结果,需要进行弹簧盘结构优化设计,主要针对弹簧盘凸包进行优化,优化方案可以针对弹簧盘整体进行,例如增加弹簧盘的厚度,改用强度更大的弹簧盘钢板材料等,也可以从弹簧盘结构出发,重新设计凸包区域的形状。3.1 厚度或材料的改变

增加弹簧盘的厚度或更换强度更高的弹簧盘钢板材料均可以达到设计要求,如把弹簧盘的厚度增加为t=3mm,进行疲劳仿真分析的结果如图4所示。3.2 结构改变

由静强度和疲劳仿真分析可知,需降低凸包区域的应力水平。因此,将凸包区域扩大,同时使凸包区域面与弹簧接触区域面的相对落差变小,以使结构过渡更加圆滑(如图5所示),这样可以有效减小应力集中,增大弹簧盘的疲劳寿命。用Workbench对其进行疲

劳仿真分析,结果如图6所示。由仿真分析结果可知,满足设计要求。

4 弹簧盘疲劳试验分析

为了验证疲劳仿真分析结果的正确性,分别对原弹簧盘和凸包结构优化后的弹簧盘进行疲劳寿命试验。

图4 厚度t=3mm弹簧盘的寿命云图

图5 凸包结构优化图

图6 凸包优化后弹簧盘的寿命云图

4.1 试验条件

进行弹簧盘疲劳寿命试验,所用的试验设备为电液伺服动静万能试验机,试验样件个数为5个,试验要求的垂向加载力为614N~6 140N,加载频率为2Hz,目标为当加载6 140N时,疲劳寿命达到138 000次。4.2 试验结果分析

分别对5个结构优化前、后弹簧盘样件进行疲劳试验,结构优化前弹簧盘寿命分别为11.5万次、10.2万次、12.8万次、11.7万次和12.2万次;结构优化后的弹簧盘寿命分别为18.5万次、19.3万次、18.8万次、17.5万次和19.1万次。弹簧盘样件试验结果表明:优化前弹簧盘疲劳损伤发生于凸包区域,与疲劳仿真分析结果一致;优化后的弹簧盘疲劳寿命满足设计要求,在使用期限内不会发生疲劳损伤。

5 结语

本文介绍了结构疲劳分析和寿命预测的基本方

·

5· 2

013年第2期 陈芳芳,等:汽车减震器弹簧盘疲劳仿真分析

法,针对某一轿车减震器弹簧盘进行分析,通过强度分析,确定了弹簧盘薄弱环节。在悬架动力学仿真分析的基础上,运用Workbench对减振器弹簧盘在随机载

荷下的强度和疲劳寿命进行分析,结果发现弹簧盘应力集中与疲劳损伤均发生于凸包区域,

与疲劳试验结果吻合,

从而验证了有限元疲劳仿真分析的可行性。参考文献:

[1] 刘延庆,

程晓鸣,张建武.车辆滑柱式减振器活塞杆侧向力分析及应力测量[J].上海交通大学学报,2002,36(9):1240-

1244.[2] 贺李平,

王国丽.汽车减震器弹簧下支座的疲劳仿真分析及结构优化[J].北京理工大学学报,2011,31(1):33-37.[3] 陈福玉,

朱如鹏,王宇波,等.基于Workbench的铆接连接件疲劳寿命的仿真分析[J].信息技术,2011,40(4):112-115.[4] 浦广益.ANSYS Workbench 

12基础教程与实例详解[M].北京:中国水利水电出版社,2010.

[5] 陈栋华,

靳晓雄.轿车底盘零部件耐久性虚拟试验方法研究[J].汽车工程.2007,29(11):998-

1001.[6] 王国军,

闫清东,孟宪峰,等.汽车减震器支座疲劳开裂原因分析[J].农业装备与车辆工程,2006(5):23-25.[7] 李文斌,

喻凡,胡文伟.轿车后减振器上支座优化结构的疲劳寿命[J].上海交通大学学报,2007,41(2):284-288.[8] 王忠,

张开林,魏朔.机车减振器座焊缝疲劳的热点应力分析[J].内燃机车,2006(8):12-

14,21.[9] 张林波,

柳杨,黄鹏程.有限元疲劳分析法在汽车工程中的应用[J].计算机辅助工程,2006(15):4-

5.[10] 杨建伟,

刘海波,孙守光,等.基于电液比例阀减振器半主动悬架系统的研究[J].太原科技大学学报,2010,31(3):213-

217.[11] Yag

hi Anas,Becker Adib.State of the art review-weldsimulation using finite element methods[M].[s.l.]:NAFEMS,2005:1-

27.Fatigue Analysis for Spring 

Plate of Automobile AbsorberCHEN Fang-fang1,DU Yan-ping

(1.School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;2.Beijing Institute of GraphicCommunication,Beijing 

102600,China)Abstract:By finite element method,the finite element model of the spring-seat of an automobile absorber was set up.The Work-bench software was used to calculate the stress of the spring plate,and the fatigue life of the spring plate was predicted.By S-Ncurve and Goodman revision theory,the fatigue life of the spring plate under random loading conditions was analyzed,and thestructure of the spring 

plate was optimized.Key 

words:spring plate;fatigue analysis;finite element analysis;櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆

simulation(上接第3页)础上,提出的多个齿廓控制放样生成齿廓的方法,与其它两种方法相比,利用计算机循环可绘制出更精确的轮齿模型,为渐开线斜齿轮的精确分析提供了保证。

参考文献:

[1] 王战中,

王义文,韩彦军,等.SolidWorks二次开发在渐开线齿轮三维造型中的应用[J].机械工程师,2005(6):101-

103.[2] 王文波,涂海宁,熊君星.SolidWorks2008二次开发基础与实例(VC++)[M].北京:清华大学出版社,2009.[3] 孙恒,陈作模.机械原理[M].北京:高等教育出版社,2006.[4] 江洪,

魏峥,王涛威.SolidWorks二次开发实例解析[M].北京:机械工业出版社,2004.

[5] 孙鑫,

余安萍.VC++深入详解[M].北京:电子工业出版社,2006.

A New Method of Parametric Desig

n for Helical GearTooth Based on 

SolidWorksQIAO Wei,DING Wei-ping,YANG Ming-liang,DING Wei,CHEN Liang

(Key Laboratory in Sichuan on Vehicle Thermal Energy Power Machinery,Southwest Jiaotong 

University,Chengdu 610031,China)Abstract:Drawing the teeth of gear is very important in involute helical gears’parameterized design.The 3DCAD model of a helicalgear based on SolidWorks is drawn by tooth profile lofting or scanning along the helix.On the basis of these two methods,a newparametric design method based on computer cycle is given.Analytical results show drawing the teeth by this new method makes themodel more precise,and it has a certain value in gear design.Key 

words:helical gear;helical line;SolidWorks;parametric design·

6·机械工程与自动化 2013年第2期 

汽车减震器弹簧盘疲劳仿真分析_陈芳芳

第2期(总第177期) 2013年4月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.2 Ap r.文章编号:1672-6413(2013)02-0004-0 3櫜 汽车减震器弹簧盘疲劳仿真分析 陈芳芳1,杜艳平2 (1.太原科技大学机械工程学院,山西 太原 030024;2.北京印刷学院,北京 102600 )摘要:基于有限元疲劳分析方法提取弹簧盘力学模型,建立了弹簧盘的有限元模型。针对某种型号轿车的悬架采用Workbench软件对弹簧盘进行应力计算,并对其进行了疲劳寿命预测。利用S-N曲线和Goodman修正理论分析随机载荷状况下弹簧盘的疲劳寿命,并对弹簧盘薄弱部位进行了结构优化设计。关键词:弹簧盘;疲劳分析;有限元分析;仿真 中图分类号:U463.213∶TP391.9 文献标识码:櫜A 国家自然科学基金资助项目( 51175028);北京市属高等学校人才强教计划资助项目(201106125);北京市优秀人才培养资助项目(2010D005017000007 )收稿日期:2012-04-20;修回日期:2012-10-2 8作者简介:陈芳芳(1985-) ,女,山东德州人,在读硕士研究生,研究方向:车辆动态特性及仿真。0 引言 汽车在道路行驶时会受到各种交变载荷的作用,交变载荷一般低于零件材料的拉伸强度极限,在载荷的反复作用下零部件会有裂纹萌生和扩展并导致突然断裂,这种现象就是疲劳破坏。弹簧盘作为重要的承载零件, 其可靠性不仅与汽车行驶的平顺性和汽车操纵的稳定性有关,还关系到汽车行驶的安全性问题。 本文结合工程实例通过对前悬架系统力学建模,采用Workbench软件对弹簧盘进行应力计算, 并利用S-N曲线和Goodman修正理论分析不同载荷状况下弹簧盘疲劳寿命,对弹簧盘进行疲劳寿命预测和结构优化,并通过疲劳台架试验验证了其有效性。1 有限元和疲劳分析理论 Workbench是ANSYS公司提出的协同仿真环境,用于解决企业产品研发过程中CAE软件的异构问题,它提供了一个加载和管理API的基本框架。1.1 疲劳分析方法 当材料或结构受到多次重复变化的载荷作用会产生破坏现象,称为疲劳破坏,其承受起破坏作用的循环载荷的循环次数或时间被称为疲劳寿命。疲劳寿命分析是指确定疲劳寿命的方法。 根据载荷类型的不同,疲劳分析方法可分为静态疲劳分析、 瞬态疲劳分析和动态疲劳分析。通常当结构的一阶固有频率大于3倍载荷频率时, 可采用静态疲劳分析方法;若是结构固有频率与载荷频率接近则 适用动态疲劳分析方法; 在对随机载荷作用下的零件进行疲劳分析时应采用瞬态疲劳分析方法。1.2 名义应力寿命法 常用的计算疲劳寿命的方法有名义应力寿命法、裂纹扩展计算法和局部应变寿命法。其中,名义应力寿命法又被称为S-N法, 其设计思路为:把材料S-N曲线作为出发点, 考虑各种系数的影响,并根据曲线进行抗疲劳设计。其流程如图1所示。 图1 名义应力寿命法流程图 2 减震器弹簧盘分析实例 应用ADAMS动力学仿真软件,通过从系统载荷谱求得结构动力响应的时间历程, 利用有限元法计算出各危险部位的应力,并结合材料的基本疲劳性能数据进行结构寿命的估算。多体有限元疲劳分析流程见图2。 根据悬架中各零部件之间的相对运动关系,建立四分之一悬架系统动力学模型。利用ADAMS路面谱模生成程序生成一组随机路面数据并导入,采用

疲劳断裂行为High

超高频强度钢的疲劳断裂行为 J. Mater. Sci. Technol., Vol.24 No.5, 2008 1) 国家重点实验室的先进加工钢材和产品,北京100081,中国 2) 国家工程研究中心,北京100081钢铁技术先进,中国 3) ,燕山大学,秦皇岛,中国 ⑷对金属的中国社会,北京100711,中国 疲劳断裂行为的超高强度钢与不同熔化过程,研究了夹杂物尺寸不同通过用在旋转弯曲疲劳机上多达107循环加载。观察骨折面发射扫描电子显微镜(FESEM。当它被发现时已经尺寸的夹杂物对疲劳行为未清除。对钢在AISI 4340夹杂物尺寸小于5.5微米,所有的疲劳裂纹除的确做到了包含但不引发的地表和传统从标本的s - n曲线的存在。对65Si2MnW在100和Aermet钢平均12.2和14.9米,疲劳裂纹在较低的夹杂物引发的s - n曲线应力幅值和逐步进行观测。弯曲疲劳 强度的s - n曲线显示一个不断下降和疲劳失效的大型氧化物夹杂源于对60Si2CrVA 钢平均夹杂物的尺寸44.4米。在案件的内部骨折在周期超越约1X 106 65Si2MnWI?60Si2CrVA钢、夹杂物sh-eye经常发现里面和颗粒状明亮的方面(GBF)进行了观察附近约夹杂。GB尺寸的增加这个循环数的增加对失败的长寿命的政权。结构应力强度因子的价值范围内裂纹萌生施工现场对GBI与Nf几乎不变, 几乎是相等的表面夹杂物和内部包含在周期低于约1X 106。既不sh-eye GBF也 没有观察到100 Aermet钢在目前的研究中。 关键词:High-cycle超高强度钢疲劳,夹杂物s - n曲线,鱼眼骨折 1、介绍 High-cycle疲劳(HCF)失败是普通的实用的建筑工程项目的土石方作业。因此,广泛的研究已进行多年了令人满意的理解和解决方案尚未达成。众所周知,有一个很好的旋转弯曲疲劳强度之间的关系,如光滑的标本和抗拉强度、维氏 硬度、高压、或低或中等强度。对于低或中等强度钢如下 (T w 心 0.5Rm (T w 心 1.6HV (1) 在这种情况下,从疲劳裂纹倾向于表面,因此被称为表面的结构。然而,在较高 的拉伸强度范围或维氏硬度、线性相关性没发生,有了更多的散射或甚至星体疲劳强度值。疲劳断裂的起源的高强度钢的表面并不总是,但经常还有一定距离尤其是forhigh-cycle 疲劳,因此被称为内部断裂。断裂表面经常展现一个小光滑斑裂纹起

液压减震器结构分析(图)

液压减震器主要有弹簧和阻尼器两个部分组成,弹簧的作用主要是支撑车身重量,而阻尼器则是起到减少震动的作用。 “阻尼”在汉语词典中的解释为:“物体在运动过程中受各种阻力的影响,能量逐渐衰减而运动减弱的现象”。阻尼器就是人造的物体运动衰减工具。 为了防止物体突然受到的冲击,阻尼在我们现实生活中有着广泛的应用,比如汽车的减震系统,还有弹簧门被打开后能缓缓地关闭等等。 阻尼器的种类很多,有空气阻尼器、电磁阻尼器、液压阻尼器等等。我们凯越车上使用的是液压阻尼器。 大家知道,弹簧在受到外力冲击后会立即缩短,在外力消失后又会立即恢复原状,这样就会使车身发生跳动,如果没有阻尼,车轮压到一块小石头或者一个小坑时,车身会跳起来,令人感觉很不舒服。有了阻尼器,弹簧的压缩和伸展就会变得缓慢,瞬间的多次弹跳合并为一次比较平缓的弹跳,一次大的弹跳减弱为一次小的弹跳,从而起到减震的作用。

为了了解减震器的工作原理,我们把防尘罩和弹簧去掉,直接看到阻尼器(见图一)。 液压阻尼器利用液体在小孔中流过时所产生的阻力来达到减缓冲击的效果。 红圈中是活塞,它把油缸分为了上下两个部分。当弹簧被压缩,活塞向下运行,活塞下部的空间变小,油液被挤压后向上部流动;反之,油液向下部流动。 不管油液向上还是向下流动,都要通过活塞上的阀孔。油液通过阀孔时遇到阻力,使活塞运行变缓,冲击的力量有一部分被油液吸收减缓了。

。 下面是压缩行程示意图,表示减震器受力缩短的过程。 图二为活塞向下运行,流通阀开启,油缸下部的油液受到压力通过流通阀向油缸上部流动。 图三为活塞向下运行,压力达到一定程度时,压缩阀开启,油缸下部的油液通过压缩阀流向油缸外部储存空间。 图中红色大箭头表示活塞运动方向,红色小箭头表示油液流动方向。

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

中山汽车减震器项目投资分析报告

中山汽车减震器项目投资分析报告 规划设计/投资分析/产业运营

报告说明— 减震器(Absorber),是汽车悬挂系统中的重要装置,用于减少车身等部件带来的震动,增加汽车行驶的平顺性。减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。 该汽车减震器项目计划总投资12777.81万元,其中:固定资产投资11011.56万元,占项目总投资的86.18%;流动资金1766.25万元,占项目总投资的13.82%。 达产年营业收入16113.00万元,总成本费用12721.27万元,税金及附加219.05万元,利润总额3391.73万元,利税总额4078.60万元,税后净利润2543.80万元,达产年纳税总额1534.80万元;达产年投资利润率26.54%,投资利税率31.92%,投资回报率19.91%,全部投资回收期6.52年,提供就业职位294个。 随着汽车行业的发展,汽车行驶过程中产生的振动已经成为制约汽车发展的重大障碍。汽车行驶过程中产生的振动严重将降低汽车的舒适性、稳定性安全性降低人们乘坐汽车时的享受,汽车零部件的使用寿命也会大大缩短。

目录 第一章项目基本信息 第二章项目投资单位 第三章项目建设必要性分析第四章市场研究 第五章项目建设规模 第六章选址可行性研究 第七章土建工程分析 第八章工艺技术方案 第九章环境影响概况 第十章安全经营规范 第十一章风险应对评估 第十二章节能概况 第十三章实施安排 第十四章投资可行性分析 第十五章经济评价 第十六章总结及建议 第十七章项目招投标方案

汽车悬架减震器活塞阀系分析

汽车悬架减振器活塞阀系分析 一、概述 汽车悬架减振器是非常重要的悬架部件。随着客户对汽车性能要求的提高,特别是乘坐舒适性的要求,而减振器对舒适性的影响是比较大的方面。对舒适性要求的提高也是对减振器性能要求的提高。所以,减振器除需要提供稳定准确的阻尼力值,还要有足够的寿命做保证,同时也要避免异常噪音的产生。只有这几个主要方面达到要求,才能实现与悬架的合理匹配与满足舒适性的要求。当前以充气式液压减振器作为市场的主流,本文所述也是充气式液压减振器的最常用的结构。 影响减振器性能的因素是多方面的,这里主要分析常用的三种活塞阀系结构的一些特点,并提出制造过程中的一些问题和解决办法。 活塞阀系是在悬架弹簧复原时的减振器产生阻尼力的最主要部件。根据不同的簧载质量,弹簧复原时必须给予不同的、但必须合适的阻尼匹配,才能达到乘坐舒适性和操作稳定性。减振器的拉伸(复原)阻力与弹簧的复原力是反向的。而减振器压缩阻力与弹簧压力是同向的,有抵抗压缩变形的作用。实际计算阻力值首先是确定活塞的拉伸(复原)阻力。 减振器是大批量生产的产品,装配一次性合格率是生产效率和阻力值稳定的重要指标,特别是大批量生产方式的制造工艺。活塞阀系结构的设计是否合理也是保证高装配合格率的重要保证。所以对结构的分析研究,并明确每种结构的特点和组成零部件的作用,对减振器与汽车悬架的良好匹配性能和制造装配工艺是非常有意义的。只有保证减振器准确的内特性,才能实现减振器所需要的理想的外特性。 减振器活塞阀系的种类较多,每种结构都有其优缺点,随着使用和制造中发现的优缺点,有些结构经过改进,已成为市场选择的主流,得到大批量的使用,有些结构已逐步淘汰。 二、三种常用的活塞阀系结构分析 (一)纯阀片式 图一是常用的一种纯阀片结构活塞装配图。a为活塞部件装配图,b图为拉伸阀局部放大图。 流通阀垫圈节流片 流通阀片 活塞 活塞环

悬架用减振器设计指南设计

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

液压减震器发展及工作原理之欧阳歌谷创作

一、减震器的发展历史 欧阳歌谷(2021.02.01) 减震器从出现到今天已经有了100多年的历史,最早车辆的减震系统由弹簧构成,虽然弹簧可以减轻路面冲击,性能较可靠,但它容易产生共振现象。在 1908年,世界第一台液压减震器研制成功,它用隔板将橡胶制成节流通道分为两部分,通过油液与节流通道摩擦,达到减震目的。之后,在20世纪30年代,摇臂式减震器得到普遍应用,工作压力在l0MPa 20MPa之间,但结构复杂、易损坏、体积大,最终被淘汰。二战之后,简式液压减震器取代了摇臂式减震器,其成本低,寿命长,但容易出现充油不及时的问题,若充油不及时,会影响减震效果,产生噪音与冲击。直到20世纪50年代,充气式减震器的出现解决了以上的问题,在双筒内充入低压0.4MPa~0.6MPa的氮气可以解决充油不及时的问题。同时单筒式充气减震器也开始发展,其采用浮动活塞的结构,使充入的氮气形成2.0MPa2.5MPa的高压气体,性能优于双筒式减震器,而且质量轻、性能好,但其成本较高。 油压减振器是铁道机车车辆上的一个重要部件。由于机车车辆的车轮与钢轨面之间是钢对钢的接触,因此,车轮表面的不规则和轨道的不平顺都直接经车轮传到悬挂部件上去,使机车车辆各部分高频和低频振动。如果这种振动不经过减振器来衰减,就会降低机械部件的结构强度和使用寿命,恶化运行品质。油压减

振器其性能优劣直接影响到行车的安全性和舒适性。尤其近年来我国铁路进入一个飞速发展时期,特别是在铁路跨越式发展政策的指引下,我国铁路将会进入一个全新的发展阶段。 二、减振器的基本结构大体相同,主要区别是: ( 1 )活塞的行程以及接头的安装尺寸不同; ( 2 )GS H、GYAW、G OH 3 种水平布置的减振器多了橡胶囊; ( 3 )GY AW、GOH的节流阀与另外3种不同。 基本结构见图 41、图 42 ,G S V、GS H、GYAW 图略。 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆6——防尘圈7——压盖;8——密封圈;9——油封圈;10——螺盖;11——0型密封圈 12——密封圈 13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一)17——压缩阀(二)18——回油阀片19——回油阀座20——底阀座21——弹簧螺盖22——底阀座弹簧23——底阀压缩阀24——油缸25——储油罐26——液压油27——拉伸阀(一)28——拉伸阀(二) 29——导承 图41 一系垂向简振器 1——上接头2——橡胶球较3——销轴4——防尘罩组成5——活塞杆 6——防尘圈 7——压盖 8——密封圈9——油封圈 10——螺盖11——0型密封圈 12——密封圈13——活塞 14——节流阀弹簧 15——调节螺钉 16——压缩阀(一) 17——压缩阀(二)18——回油阀片 19——回油阀座20——底阀座 21——弹

钢锭_坯_在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径

甘肃冶金 2001年3月 第1期钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径 贾 静 (兰州钢铁公司 甘肃省 兰州市 730020) 摘 要 分析了钢锭(坯)轧制过程中出现翘皮、裂纹、断裂等常见缺陷的原因,并且提出了解决问题的途径。 关键词 分析解决 缺陷 途径 1 前言 钢锭(坯)在轧制过程中会出现翘皮、裂缝、断裂等多种缺陷而致废。由于种种原因,90年代初以来,特别是近几年里,钢锭(坯)轧裂和翘皮的数量骤然上升并有居高不下之势。为此,我们将近几年来发生的钢锭(坯)轧废情况统计分析结果列于表1(数据以每年退换钢锭的数量为依据)。 表1 钢锭(坯)轧裂退换统计表 年 份钢 种废品数量致 废 原 因小 时(t) 1995 1996 1997 1998 1999Q195—Q235沸钢258钢锭重接19.08t,翘皮、断裂Q235镇静钢—  Q195—Q235沸钢118翘皮、断裂 150220M nSi连铸坯70夹杂、断裂 20M nSi钢47断裂 Q195—Q235沸钢44翘皮、断裂 150220M nSi连铸坯80夹杂、断裂 1502Q235连铸坯40脱方 Q235镇静钢100纵裂纹、发纹 Q195—Q235沸钢220翘皮、断裂 Q235镇静钢110裂纹、断裂 Q195—Q235沸钢20断裂、裂口 Q235镇静钢240纵裂纹、裂口、断裂 258 235 264 330 260 9 收稿日期:2000-12-28

表1的统计结果表明: 早期镇静钢锭质量比沸腾钢锭的好,但近两年来质量有下滑趋势。 钢锭(坯)在轧制过程中退废的主要缺陷是翘皮、裂纹和断裂。平均每年退换钢锭293t ,由此造成的经济损失30余万元。 根据金属学和钢的热塑性变形原理,结合现场生产的实际情况,作者对这些缺陷的成因从炼钢工艺和轧钢工艺两方面进行分析。2 炼钢工艺对钢锭质量的影响2.1 化学成分的影响 对于碳素结构钢来讲,就元素影响而言造成轧制过程中出现裂纹、断裂极为有关的元素有S 、M n 、P 、Cu 。2.1.1 元素S 、M n 的影响及S 的“ 热脆”缺陷对大量轧裂钢锭化学成分的分析结果表明,元素S 的超标准上限及元素Mn 的低标准下限是钢锭轧裂的重要原因。 高硫钢锭经轧制后通身四面都有严重裂缝,有时只经过粗轧几道就断成碎块。其致废的机理是:S 是生铁或燃料中天然存在的杂质,由于S 在固态Fe 中的溶解度很小,几乎不能溶解。它在钢中以FeS 的形式存在,而FeS 和Fe 易形成熔点较低(仅有985℃)的共晶体,当钢在1100~1200℃进行热加工时,分布于晶界的低熔点共晶体固熔化而导致开裂,这就是通常所说的S 的“热脆”现象。在冶炼中为了清除S 的有害作用,必须增加钢中的含M n 量,使Mn 与S 优先形成高熔点的M nS,其熔点高达1620℃而且呈粒状分布于晶粒中,从而可以有效地防止或避免S 在钢中的“热脆”现象。2.1.2 元素P 的影响及P 的“冷脆”缺陷 通常,元素P 超标的钢锭在热轧过程中不出现裂纹或断裂,但成品坯(材)冷却至室温就会发生“冷脆”现象,在远远小于钢材力学指标力的作用下就发生脆断。 其机理是:室温下钢中的P 可全部溶于钢的铁素体中,使钢的强度、硬度增加,塑性、韧性显著降低。这种钢坯(材)的“冷脆”现象在我厂的生产中偶有发生。2.1.3 元素Cu 的影响及富Cu 轧制的网状裂纹 1997年10月,我厂轧制的Q 235镇静钢68方坯有两批总重量101.36t 成品钢坯表面出现了严重的裂纹,其症状如图1所示,可见钢坯通身有网状裂纹。经取样做成分分析发现Cu 含量在0.6%~0.8%,严重超标。 图1 富铜轧制的网状裂纹 元素Cu 超标造成钢锭热轧开裂的原因是:由于西域废钢资源的特点,含Cu 量有时较高。当钢中含Cu 量超过0.4%且它在加热炉中的氧化性气氛中较长时间加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富Cu 合金,这层合金在约1100℃时熔化并浸蚀钢的表层,使钢在热加工时开裂并多形成网状裂纹。 因此,在技术标准中对碳素结构钢中残余铜元素的含量有明确规定,应该不高于0.3%。2.2 炼钢脱氧操作及浇注工艺的影响 我厂轧制钢锭从脱氧方式上分沸腾钢和镇静钢。由于钢液脱氧方式及结晶热力学的条件10

减震器类型、优缺点、应用范围

减震器类型、优缺点、应用范围

目前国内减震器材主要可分为: A.弹簧减震器 减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。减震器太软,减震物体就会上下跳跃,减震器太硬就会带来太大的阻力,妨碍弹簧正常工作。在关于减震系统的改装过程中,硬的减震器要与硬的弹簧相搭配,而弹簧的硬度又与物体重量息息相关,因此较重的物体一般采用较硬的减震器。 弹簧减震器优点: 1.可以达到较低的固有频率,一般5HZ以下. 2.可以得到较大的静太压缩量,通常20MM的压缩量. 3.可以承受较大的载荷. 4.通过处理后,抗腐蚀能力强,性通稳定,使用寿命长. 缺点: 1.由于存在自振现像,空易传递中频振动 2.阻尼太小临界阻尼比一般只有0.005,因此对于共振频率附近的振动隔离能力较差.

弹簧减震器适用于:风机、风柜、空调箱、空气压缩机、空调机组、发电机、冷却水塔等设备的减震隔振,如能附加采用阻尼器设设,则能适用于冲床、压力、锻锤机等冲击型设备的振动隔离。 B.橡胶减震器 橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象爱你过的变化产生的,橡胶分子间互相作用会妨碍分子链的运动,有表现出黏性特点,以致应力与应变往往处于不平衡状态。橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力,使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。除此外,橡胶还具有滞后和内摩擦特性,他们通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热就越明显,减震效果越明显。综上所述,用橡胶制成的橡胶减震器也具有良好的减震效果。橡胶减震器的优点: (1)可以自由确定形状,通过调整橡胶配方组分来控制硬度,可满足对各个方向刚度和强度的要求;(2)内部摩擦大,减震效果好,有利于越过共振区,衰减高频振动和噪声; (3)弹性模量比金属小得多,可产生较大弹性形变; (4)没有滑动部分,易于保养; (5)质量小,安装和拆卸方便。 (6)冲击刚度高于静刚度和动刚度,有利于冲击变形。 缺点: 自然频率相对较高,压宿量较小,容易受外界环境影响,性能不温定,使用寿命较短。

弹簧减震器结构图解

弹簧减震器结构图解 独立悬架与非独立悬架示意图 a. 独立悬架 b. 非独立悬架 独立悬架如图所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧 1-卷耳2-弹簧夹3-钢板弹簧4-中心螺栓 钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车

架的振动衰减,起到减振器的作用。 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种,工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的。 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸 筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防 尘罩11-油封 横向稳定器的安装

汽车减震器结构图

悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张阀; 5. 储油缸筒; 6. 压缩阀; 7. 补偿阀; 8. 流通阀; 9. 导向座;10. 防尘罩;11. 油封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。

单趾弹簧扣件PR弹条断裂原因分析论文

单趾弹簧扣件PR弹条断裂原因分析摘要:采用化学分析、金相检验、硬度测定和受力分析方法,对单趾弹簧扣件pr弹条在使用过程中出现的断裂现象进行了分析。认为弹条断裂的原因是安装工艺不规范、导致弹条的工作弹程和应力超过设计状态引起的。 关键词:弹条断裂检验受力分析 abstract: the chemical analysis, metallographic examination, the hardness testing and stress analysis method, the single toe spring fastener pr play in use article appeared in the process of fracture is analyzed. think of the fracture reason is article installation process is not standard, lead to the work of the article cheng and stress caused by more than design state. key words: article the fracture inspection stress analysis 中图分类号:u213.2+1文献标识码:a文章编号: 1 前言 弹条是轨道结构的重要部件,其有效与否直接关系到行车的安全。它主要利用弹性变形时所储存的能量起到缓和机械上的震动和冲击作用,在动荷载下承受长期的、周期性的弯曲、扭转等交变应力。 某单位生产的弹条为单趾弹簧扣件pr弹条,其结构型式如图1

汽车中的板簧的断裂失效分析

材料断裂理论与失效分析汽车中的板簧的断裂失效分析 专业:材料工程(锻压) 类型:应用型 姓名:*** 学号: 15S******

汽车中的板簧的断裂失效分析 引言 汽车板簧是汽车悬架系统中最传统的弹性元件,由于其可靠性好、结构简单、制造工艺流程短、成本低而且结构能大大简化等优点,从而得到广泛的应用。汽车板簧一般是由若干片不等长的合金弹簧钢组合而成一组近似于等强度弹簧梁。在悬架系统中除了起缓冲作用而外,当它在汽车纵向安置,并且一端与车架作固定铰链连接时,即可担负起传递所有各向的力和力矩,以及决定车轮运动的轨迹,起导向的作用,因此就没有必要设置其它的导向机构,另外汽车板簧是多片叠加而成,当载荷作用下变形时,各片有相对的滑动而产生摩擦,产生一定的阻力,促使车身的振动衰减,但是板簧单位重量储存的能量最低,因些材料的利用率最差。 1.材质是什么?65Mn/低碳钢哪一类合适? 材质一般为硅锰钢。因为碳素弹簧钢因淬透性低,较少使用于汽车中;锰钢淬透性好,但易产生淬火裂纹,并有回火脆性。因此,硅锰钢在我国应用在汽车的板簧上较为广泛。 65Mn钢更为合适,因为: 低碳钢为碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,又称软钢。它包括大部分普通碳素结构钢和一部分优质碳素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于要求耐磨的机械零件。低碳钢退火组织为铁素体和少量珠光体,其强度和硬度较低,塑性和韧性较好。因此可以看出,低碳钢不符合板簧材料高强度和高硬度的要求。 65Mn弹簧钢,含有0.90%~1.2%的Mn元素,提高了材料的淬透性,φ12mm 的钢材油中可以淬透,表面脱碳倾向比硅钢小,经热处理后的综合力学性能优于碳钢,但有过热敏感性和回火脆性。Mn是弱碳化物形成元素,在钢中主要以固溶的形式存在于基体中。一部分固溶于铁素体(或奥氏体),另一部分形成含Mn的合金渗碳体(Fe、Mn)。Mn还能显著提高钢的淬透性,改善热处理性能,强化基体、降低珠光体的形成温度,细化珠光体的片间距离,从而提高钢的强度和硬度。总体上,钢中加入锰为0.9%~1.2%,使淬透性和综合性能有所提高,脱

西宁汽车减震器项目投资分析报告

西宁汽车减震器项目投资分析报告 规划设计/投资分析/产业运营

报告说明— 减震器(Absorber),是汽车悬挂系统中的重要装置,用于减少车身等部件带来的震动,增加汽车行驶的平顺性。减震器主要用来抑制弹簧吸震后反弹时的震荡及来自路面的冲击。在经过不平路面时,虽然吸震弹簧可以过滤路面的震动,但弹簧自身还会有往复运动,而减震器就是用来抑制这种弹簧跳跃的。 该汽车减震器项目计划总投资4633.39万元,其中:固定资产投资3856.25万元,占项目总投资的83.23%;流动资金777.14万元,占项目总投资的16.77%。 达产年营业收入5292.00万元,总成本费用3984.43万元,税金及附加83.67万元,利润总额1307.57万元,利税总额1571.59万元,税后净利润980.68万元,达产年纳税总额590.91万元;达产年投资利润率 28.22%,投资利税率33.92%,投资回报率21.17%,全部投资回收期6.22年,提供就业职位80个。 随着汽车行业的发展,汽车行驶过程中产生的振动已经成为制约汽车发展的重大障碍。汽车行驶过程中产生的振动严重将降低汽车的舒适性、稳定性安全性降低人们乘坐汽车时的享受,汽车零部件的使用寿命也会大大缩短。

目录 第一章总论 第二章建设单位基本信息 第三章投资背景和必要性分析第四章项目调研分析 第五章建设规划分析 第六章项目选址方案 第七章建设方案设计 第八章工艺可行性 第九章环境保护概述 第十章项目职业保护 第十一章建设风险评估分析 第十二章项目节能评估 第十三章项目实施安排方案 第十四章投资方案 第十五章经济效益可行性 第十六章项目结论 第十七章项目招投标方案

简要分析建筑结构设计与减震设计

简要分析建筑结构设计与减震设计 随着建筑行业的快速发展,对建筑工程的质量和安全性有了更高的要求,所以建筑结构设计非常关键,直接关系到建筑整体结构的稳定性和安全性。在建筑结构设计中,减震设计是重要内容,地震会对建筑物造成严重的破坏,所以为了提高建筑的抗震性能,要加强减震设计水平,提高建筑的稳定性和安全性。文章对于建筑结构设计以及减震设计进行了简要的分析,对于提高建筑结构设计水平具有重要的意义。 标签:建筑;结构设计;减震设计 建筑结构设计是针对建筑各个受力部位的结构方式进行的设计,要最大限度的保证建筑结构的稳定性和安全性。建筑在建设过程中以及投入运营后,会受到各种应力的作用,从而对建筑结构的稳定性产生影响。如果建筑结构设计水平不达标,就会因为承受的荷载太大而发生变形、倾斜等现象,直接影响到建筑的安全。减震设计是建筑结构设计中的重要内容,所以在结构设计时,应该对当地的地质状况进行详细的勘察,然后在结构设计中采用适宜的减震技术措施,最大限度的提高建筑的抗震性能,确保建筑的安全使用,为维护社会稳定创造有利的基础。 1 结构设计概述 结构设计就是对建筑物中各受力部件进行合理的分析,计算各部件所承受的荷载极限,从而本着稳定性和安全性的原则,对各个结构进行合理的设计。结构设计的核心就是确保建筑整体结构的稳定性,在遇到各种应力干扰的情况下,能够承受应力的变化,保持建筑结构的原有状态。建筑结构设计中的主要元素包括:基础、墙、柱、梁、板、楼梯、大样细部等等,也就是构成建筑物的框架,是支撑整体建筑的重要受力构件。在建筑物内部构成体系中,这些构件之间的受力会相互传递,需要承受竖向或者水平方向的各种应力,所以对构件的抗力性有较高的要求。只有确保这些构件的稳定性,才能够最大限度的保证建筑物的安全。 2 建筑结构设计的过程 建筑结构设计主要可分三个步骤,首先是结构方案设计,根据建筑物的使用性质、地质结构、施工方式、层高、抗震设防烈度等,在对不同结构形式的受力特点分析后,确定结构设计中的受力构件和承重体系。其次是对结构进行计算,包括荷载计算、内力计算和构件的设计,以确保结构设计中各部件符合受力标准。最后是施工图设计,将建筑结构设计师的意图通过图纸表达出来,对于施工过程中每个环节的操作都有详细的说明,从而确保建筑结构设计的完整性。 3 建筑结构设计的要点 3.1 重视概念设计

某SUV车型螺旋弹簧断裂失效分析及优化

龙源期刊网 https://www.wendangku.net/doc/053813739.html, 某SUV车型螺旋弹簧断裂失效分析及优化作者:李振杜阿雷刘超张树乾王猛 来源:《中小企业管理与科技·上旬刊》2015年第11期 摘要:某SUV车型在耐久试验过程中,螺旋弹簧上平端第一圈末处发生断裂。本文针对可能导致螺旋弹簧失效的机理逐一排查分析,找出螺旋弹簧断裂失效真因,进而对结构或者生产工艺进行优化提升。 关键词:螺旋弹簧;断裂;失效机理;优化提升 1 概述 某SUV车型在可靠性耐久试验中先后出现2次螺旋弹簧断裂(图1)的严重质量问题。 据对故障件分析,发生部位均出现上平端第一圈,现从螺旋弹簧材质检验、结构设计及工作角度、表面防腐处理工艺等方面进行分析,查明真因并进行优化。 2 原因排查 2.1 螺旋弹簧的材质问题 2.1.1 失效件的材料化验结果 2.1.2 硬度测试 用洛氏硬度计对断裂弹簧的硬度进行检验,其外层硬度为HRC49,中心处的洛氏硬度是HRC48,在技术要求的HRC47- HRC52范围内。 2.1.3 断口分析 由于弹簧断裂后又经历了一段氧化腐蚀时间,断面锈蚀严重,经高锰酸钾溶液清洗后的形貌如图2所示,由于锈蚀严重,清洗后仍有少量的氧化物附着,但仍可看出,裂纹起源 于弹簧内侧表面附近,断口与轴线呈45°螺旋状,无明显的塑形变形,断面上有粗大的裂纹扩展条棱,同时发现还有表面裂纹及内部裂纹。裂纹源表面的形貌如图3所示,裂纹源处的表面及其粗糙,有麻坑,而相邻其他地方较为平坦。由于清洗对断口真实面貌有一定的损伤,电镜下已分辨不出断裂机制,但仍留有有用的信息,图4为断裂源区形貌,断面分布有大量的氧化夹杂物,图5为瞬断区形貌,断口有夹杂物形成的孔洞。 2.1.4 金相分析

相关文档
相关文档 最新文档