文档库 最新最全的文档下载
当前位置:文档库 › 长余辉发光机理图

长余辉发光机理图

长余辉发光机理图

发光现象与机理分析

发光现象 “发光”是物体内部以某种方式吸收的能量转化为光辐射的过程,叠加在热辐射之上的一种光发射,是一个技术名词。在外界激发下能发光的物质叫发光物质,通常不包含单纯热辐射导致的发光,如太阳是热辐射,不算是发光物质,固体中的电子受到外界能量的激发(如光吸收),从基态跃迁到激发态,这是一种非平衡态。处于激发态的电子具有一定的寿命,以一定几率回落到基态,并把多余的能量以各种形式释放出来,如果以光能的形式释放,称为发光过程。自然界中的很多物体(包括固体、液体和气体,有机物和无机物),都具有发光的性能。任何物体在

一定温度下均有热辐射(热发光),严格的固体发光概念不包含热发光。发光现象有两个主要特征:1.发光为固体吸收外界能量后,所发出总辐射超出热发射的部分。2.外界激发源对物体的作用停止后,发光会持续一段时间。并非一切光辐射都称为发光,发光是光辐射一部分。 光辐射是平衡辐射与非平衡辐射的总和。光辐射的特征一般可用5个宏观光学参量描述:亮度、光谱、相干性、偏振度和辐射期间。平衡辐射是炽热物体的光辐射,又叫热辐射。温度在0K以上的任何物体都有热辐射,但温度不够高时辐射波长大多在红外区,人眼看不见。物体的温度达到5000 C以上时,辐射的可见部分就够强了,例如烧红了的铁,电灯泡中的灯丝等。非平衡辐射是在某种外界作用激发下,物体偏离

原来的热平衡态所产生的辐射。发光是其一种,除了发光以外,还有反射、散射等。当然发光有别于其它的非平衡辐射。发光有一个比较长的延续时间,这就是在激发,即外界作用停止后发光不是马上消失而是逐渐变弱,这个过程也称为余辉,这个延续时间长的可达几十小时,短的也有10- sec 左右,总之都比反射、散射的持续时间长很多。随着技术的发展,现在能够测量的时间,已经突破一个飞秒(fs = 10 —15 秒)。而测到的发光弛豫时间短到皮秒(ps =10-12 秒)的例子也很多。发光材料能够发出明亮的光,而它的温度却比室温高不了多少。因此发光有时也被称为“冷光”。 固体发光是电磁波、带电粒子、电能、机械能及 化学能等作用到固体上而被转化为光能的现象固体

蓝色长余辉发光材料的合成及其发光性能(精)

蓝色长余辉发光材料的合成及其发光性能 稀土离子激活的铝酸盐和硅酸盐是两类化学性能稳定、发光强和色纯 度高的蓝色发光材料,并且其余辉呈慢衰减的特性。本文综述了稀土离子激活的铝酸盐和硅酸盐蓝色长余辉材料的常用制备方法,介绍了其发光基质及发光性能的影响因素,采用如下方法合成了性能良好的长余辉材料。以尿素和醋酸作为辅助剂,采用简易溶胶—凝胶燃烧法合成长余辉材料Sr2MgSi2O7: Eu2+,Dy3+。简 易溶胶—凝胶燃烧法综合了溶胶—凝胶法,燃烧法和超声波法。采用简易溶胶—凝胶燃烧法合成的产物具有发光性能好,颗粒小等特点。因此具有更广的应用价值。当Eu2+:Dy3+的摩尔百分比为3% : 6%,产物的发光性能最好。测试结果表明,当产物被激发峰λex=230nm激发时,有很宽的发射光谱(420—550nm)。因此长余辉材料Sr2MgSi2O7: Eu2+,Dy3+是具有广阔应用前景的蓝色发光材料。燃 烧法合成了长余辉发光材料CaAl2O4:Eu2+,Dy3+,Nd3+。文章讨论了Dy3+的掺入量、Nd3+的掺入量、分散方法(搅拌或超声波分散)和燃烧温度等影响材料发光 性能的因素。测试结果表明,我们可以看出加入一定量的Dy3+能够增强 CaAl2O4:Eu2+,Nd3+的发光强度,加入合适摩尔含量的H3BO3后,形成晶体所需的温度会降低。用超声波分散方法处理样品比用搅拌处理的样品的发光性能要 好。研究了燃烧温度、Eu2+和Dy3+的掺杂量、助熔剂硼酸的加入量、尿素加入 量及Al/Sr的比例对Sr4Al14O25:Eu2+,Dy3+长余辉发光材料发光性能的影响, 从而确定了长余辉发光材料Sr4Al14O25:Eu2+,Dy3+的最佳合成工艺.所得产物 分别进行了XRD、TEM、荧光测试和亮度测试,分析结果表明磷光体存在400nm 和482nm两个发射峰,分别对应于Eu2+在基质中两种不同的存在方式,与传统的 高温固相法相比发射主峰出现了蓝移;亮度测试找到了最佳的原料配比及合成条件. 同主题文章 【关键词相关文档搜索】:物理化学; 长余辉发光材料; 溶胶-凝胶燃烧法; 超声波分散; 光学性质 【作者相关信息搜索】:中南民族大学;物理化学;陈栋华;张博;

长余辉材料的种类、性质和应用 刘钦濡

长余辉材料的种类、性质和应用 季杨琛(山东师范大学化学化工与材料科学学院,2015级化工一班,201510010201) [摘要]系统地介绍了长余辉材料的种类、性质及几种应用。 [关键词]长余辉材料;材料种类;性质;发明应用 长余辉发光材料属于光致发光材料的一种,又称夜光粉,其将白天吸收的太阳能储存起来,晚上释放储存能量而产生余辉光。由于长余辉发光材料夜晚发光 的特点,从而在很多领域被广泛应用,比如制成航空仪表和汽车仪表的字盘显示器、发光涂料、发光油墨、消防安全装置、发光陶瓷等材料。长余辉发光材料分研究较早的硫化物型材料(如硫化钙和硫化锌等)和近年来研究较多的氧化物体系(如 铝酸盐和硅酸盐体系)。由于长余辉发光材料夜晚发光的特点,从而在很多领域被 广泛应用,比如制成航空仪表和汽车仪表的字盘显示器、发光涂料、发光油墨、消防安全装置、发光陶瓷等材料。 1.长余辉材料的种类 铝酸盐基 自从1993年Matsuzawa等合成了共掺Dy的SrAl2O4:Eu研究发现其余辉衰减时间长达2000min。随后,人们有相继开发了一系列稀土激活的铝酸盐长余辉材料,如蓝色CaAl2O4:Eu,Nd和蓝绿色Sr4Al14O25:Eu,Dy。铝酸盐的长余辉材料,其激活剂主要是Eu,余晖发光颜色主要集中于蓝绿光波长范围。时至今日,虽然铝酸盐的耐水性不是很好,铝酸盐体系长余辉材料SrAl2O4:Eu,Dy和Sr4Al14O25:Eu,Dy 仍以获得了巨大的商业应用,是现阶段主要的长余辉材料的研究和应用关注材料。 硅酸盐基 采用硅酸盐为基质的长余辉材料,由于硅酸盐具有良好的化学稳定性和热稳定性,同时原料SiO2廉价、易得,近些年来越来越受人们重视,并且这种硅酸盐材料广泛应用于照明及显示领域。自从1975年日本首先开发出硅酸盐长余辉材料Zn2SiO4:Mn, As ,其余辉时间为 30min。此后,多种硅酸盐的长余辉材料也相继被开发,如Sr2MgSi2O7:Eu,Dy、Ca2MgSi2O7:Eu,Dy、MgSiO3:Mn,Eu,Dy,材料及性能参数见表

长余辉发光材料概述

长余辉发光材料概述 摘要 本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料 1.长余辉发光材料简介 长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。 2.长余辉发光材料的基本机理 长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。 长余辉发光机理实际是发光中心与缺陷中心间如何进行能量传递的过程,具体的长余辉材料有不同的发光模型,但最流行的是两类:一是载流子传输;二是隧穿效应。前者包含电子传输、空穴传输和电子空穴共传输,后者包括激发、能量存储与热激励产生发射的全程隧穿和仅是“热激励”发射的半程隧穿。除这两类外,学术界还有学者提出位形坐标[2]、能量传递、双光子吸收和Vk传输模型。至今为止,上述模型都是根据已有的实验结果提出的假设,可以解释一定的实验现象,但缺乏足够的论据,也存在若干不确定因素,难以让人信服,而发光机理的研究又是为新材料设计提供物理依据所必须的,有待进一步深入。

稀土长余辉发光材料SrAl2O4Eu2+,Dy3+的制备及性能研究【文献综述】

文献综述 稀土长余辉发光材料SrAl2O4:Eu2+,Dy3+的制备及性能研究 一、前言 长余辉发光材料属于光致发光材料的一种,发光持续时间较长,最长可达十几个小时,也称蓄光型发光材料、荧光粉等。由于长余辉发光材料的余辉和温度特性,即使用环境温度变化时材料和制品的发光亮度会相应改变[1],因而,长余辉发光材料除被用做蓄光材料外,还可用作制备传感器的敏感材料。近年来,长余辉发光材料的应用研究不断进展,范围也 迅速扩大,已在消防安全、建筑装饰、涂料油墨、陶瓷器件、交通运输和城乡建设等发挥着照明、指示、装饰等作用. 长余辉发光材料的种类与特性 1)金属硫化物体系长余辉发光材料。即传统的、第一代。典型代表是ZnS∶Cu, Co材料,其发光颜色多样,弱光下吸收速度较快,但余辉时间短,化学性质不稳定,易潮解。虽然加入放射性元素后可克服以上缺点,可是放射性元素对环境和人体会造成危害,从而极大地限制了它的应用。2)铝酸盐体系长余辉发光材料。目前,铝酸盐体系中发光性能比较优异的长余辉发光材料主要是MAl2O4∶Eu3 + , R3 + (Dy3 + , Nd3 +等) ,其发射峰主要是集中在蓝绿光波段,亮度高,余辉时间长,且化学稳定性好[2]。铝酸盐体系长余辉发光材料的突出优点是余辉性能超群、化学稳定性好和光稳定性好;缺点是遇水不稳定、发光颜色不丰富。3)硅酸盐体系长余辉发光材料. 化学稳定性好、耐水性强、紫外辐照性稳定、余辉亮度高、余辉时间长、应用特性优异等特点,弥补了铝酸盐体系的不足,将长余辉材料的研究推向了一个新的时代。 目前,获得实际应用的长余辉发光材料主要是传统的硫化物体系长余辉材料和掺有稀土元素的长余辉发光材料。本文主要综述了稀土掺杂Eu2+,Dy3+的铝酸盐体系长余辉发光材料的制备及发展。 二、稀土长余辉发光材料制备工艺 1.高温固相反应法[3-6] 高温固相法是合成发光材料中应用最早和最多的一种方法。固相反应通常取决于材料的晶体结构和缺陷结构,而不仅仅是成分的固有反应性能,固相反应的充要条件是反应物必须相互接触,即反应是通过颗粒间界面进行的。反应物颗粒越细,其比表面积也就越大,有利于固相反应的进行。因此,将反应物充分混合和研磨均匀,可增加反应物之间的接触面积,

稀土长余辉发光材料的发展

稀土长余辉发光材料的发展、发光机理及应用 李沣 刘志宇 黄云翔 史怡 摘要:产品中的每一种材料在其中都发挥着其它材料所无可替代的作用,长余辉发光材料就是这众多材料中的一种。它,用量少,但是它长时间发出的余辉,确实很好地解决了许多看似不起眼但是实际办起来又很棘手的问题。 关键词:长余辉发光、硫化物、铝酸盐、稀土金属离子、空穴、缺陷能级 1.相关概念 1.1 荧光与磷光 最初的发光分为荧光及磷光两种。荧光是指在激发时发出的光,磷光是指在激发停止后发出的光。由于瞬态光谱技术的发展,现在对荧光和磷光不作严格区别,荧光和磷光的时间界限已不清楚。但发光总是延迟于激发的,目前从概念上区分这两种发光的判据是从激发到发射是否经历了中间过程。发光的衰减规律常常很复杂,很难用一个反映衰减规律的参数来表示,所以在应用中就硬性规定当激发停止时的发光亮度L衰减到L0的10%时所经历的时间为余辉时间,简称余辉。一般以持续时间10-8 s为分界,短于的10-8 s称为荧光,长于10-8 s的称为磷光。 1.2 吸收光谱与激发光谱 吸收光谱是描述吸收系数随入射光波长变化的谱图。发光材料的吸收光谱主要决定于材料的基质,激活剂和其他杂质对吸收光谱也有一定影响。多数情况下,发光中心是一个复杂的结构,发光材料基质晶格周围的离子对它的性质会产生影响,也可以是由发光材料制备中形成的基质晶格的空位决定。被吸收的光能一部分辐射发光,其余的以晶格振动等非辐射方式消耗掉。大多数发光材料主要吸收带在紫外光谱区。 激发光谱是指发光材料在不同波长的激发下,该材料的某一发光谱线的发光强度与激发波长的关系。激发光谱反映了不同波长的光激发材料的效果。

长余辉材料的种类,性质和应用汇总

长余辉材料的种类,性质和应用 摘要:长余辉发光材料又称蓄光型发光材料,是一种重要的发光材料,在陶瓷、消防、传感、涂料、纺织、高分子中都发挥着重要的作用。本文简述长余辉发光材料的种类、性质,介绍长余辉发光材料的研究进展和最新研究成果,剖析长余辉发光材料发光机理,对长余辉发光材料的应用有着积极的研究参考作用。 关键词:长余辉发光材料;发光机理;基本规律 长余辉发光材料简称长余辉材料,又被称为蓄光型发光材料、夜光材料,其本质上是一种光致发光材料。发光是物质将某种方式吸收的能量转化为光辐射的过程。发光材料是在各种形式能量激发下能发光的固体物质。长余辉发光材料是指在光源激发停止后发出被人眼察觉的光的时间在20min 以上的发光材料。[1] 长余辉发光材料是常见的发光材料,应用非常广泛,如环卫工人的工作服,发光涂料、发光塑料、发光玻璃和发光陶瓷等夜光产品,背光显示、甚至应用于生物医学检测探针,对我们日常生活也发挥着非常重要的作用。 余辉其实就是在撤去光源后发出的光,这种现象在我们古代的时候就有发现,比如说夜光杯或是夜明珠在夜间发出的夜光,但那时候人们并没有对这种现象进行深入的研究。直到20 世纪初,第二次世界大战军事和防空的需要,进一步促进了这种功能材料的研究和应用。

在1866 年,法国化学家Theodore Sidot 初次成功制备了ZnS:Cu,该晶体经过激发光源后,能发出较长的余辉。这种晶体的成功制备是长余辉发光材料的一个里程碑,大大地激发着科研人员进一步研究长余辉发光材料,也就是从20 世纪初,长余辉得到了迅猛的发展。[2] 1.长余辉材料的种类 1.1硫化物长余辉发光材料 长余辉材料的第一代是硫化物,如碱土硫化物、硫化锌等。最具代表性的是发光颜色为黄绿色的ZnS:Cu系列、发光颜色为蓝色的CaS:Bi系列和发光颜色为红色的CaS:Eu系列。硫化物长余辉发光材料的突出优点是体色鲜艳、发光颜色多样、弱光下吸光速度快;但是硫化物长余辉材料存在着明显的缺点,如余辉亮度低、余辉时间短、化学稳定性差、易潮解,不能用于室外:而且生产过程对环境污染大。其最大缺点是不耐紫外线,在紫外线照射下会逐渐发黑,极大地限制了其使用范围。经逐步完善,在加入Co、Er等激活剂后,该材料的余辉时间由原来的200min延长至约500min,但放射性元素的加入对人身健康和环境都造成危害因此材料的使用受到极大的限制。[1] 1.2铝酸盐长余辉发光材料 自从1993年Matsuzawa等合成了共掺Dy的SrAl2O4:Eu研究发现其余辉衰减时间长达2000min。随后,人们有相继开发了一系列稀土激活的铝酸盐长余辉材料,如蓝色CaAl2O4:Eu,Nd和蓝绿色Sr4Al14O25:Eu,Dy。铝酸盐的长余辉材料,其激活剂主要是Eu,余

长余辉发光粉的合成及其发光性能

长余辉发光粉的合成及其发光性能 长余辉发光粉(俗称夜光粉),具有储光、节能、稳定的特点,可做成发光涂料、发光油墨、发光薄膜、发光纤维、发光陶瓷、发光塑料等系列蓄光型产品,应用于交通运输、建筑装潢、军事设施、消防应急以及日用消费品等[1]。尤其是以铝酸盐为基质的发光材料具有发光效率高、余辉时间长、化学性质稳定以及无放射性危害等特点,一直倍受人们的关注[2-4]。 以铝酸盐为基质的长余辉发光材料研究最多的为SrAl2O4:Eu2+,Dy3+,制备方法主要有高温固相法[5]、水热法[6]、溶胶-凝胶法[7]和燃烧法[8]等。严冬[8]等采用燃烧法合成迅速、节能显著、合成温度低,采用空气气氛,危险性小,易于实现批量生产。 在以铝酸盐为基质的长余辉发光粉中,以七铝酸十二钙(Ca12Al14O33)为基质的 Ca12Al14O33: Eu2+,Nd3+ 的研究报道很少[9]。文献[9]采用高温固相法,使用氢气气氛在1 200 ℃制备了Ca12Al14O33:Eu2+,Nd3+长余辉发光粉,由于使用氢气气氛增加了危险性,其合成的粉体余辉时间较短,当余辉亮度衰减到初始亮度的 10%时,所用时间只有50 s。 本文采用燃烧法在空气气氛中制备Ca12Al14O33: Eu2+,Nd3+长余辉发光粉,通过正交试验法研究了各种因素对制备的影响,确定了最佳制备条件,并研究了产物的结构、形貌及发光性能。 1 试验部分 1.1 试剂与仪器 HNO3(A.R.),Nd(NO3)3 · 6H2O(A.R.),Al(NO3)3 · 9H2O(A.R.),Eu2O3(A.R.), Ca(NO3)3 · 4H2O(A.R.), H3BO3(A.R.),尿素(A.R.),浓HNO3(A.R.)以及去离子水。 X-射线衍射仪,Rigaku D/max 2500/PC型,日本理学;扫描电子显微镜,JSM-6700F型,日本电子;荧光分光光度计,F-4600型,日本日立;长余辉测试仪, PR-305型,浙大三色光学仪器。 1.2 样品制备 将Eu2O3粉末加过量浓硝酸溶解,蒸发至近干,然后加水稀释得到0.02 mol · L-1 的Eu(NO3)3溶液。按化学计量比Ca12(1-x-y)Al14O33:Eu12x,Nd12y(x=0.015, y=0.01)分别称取2.763 0 g Ca(N O3)3 · 4H2O、5.251 8 g Al(NO3)3 · 9H2O和0.052 6 g Nd(NO3)3 · 6H2O于250 mL烧杯中,然后向上述烧杯中加入9 mL Eu(NO3)3溶液和150 mL 去离子水,配制成混合金属硝酸盐溶液; 再称取0.144 7 g H3BO3和5.945 9 g尿素粉末依次加入到上述混合金属硝酸盐溶液中,并搅拌30 min,使加入的硼酸和尿素完全溶解,得到澄清溶液。最后将上述澄清溶液转移至刚玉坩埚里,并迅速放入已经预先加热到 600 ℃的马弗炉中,保温2 h;然后随炉冷却至室温,得到疏松泡沫状产物,稍加研磨后即可获得目标粉末。

稀土硅酸盐长余辉发光材料的合成与性质(精)

稀土硅酸盐长余辉发光材料的合成与性质 20世纪90年代制备出的铝酸盐体系长余辉发光材料因其优良的发光性能而倍受关注。然而,该体系耐水性差,限制了其应用。为此,近年来又开发出化学性质更稳定的硅酸盐体系长余辉发光材料,但其发光性能有待进一步提高,仍有许多理论问题亟待解决。目前,长余辉发光材料多用高温固相法制备,该法具有反应不完全,灼烧温度高,反应时间长,产物晶粒大,硬度高,粉碎后发光强度明显降低等诸多缺点,限制了其应用。因而,开发新的合成方法受到越来越多人的关注。本论文以稀土焦硅酸盐长余辉材料为研究对象,探索出合成该类材料的一种新方法一凝胶燃烧法。与高温固相法相比,该法具有离子分散均匀,合成温度低,操作简单,晶粒度小等优点。借助KRD, SEM,荧光光谱等现代测试手段,对合成产物进行了分析和表征,得出以下成果和结论:(1)研究发现溶液的pH值,水浴温度,起火温度,H3B03用量,尿素用量等对材料的物相结构、形貌粒度、发光性能等有着显著的影响,通过一系列实验确定了最佳工艺条件。(2)在最佳工艺条件下,对Sr_2MgSi_2O_7:Eu~(2+)进行了系列稀土离子Ln3+的共掺杂。研究发现:Sr_2MgSi_2O_7:Eu~(2+),Ln~(3+)(Ln=La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm)的晶体结构均为四方晶系结构;其激发、发射光谱的峰形、峰位基本无变化,主激发峰位于402nm,次激发峰位于415nm,与高温固相法和溶胶-凝胶法制得的 Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)的激发峰相比,出现了明显的红移现象;发射光谱也为一宽带,最大发射峰位于468nm附近,是典型的Eu~(2+)的4f5d-4f跃迁导致的。共掺杂稀土离子Ln~(3+)的种类对材料发光强度、余辉性能有着明显的影响,其中Dy~(3+)是最理想的共掺杂离 子,Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)的发光亮度最高、余辉时间最长,可达5h 以上;而Sr_2MgSi_2O_7:Eu~(2+),Sm~(3+)的发光亮度最低、余辉时间最短,不到1 min。(3)在Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)基质中,掺入不同量的 Ca~(2+),制得Sr_(2-x)Ca_xMgSi_2O_7:Eu~(2+),Dy~(3+)(x=0,0.5,1,1.5,2)系列样品。研究发现:此系列样品的晶体结构均属四方晶系,但晶胞参数随 Ca~(2+)的增加而减小。激发和发射光谱均为宽带连续谱,最大激发峰位于 400nm左右,随着Ca~(2+)含量的增加,Sr_(2- x)Ca_xMgSi_2O_7:Eu~(2+),Dy~(3+)(x=0,0.5,1,1.5,2)的发射峰位依次为 468nm,483nm,500nm,512nm,520nm,发光颜色依次呈现蓝,蓝绿,绿,黄绿,黄色;初始亮度逐渐降低,余辉时间逐渐缩短。(4)用“位型坐标”模型合理解释了 M_2MgSi_2O_7:Eu~(2+),Ln~(3+)(M=Sr, Ca)长余辉发光行为。 同主题文章 [1]. 周传仓,卢忠远,戴亚堂,王兵. 共沉淀法制备超细长余辉发光材料铝酸锶铕镝的研究' [J]. 稀有金属. 2005.(01) [2]. 崔景强,陈永杰,杨英,耿秀娟,石爽. 掺杂B对长余辉发光材料 SrAl_2O_4:Eu~(2+),Dy~(3+)发光性能的影响' [J]. 沈阳化工学院学报. 2006.(02) [3].

光致发光材料荧光光谱分析解读

第六章光致发光材料荧光光致发光材料荧光光谱分析荧光光谱分析 案例: 3000 534.4 5000 627.8 Intensity/a.u. 2000150010005000 200 300 400 500 600 700 262.4 Intensity/a.u. 2500 4000300020001000 550 600 650 700 567 wavelength/nmwavelength/nm 图6-1 CaS:Eu,Sm激发光谱(监控波长630nm)图6-2 CaS:Eu,Sm荧光光谱(监控波长630nm) 100 35003000 Intensity/a.u. 629.8 806040200 Intensity/a.u. 25002000150010005000 550 600

650 700 750 8001000120014001600 λ/nm wavelength/nm 图6-4 CaS:Eu,Sm红外响应光谱 图6-3 CaS:Eu,Sm红外上转换发射光谱(980nm激发)概念: 当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收了外界能量,其电子处于激发状态,物质只要不因此而发生化学变化,当外界激发停止以后,处于激发状态的电子总要跃迁回到基态。在这个过程中,一部分多余能量通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式发射出来,就称为发光现象。概括地说,发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。日常生活中常见的如日光灯和夜明像章的发光就是光致发光。一只日光灯,接通电源以后,首先使灯管中的水银蒸汽发出紫外光(这叫做气体发光),然后紫外光激发灯管管壁上的荧光粉,从而发出可见光。夜明像章之所以能在晚上闪闪发光,是因为像章上涂了一层所谓长余辉的发光材料。当日光或灯光中的短波光照射这种像章的时候,像章上的长余辉发光材料吸收了激发光的能量并储存起来,然后慢慢地发出光来,这种发光可以持续几个小时。 紫外线和红外线虽然看不见,但我们也把他们归结为光。因此,光致发光是指激发波长落在从紫外到近红外这个范围内的发光。 下面介绍光致发光的主要特征和一般规律。 一. 吸收光谱 当光照射到发光材料上时,一部分被反射、散射,一部分透射,剩下的被吸收。只有被吸收的这部分光才对发光起作用。但是也不是所有被吸收的光的各个波长都能起激发作用。研究哪些波长被吸收,吸收多少,显然是重要的。 发光材料对光的吸收,和一般物质一样,都遵循以下的规律,即: I(λ)=I0(λ)e-kλx 其中I0(λ)是波长为λ的光射到物质时的强度,I(λ)是光通过厚度x后的强度,kλ是不依赖光强、但随波长变化而变化的,称为吸收系数。kλ随波长(或频率)的变化,叫作吸收光谱。发光材料的吸收光谱,首先决定于基质,而激活剂和其他杂质也起一定的作用,它们可以产生吸收带或吸收线。 二. 反射光谱

长余辉发光材料简述

长余辉发光材料在陶瓷中的应用 王少艳 河北理工大学研究生学院,河北唐山063009 摘要:本文介绍了长余辉发光材料以及这种材料在陶瓷工艺中的应用。 关键字:长余辉,陶瓷,ZnS The applications in ceramics process of the long after glow phosphorescence material W ANG Shao-yan (Graduate School , Hebei Polytechnic University, Tangshan Hebei 063009,China) Abstract:The paper introduces the long after glow phosphorescence material and its applications in ceramics process. Key words:long after glow,ceramics,ZnS. 0 引言 如何定义发光物质呢?适当的材料吸收高能辐射,接着就发出光,其发射的光子的能量比激发辐射的能量低。具有这种发光行为的物质就称为发光物质。[1]按照不同的激发方式可以分为光致发光材料、阴极射线发光材料、电致发光材料、化学发光材料等等。本文涉及的是属于光致发光材料的长余辉发光材料,俗称夜明材料。 1866年法国的Sidot首先完成了ZnS:Cu的制备,最早开展了这一系列长余辉发光材料的研究工作。直至20世纪初长余辉发光材料真正的实现了工业化生产,也是从那时起,始终是ZnS系列产品占据着长余辉发光材料行业的主导地位。到了20世纪90年代,人们开始发现和关注具有良好发光性能和独特长余辉特性的稀土离子掺杂的长余辉材料,迎来了日趋成熟的超长余辉材料的研究与应用的全新时代。近年来,稀土离子掺杂的长余辉材料已经广泛应用于隐蔽照明和紧急照明设施、航空、航海和汽车等仪表显示盘等领域,也有人把稀土离子掺杂的长余辉材料应用于陶瓷制备工艺。 1发光材料的发光与长余辉机理

小论文 ----长余辉发光材料

长余辉发光材料的应用和前景 摘要:本文简单介绍了长余辉发光材料的应用方向,对长余辉发光材料的研究现状,简单介绍了一些制备方法,提出了研究的重点方向。 关键词:发光材料应用前景长余辉 1.引言: 长余辉发光材料,就是能够储存外界光辐照能量,在一定温度下(一般为室温),缓慢地以可见光的形式释放这些储存能量的材料。稀土金属离子作为一种有效的发光中心,在无机和有机发光材料中已有广泛应用。人们较早研究的是稀土硫化物长余辉发光材料,如碱土硫化盐,硫化锌等。但是稀上硫化物体系的长余辉发光材料在应用方面仍存在许多缺点,如稳定性差,发光强度低,余辉时间短,在日光照射下,会和空气中的水反应,释放HSz气体,不能很好地满足实际应用的要求,从而限制了它的发展。虽然通过加入放射性物质,如CO和Pm等,可以改善其发光时间、亮度等参数,但对环境造成了污染。因此从安全及实用角度出发,迫切需要开发一种高效无辐射性发光材料。 2.长余辉发光材料的应用举例 2.1消防安全领域 随着社会的发展,城乡居住人口密度不断增加,特别是在大城市里。车站、码头、旅店、医院、超市、商场、娱乐场所等,到处都有密集的人群。可以想象在这些有密集人群的场所以及居住区,一旦发生火灾、地震而引起停电的情况下,如何在最短的时间内使人群能安全疏散就成为一个严峻的问题。采用长余辉发光材料及制品制成的各种琉散标志、疏散指示系统、消防器材标志以及救生器材标志已在消防安全领域得到广泛应用,并起到了重要作用。 2.1.1长余辉自发光疏散指示标志系统的应用 长余辉自发光疏散指示标志系统用形象的图文指明出口路线,楼梯和楼层等,发挥了它的作用。在停电的情况下,能储存能量并在黑暗处以光的形式释放出来的此种产品很适合上述提到的情况。安全测试结果表明应用了这种产品大大提高了遇难人员的疏散。 2.1.2消防设施、器材上的应用 遇到火灾等意外停电的紧急情况,除了匆匆忙忙地寻找安全出口外。还应及时寻找灭火器材扑灭大火。但漆黑的条件下往往无法在第一时间内找到消防设备。如果在消防没备广贴有用长余辉发光材料制成的标志,或在灭火器后面安放长余辉发光标志底村,在黑暗情况下,我们就能马上看到灭火器,进行及时地处理,达到自救或被救的目的。 2.2建筑装饰装溃领域 随着科学进步和人民生活水平的日渐提高。人们对生活质量的要求和品味越来越高,建筑装饰材料也随之得到较为迅速的发展,越来越多地展现于人们的日常生活中。同时,人们追求高档美观适于现代简便快捷生活方式的家居装饰品和装修方式,许多具有持殊功能的新颖的建筑装饰材料也随之应运而生,并得到普遍的认同和广泛的应用。发光建筑装饰材料集美观装饰发光于一体,在暗处具有独特的发光视觉效果。 2.2.1发光装饰膜板 发光膜后覆有不干胶,可方便地贴于各种物体的表面,用于制作居家的装饰品、

长余辉材料

长余辉材料 长余辉发光材料简称长余辉材料,又称夜光材料。它是一类吸收太阳或人工光源所产生的光发出可见光,而且在激发停止后仍可继续发光的物质。具有利用阳光或灯光储光,夜晚或在黑暗处发光的特点,是一种储能、节能的发光材料。长余辉材料不消耗电能,但能把吸收的自然光储存起来,在较暗的环境中呈现出明亮可辨的可见光,具有照明功能,可以起到指示照明的作用,是一种“绿色”光源材料。尤其是稀土激活的碱土铝酸盐长余辉材料的余辉时间可达12h以上,具有白昼蓄光、夜间发射的长期循环蓄光、发光的特点,有着广泛的应用前景。 1、发光机理 (1)空穴传输模型 对于这类材料,最早的模型是由Matsuzawa等在SrAl2O4:Eu,Dy体系中提出的空穴传输模型。基于这个模型,Matsuzawa认为,在长余辉材料SrAl2O4:Eu,Dy中,Eu为电子俘获中心,Dy是空穴俘获中心。当材料受UV激发时,Eu可俘获电子变为Eu,由此产生的空穴经价带被Dy俘获生成Dy,停止激发后,由于热运动的关系,空穴发生逃逸,经过与上述过程相反的过程与导致Eu的特征发光,示意图如图1所示。该模型在各种Eu和Dy共掺的长余辉材料机理解释中被广泛为引用,成为Eu和Dy共掺的长余辉材料机理的通用 (2)位移坐标模型 位移坐标模型最早是邱建荣和苏锵等人提出。图2是位移坐标模型示意图。A为Eu2+的基态能级,B为其激发态能级,C能级为缺陷能级。C可以是掺入的杂质离子,也可以是由基质中的某些缺陷产生的缺陷能级。苏锵等人认为C可以起到捕获电子的作用。在外部光源的作用下,电子受激发从基态跃迁到激发态(1),一部分电子跃迁回到低能态发光(2)。另一部分电子通过弛豫过程储存在缺陷能及C中(3)。当缺陷能级电子吸收能量时,重新受到激发回到激发态能级,跃迁回基态而发光。余晖的时间长短与储存在缺陷能级中的电子数量,及吸收的能量(热量)有关,缺陷能级中的电子数量越多,余晖时间越长,吸收的能量多,从而产生持续的发光。

光致发光材料光谱分析

第六章光致发光材料光谱分析 概念: 当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收了外界能量,其电子处于激发状态,物质只要不因此而发生化学变化,当外界激发停止以后,处于激发状态的电子总要跃迁回到基态。在这个过程中,一部分多余能量通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式发射出来,就称为发光现象。概括地说,发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。日常生活中常见的如日光灯和夜明像章的发光就是光致发光。一只日光灯,接通电源以后,首先使灯管中的水银蒸汽发出紫外光(这叫做气体发光),然后紫外光激发灯管管壁上的荧光粉,从而发出可见光。夜明像章之所以能在晚上闪闪发光,是因为像章上涂了一层所谓长余辉的发光材料。当日光或灯光中的短波光照射这种像章的时候,像章上的长余辉发光材料吸收了激发光的能量并储存起来,然后慢慢地发出光来,这种发光可以持续几个小时。 紫外线和红外线虽然看不见,但我们也把他们归结为光。因此,光致发光是指激发波长落在从紫外到近红外这个范围内的发光。 下面介绍光致发光的主要特征和一般规律。 一. 吸收光谱 当光照射到发光材料上时,一部分被反射、散射,一部分透射,剩下的被吸收。只有被吸收的这部分光才对发光起作用。但是也不是所有被吸收的光的各个波长都能起激发作用。研究哪些波长被吸收,吸收多少,显然是重要的。 发光材料对光的吸收,和一般物质一样,都遵循以下的规律,即:I(λ)=I0(λ)e-kλx 其中I0(λ)是波长为λ的光射到物质时的强度,I(λ)是光通过厚度x后的强度,k λ是不依赖光强、但随波长变化而变化的,称为吸收系数。k λ 随波长(或频率) 的变化,叫作吸收光谱。发光材料的吸收光谱,首先决定于基质,而激活剂和其他杂质也起一定的作用,它们可以产生吸收带或吸收线。 二.反射光谱 如果材料是一块单晶,经过适当的加工(如切割、抛光等),利用分光光度计并考虑到反射的损失,就可以测得吸收光谱。但是多数实用得发光材料都是粉末状,是由微小的晶粒组成的。这对精确测量吸收光谱造成很大的困难。在得不

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名:陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为 1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ - Ⅴ族化合物所制成的有 p - n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 cd/m。

燃烧法制备SrAl2O4-Eu,Dy超长余辉发光材料实验报告

中南民族大学 实验报告 实验课名称:化学综合实验指导老师:唐万军 学生姓名:专业:班级:学号: 实验名称:燃烧法制备SrAl2O4:Eu,Dy超长余辉发光材料 实验日期:组别:实验成绩: 一、目的要求 1、了解稀土掺杂铝酸盐长余辉材料的合成方法与应用领域。 2、设计实验方案,采用燃烧法合成SrAl2O4:Eu2+,Dy3+,测试其发光特性。 3、学会使用LS-55光度计和屏幕亮度计,根据X射线粉末衍射谱图,分析鉴定多晶样品的物相。 二、基本原理 长余辉发光材料也被称作蓄光材料,或者夜光材料,指的是在自然光或其它人造光源照射下能够存储外界光辐照的能量,然后在某一温度下(指室温),缓慢地以可见光的形式释放这些存储能量的光致发光材料。 20 世纪90 年代以来,开发的以碱土铝酸盐为基质的稀土长余辉发光材料, 以其优异的长余辉发光性能,引起了人们对长余辉发光材料的广泛关注。目前稀土离子掺杂的碱土铝(硅)酸盐长余辉材料已进入实用阶段。国内较大的生产厂家有大连路明、济南伦博、重庆上游等。市场上可见的产品除了初级的荧光粉外,主要有夜光标牌、夜光油漆、夜光塑料、夜光胶带、夜光陶瓷、夜光纤维等, 主要用于暗环境下的弱光指示照明和工艺美术品等。随着长余辉材料的形态从粉末扩展至玻璃、单晶、薄膜和玻璃陶瓷,对长余辉材料应用的探讨也从弱光照明、指示等扩展到信息存储、高能射线探测等领域。长余辉材料受到人们越来越多的重视。 从基质成分的角度划分,目前长余辉发光材料主要包括硫化物型、碱土铝酸盐型、硅酸盐型及其它基质型长余辉发光材料。不同长余辉发光材料的发光性能见表1。 表1 不同长余辉发光材料的发光性能 发光材料发光颜色发光谱峰波长/nm 余辉时间/min BaAl2O4:Eu,Dy 蓝绿色496 120 CaAl2O4:Eu,Nd 蓝紫色446 1000 Sr4Al14O25:Eu,Dy 蓝绿色490 2000 SrAl2O4:Eu,Dy 黄绿色520 4000 Sr2MgSi2O7:Eu,Dy 蓝色469 2000

长余辉发光材料的紫外-可见反射光谱测定

长余辉发光材料的紫外-可见反射光谱测定 摘要:用“湿法”制备了长余辉发光材料,原料通过水溶液液相分子水平上的均匀混合,利用金属硝酸盐和有机还原剂在较低的温度下发生氧化还原燃烧反应,一步快速生成产品。加热起燃温度低至500℃,反应时间短,所制得的产品成份均匀,晶粒小,外观呈蓬松状态,易研磨粉碎,粉体表观密度小。以紫外-可见分光光度计测定分析了所制备样品在蓄光前后的反射光谱特征并作了探讨。结果表明,除表观密度外,“湿法”与“干法”制备的长余辉发光材料的主要性质相同,紫外-可见反射光谱可以准确描述长余辉发光材料的紫外-可见光谱性能特征。 主题词:长余辉发光材料;紫外-可见反射光谱;蓄光 1 实验 1.1长余辉发光材料的“湿法”制备 实验设备和用品:马弗炉,坩埚。 原料或试剂:SrCO3(A R),Al2(NO3)3(A R),Eu2O3(4N), Dy2O3(4N),助剂ZY2,HNO3(A R),尿素(A R)。 将原料或试剂按配方比例称量后溶于硝酸中制成溶液,均匀混合,然后置于500 ~ 900℃的马弗炉中,数分钟后即可看到混合物发生自氧化还原燃烧反应,得到蓬松状态的产品,稍加研磨即得粉状样品。 1.2紫外-可见反射光谱的测定 1.2.1 原理及光路图 紫外-可见反射光谱的测定是使用紫外-可见分光光度计所附带的积分球附件进行。积分球内表面涂有高反射率的BaSO4涂层,标准反射白板也用BaSO4粉末压制,光线入射角为8o(可设为接近0o),检测器位于积分球底部。图1 是双光束积分球附件光路图。 1.2.2 仪器型号 Shimadzu UV-2100 型双光束紫外-可见分光光度计,附反射附件积分球,可测量范围240 ~ 800nm。标准白板(反射体)为BaSO4 (A R)粉末压制。 1.2.3 测定 紫外-可见反射光谱的测定样品呈平整片状或块状即可,对粉末状态样品,可直接将粉末压附在样品架上进行测定。本文用该法测定所制备的发光粉样品的

固体发光讲义 - 第一章 发光概论

第一章 概论 1-1 发光现象 “发光”即Luminescence 一词作为一个技术名词,是专指一种特殊的光发射现象,它与热辐射有根本的区别。温度在绝对零度以上的任何物体都有热辐射。不过温度不够高时辐射的波长大多在红外区,人眼看不见。物体的温度达到5000C 以上时,辐射的可见部分就够强了,例如烧红了的铁,电灯泡中的灯丝等等。发光则是叠加在热辐射之上的一种光发射。发光材料能够发出明亮的光,(例如日光灯内荧光粉的发光),而它的温度却比室温高不了多少。因此发光有时也被称为“冷光”.热辐射是一种平衡辐射。它基本上只与温度有关而与物质的种类无关。发光则是一种非平衡辐射,反映着发光物质的特徵。 但是发光又有别于其它的非平衡辐射如反射,散射等。根据俄罗斯学派的意见,发光有一个比较长的延续时间(Duration),这就是在激发(Excitation )即外界作用停止后发光不是马上消失而是逐渐变弱,这个过程也称为余辉(afterglow )。这个延续时间长的可达几十小时,短的也有10?sec 左右,总之都比反射、散射的持续时间长很多。一般认为,反射和散射的持 续时间和光的振动周期差不多,约为10 10?14sec.。不过,10?10sec 这个数量的确定在当时可以说是有点任意性,是根据当时技术测量上的极限。随着技术的发展,现在能够测量的时间,已经突破一个飞秒(fs =10 -15秒)。而测到的发光弛豫时间短到皮秒(ps =10-12秒)的例子已不在 少数。 过去,常把在激发时的发光叫做荧光(Fluorescence),而把激发停止后的发光叫做磷光(Phosphorescence)。现在在无机物发光的领域对这两个词仍没有严格的区分,甚至还有些混淆,例如将发光粉叫做荧光粉。但在有机物的发光中,分子从单态(singlet )跃迁到基态(也是单态)的发光叫荧光,从三重态(triplet state )跃迁到基态的发光叫磷光,这是不容混淆的。 1-2 激发方式 光致发光(Photoluminescence),简写为 PL 。这是用光激发产生的发光。它的最广泛而又重要的两种应用是固体激光器和日光灯,也就是作为光源。九十年代初,日本和我国分别独立研制成一种新的长余辉发光材料,SrAl O Eu Dy 24:,(后面的符号代表掺杂的元素)余辉可以长达几十小时。在白昼光的作用下,整夜都能很容易地看得见。而过去几十年,普遍使用的长余辉材料则都是ZnS:Cu 型或碱土金属硫化物之类的物质。因此上述铝酸盐的长余辉发光材料的研制成功可以说是重大的突破。 在物理上,使用紫外直至红外这一宽广光频范围内的各种波长来激发,可以研究物质的结构和它接受光能量后内部发生的各种变化过程,包括固体中的杂质和缺陷以及它们的结构、能量状态的变化,激发能量的转移和传递,以至化学反应中的激发态过程,光生物过程,等等。如果激发光是相干的,即激光,则还能够研究物质的微区中有关基元受激发后的相位变化等。总之,发光的应用是极其广泛的,并且在不断地发展。 阴极射线发光(Cathodoluminescence),简写为CL 。这是电子束激发的发光。最常见的应

相关文档