文档库 最新最全的文档下载
当前位置:文档库 › 基于模拟退火算法的TSP算法

基于模拟退火算法的TSP算法

基于模拟退火算法的TSP算法
基于模拟退火算法的TSP算法

专业综合设计报告

课程名称:电子专业综合设计

设计名称:基于模拟退火算法的TSP算法姓名:

学号:

班级:电子0903

指导教师:朱正为

起止日期:2012.11.1-2012.12.30

专业综合设计任务书

学生班级:电子0903 学生姓名:学号: 20095830 设计名称:基于模拟退火算法的TSP算法

起止日期: 2012.11.1-2012.12.30 指导教师

专业综合设计学生日志

专业综合设计考勤表

专业综合设计评语表

一设计目的和意义 (6)

二设计原理 (6)

2.1 模拟退火算法的基本原理 (5)

2.2 TSP问题介绍................................................................................................................... .. (6)

三详细设计步骤................................................................................................................... . (9)

3.1.算法流程 (8)

3.2模拟退火算法实现步骤........................................................ 错误!未定义书签。四设计结果及分析.. (9)

4.1 MATLAB程序实现及主函数 (9)

4.1.1 计算距离矩阵 (9)

4.1.2 初始解................................................................................................................... . (10)

4.1.3 生成新解................................................................................................................... (10)

4.1.4 Metropolis 准则函数................................................................................................ (10)

4.1.5 画路线轨迹图 (11)

4.1.6 输出路径函数 (12)

4.1.7 可行解路线长度函数 (12)

4.1.8 模拟退火算法的主函数 (13)

4.2.仿真结果 (15)

五体会 (20)

六参考文献 (20)

基于模拟退火算法的TSP算法

一、设计目的和意义

旅行商问题是组合优化领域里的一个典型的、易于描述却难以处理的NP难题,其可能的路径数目与城市数目是呈指数型增长的,求解非常困难。首先介绍了旅行商问题,给出了其数学描述以及实际应用,进而给出解决TSP的一种比较精确的算法——模拟退火算法。然后阐述了模拟退火算法的基本原理,重点说明了其基本思想及关键技术。最后运用MATLAB语言实现了该算法,并将其运用到解决旅行商问题的优化之中。数值仿真的结果表明了该方法能够对数据进行全局寻优,有效克服了基于导数的优化算法容易陷入局部最优的问题。

了解模拟退火算法的TSP算法的基本思路及原理,并应用MATLAB实现仿真,熟练掌握MATLAB的操作方式及应用,能正确书写报告。

二、设计原理

2.1 模拟退火算法的基本原理

模拟退火算法足2O世纪8O年代初提出的一种基于蒙特卡罗(Mente Carlo)迭代求解策略的启发式随机优化算法。它通过Metropolis接受准则概率接受劣化解并以此跳

出局部最优,通过温度更新函数的退温过程进行趋化式搜索并最终进入全局最优解集。其出发点是基于物理中固体物质的退火过程与一搬的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成。

(1)加温过程。其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高时,固体将熔为液体,从而消除系统原先存在的非均匀状态。

(2)等温过程。对于与周围环境交换热量而温度不变的密封系统,系统状态的自发变化总是朝自由能减少的方向进行的,当自由能达到最小时,系统达到平衡状态。

(3)冷却过程。使粒子热运动减弱,系统能量下降,得到晶体结构。

其中,加热过程对应算法的设定初温,等温过程对应算法的 Metropolis 抽样过程,冷却过程对应控制参数的下降。这里能量的变化就是目标函数,要得到的最优解就是能量最低态。Metropolis 准则是SA算法收敛于全局最优解的关键所在,Metropolis 准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱。

模拟退火算法为求解传统方法难处理的TSP问题提供了一个有效的途径和通用框架,并逐渐发展成一种迭代自适应启发式概率性搜索算法。模拟退火算法可以用以求解不同的非线性问题,对不可微甚至不连续的函数优化,能以较大的概率求的全局有化解,该算法还具有较强的鲁棒性、全局收敛性、隐含并行性及广泛的适应性,并且能处理不同类型的优化设计变量(离散的、连续的和混合型的),不需要任何的辅助信息,对目标函数和约束函数没有任何要求。利用 Metropolis 算法并适当的控制温度下降过程,在优化问题中具有很强的竞争力,此设计即为基于模拟退火算法的TSP算法。

SA算法实现过程如下(以最小化问题为例):

(1)初始化:取初始温度T0足够大,令T=T0,任取初始解S1,确定每个T时的迭代次数,

即 Metropolis 链长L。

(2)对当前温度T和k=1,2,……,l,重复步骤(3)~(6)。

(3)对当前S1随机扰动产生一个新解S2。

(4)计算S2的增量df=f(S2)-f(S1)其中f为S1的代价函数。

(5)若df<0 ,则接受S2作为新的当前解,即S1=S2;否则计算S2的接受概率exp (-df/T),即随机产生(0,1)区间上均匀分布的随机数 rand,若exp(-df/T)>rand 也接受S2作为新的当前解,S1=S2;否则保留当前解S1。

(6)如果满足终止条件Stop,则输出当前解s1为最优解,结束程序。终止条件Stop 通常为:在连续若干个 Metropolis 链中新解s2都没有被接受时终止算法,或是

设定结束温度。否则按衰减函数衰减 T 后返回步骤(2)。

以上步骤成为 Metropolis 过程。逐渐降低控制温度,重复 Metropolis 过程,直至满足结束准则 Stop,求出最优解。

2.2 TSP问题介绍

旅行商问题(Traveling Salesman Problem,简称TSP)又名货郎担问题,是威廉·哈密尔顿爵士和英国数学家克克曼(T.P.Kirkman)于19世纪初提出的一个数学问题,也是著名的组合优化问题。问题是这样描述的:一名商人要到若干城市去推销商品,已知城市个数和各城市间的路程(或旅费),要求找到一条从城市1出发,经过所有城市且每个城市只能访问一次,最后回到城市1的路线,使总的路程(或旅费)最小。TSP 刚提出时,不少人认为这个问题很简单。后来人们才逐步意识到这个问题只是表述简单,易于为人们所理解,而其计算复杂性却是问题的输入规模的指数函数,属于相当难解的问题。这个问题数学描述为:假设有n个城市,并分别编号,给定一个完全无向图G=(V,E),V={1,2,…,n},n>1。其每一边(i,j)∈E有一非负整数耗费 C i,j(即上的权记为C i,j,i,j∈V)。G的一条巡回路线是经过V中的每个顶点恰好一次的回路。一条巡回路线的耗费是这条路线上所有边的权值之和。TSP问题就是要找出G的最小耗费回路。

人们在考虑解决这个问题时,一般首先想到的最原始的一种方法就是:列出每一条可供选择的路线(即对给定的城市进行排列组合),计算出每条路线的总里程,最后从中选出一条最短的路线。假设现在给定的4个城市分别为A、B、C和D,各城市之间的耗费为己知数,如图1所示。我们可以通过一个组合的状态空间图来表示所有的组合,如图

(1-1)

图 1 顶点带权图图 2 TSP问题的解空间树

从图中不难看出,可供选择的路线共有6条,从中很快可以选出一条总耗费最短的路线:顶点序列为(A,C,B,D,A)。由此推算,若设城市数目为n时,那么组合路径数则为(n-1)!。很显然,当城市数目不多时要找到最短距离的路线并不难,但随着城市数目的不断增大,组合路线数将呈指数级数规律急剧增长,以至达到无法计算的地步,这就是所谓的“组合爆炸问题”。假设现在城市的数目增为20个,组合路径数则为(20-1)!≈1.216×1017,如此庞大的组合数目,若计算机以每秒检索1000万条路线的速度计算,也需要花上386年的时间[6]。

三、详细设计步骤

3.1算法流程

模拟退火算法求解流程框图如图1所示。

图3 模拟退火算法求解流程框图

3.2模拟退火算法实现步骤如下: (1)控制参数的设置

需要设置的主要控制参数有降温速率q 、初始温度T 0、结束温度T end 以及链长L 。 (2)初始解

对于n 个城市TSP 问题,得到的解就是对1~n 的一个排序,其中每个数字为对应城市的编号,如对10个城市的TSP 问题{1,2,3,4,5,6,7,8,9,10},则 |1|10|2|4|5|6|8|7|9|3就是一个合法的解,采用产生随机排列的方法产生一个初始解S 。

(3)解变换生成新解

通过对当前解S 1进行变换,产生新的路径数组即新解,这里采用的变换是产生随机数的方法来产生将要交换的两个城市,用二邻域变换法产生新的路径,即新的可行解S 2。

例如n=10时,产生两个[1,10]范围内的随机整数r 1和r 2,确定两个位置,将其对换位置,如r 1=4,r 2=7

9 5 1 6 3 8 7 10 4 2 得到的新解为

9 5 1 7 3 8 6 10 4 2

(4)Metropolis 准则 若路径长度函数为f (S ),新解的路径为f (S 2),路径差为d f =f (S 2)-f (S 1),则Metropolis 准则为

{

1,0

= exp(),0

df P df

df T <≥如果df<0,则以概率1接受新路线,否则以概率exp (-df/T )接

受新路线。 (5)降温

利用降温速率q 进行降温,即T=qT,若T 小于结束温度,则停止迭代输出当前状态,否则继续迭代。 四 、设计结果及分析 4.1 MATLAB 程序实现及主函数

4.1.1 计算距离矩阵

利用给出的N个城市的坐标,算出N个城市的两两之间的距离,得到距离矩阵(N N)。计算函数为Distance,得到初始群种。程序如下

4.1.2 初始解

初始解的产生直接使用MATLAB自带的函数randperm,如城市格式为N个,则产生初始解:

4.1.3 生成新解

解变换生成新解函数为NewAnswer,程序代码如下:

4.1.4 Metropolis 准则函数

Metropolis 准则函数为Metropolis,程序代码如下:

4.1.5 画路线轨迹图

画出给的路线的轨迹图函数为DrawPath,程序代码如下:

4.1.6 输出路径函数

将得到的路径输出显示在Command Window 中,函数名为OutputPath。

4.1.7 可行解路线长度函数

计算可行解的路线长度函数为PathLength ,程序代码如下:

4.1.8 模拟退火算法的主函数

模拟退火算法参数设置如表一所列。

表一参数设定

主函数代码如下:

4.2仿真结果及分析

优化前的一个随机路线图如图4所示:

图4总路线距离约为57.00

优化以后的最优解路线如下图5:

图5

该优化路径的总路程近似为30.00,已为最优解。模拟退火算法进化过程图如下图6:

由图可以看出,优化前后路径长度得到很大改进,变为原来的52.4%,65代以后路径长度已经保持不变了,可以认为已经是最优解了。

上图为用模拟退火算法解决TSP的GUI(Graphics User Interface,图形用户界面)。这是由14个城市构成的一个对称TSP实例,利用上述算法对该实例进行模拟退火求解,设定初始温度T0=1000,冷却速率为0.9,经过仿真得到的最优解与已知最优解非常接近,所需时间也令人满意。

五、体会

使用MATIAB对求解TSP问题的模拟退火算法程序进行了仿真。平均结果表明,首先该算法能够找到TSP问题的最优解,说明算法的正确性。其次算法对TSP问题的求解时间并不呈指数增长,说明了算法的有效性。

5.1关于MATLAB的体会

MATLAB 是当今科学界最具影响力、也是最具活力的软件,它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。然后,了解到了MATLAB软件的功能。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。我们应该熟练掌握其使用方法。

5.2关于基于模拟退火算法的TSP算法的体会

模拟退火算法是依据Metropolis准则接受新解,该准则除了接受优化解外,还在一定的限定范围内接受劣解,这正是模拟退火算法与局部搜索法的本质区别,在避免陷入局部极小值、提高解空间的搜索能力和扩大搜索范围方面具有明显的优越性。本次设计给出了一种TSP的求解算法,并用MATLAB语言编程实现了算法。算法实验结果表明,对大多数组合优化问题而言,模拟退火算法在求最优解和求解时间均达到了满意的结果。利用MATLAB语言实现的模拟退火程序,能够找到系统的最优解,仿真结果证明了该方法的有效性。采用该方法既可使我们熟悉MATLAB语言,又可以加深对模拟退火算法的认识和理解,以此来设计智能系统。

旅行商问题一直都是业界研究的重点,其应用范围广,在许多领域都有其重要的指导意义。随着对TSP问题研究的深入,目前已经提出了多种TSP问题的变种,如:多目标TSP问题、局部重复路径的TSP问题、多人TSP问题以及带时间约束的TSP 问题等等。TSP的算法研究领域中,除非有新的解决组合优化问题的算法框架出现,各种仿自然的算法结合局部优化的算法思想仍将是研究的重点。针对各种模拟退火算法的优

劣,如何扬长避短,提高算法的时间效率和寻优能力,目前许多学者致力于各种求解算法的综合集成的研究,如遗传模拟退火算法、模拟退火蚁群算法、混合遗传算法、混合蚂蚁算法等等。结合实际问题设计适当的算法参数和局部优化策略以构造混合算法将是解决TSP的重要途径。客观地说,目前并不存在一种求解TSP问题的最佳算法,各个算法都有其应用的局限性:经典算法追求精确解,但是忽略了算法的时空消耗,可行性不高;而现代流行改进算法则是追求近似解,降低了算法的时空消耗,但是在求解结果上往往不能让人满意。我认为今后在TSP的算法研究上应该把握3个方面:继续改进已有TSP算法;采用人工智能的思想,创造新的TSP算法;集合各个算法的优点,进

基于模拟退火算法的TSP算法

专业综合设计报告 课程名称:电子专业综合设计 设计名称:基于模拟退火算法的TSP算法姓名: 学号: 班级:电子0903 指导教师:朱正为 起止日期:2012.11.1-2012.12.30

专业综合设计任务书 学生班级:电子0903 学生姓名:学号: 20095830 设计名称:基于模拟退火算法的TSP算法 起止日期: 2012.11.1-2012.12.30 指导教师 专业综合设计学生日志

专业综合设计考勤表 专业综合设计评语表

一设计目的和意义 (6) 二设计原理 (6) 2.1 模拟退火算法的基本原理 (5) 2.2 TSP问题介绍................................................................................................................... .. (6) 三详细设计步骤................................................................................................................... . (9) 3.1.算法流程 (8) 3.2模拟退火算法实现步骤........................................................ 错误!未定义书签。四设计结果及分析.. (9) 4.1 MATLAB程序实现及主函数 (9) 4.1.1 计算距离矩阵 (9) 4.1.2 初始解................................................................................................................... . (10) 4.1.3 生成新解................................................................................................................... (10) 4.1.4 Metropolis 准则函数................................................................................................ (10) 4.1.5 画路线轨迹图 (11) 4.1.6 输出路径函数 (12) 4.1.7 可行解路线长度函数 (12) 4.1.8 模拟退火算法的主函数 (13)

模拟退火算法介绍

解析模拟退火算法 一.爬山算法(Hill Climbing) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 模拟退火算法描述:

若J(Y(i+1))>=J(Y(i))(即移动后得到更优解),则总是接受该移动 若J(Y(i+1))

模拟退火算法原理及改进

作者简介:李香平(1978 ̄),男,湖北监利人,中国地质大学计算机学院硕士研究生,研究方向为科学研究与可视化;张红阳(1982 ̄),男,湖北咸宁 人,中国地质大学计算机学院硕士研究生,研究方向为数据挖掘与数据仓库。 模拟退火算法原理及改进 李香平,张红阳 (中国地质大学计算机学院,湖北武汉430074) 摘 要:模拟退火算法是一种强大的随机搜索算法,能应用于许多前提信息很少的问题,能渐进地收敛于最优值。对 SA算法进行了介绍,论述了SA算法的原理并对算法进行了改进,展示了计算实验的结果。 关键词:模拟退火;全局优化中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2008)04-0047-02 0引言 近年来,传统的单一算法越来越不适应大规模非线性规划 问题。它们要求目标函数是可微的和收敛的。SA能很好地弥补它们的缺陷。 从用于统计力学的MonteCarlo方法上受到启发,SA算法在 1983被Kirkpatrick提出来。对比传统局部搜索算法,SA在搜索 时会在搜索空间上下移动而不依赖初始条件,擅长解决多维问题。此外,它能处理任意程度的非线性、 不连续和随机的问题。能处理任意边界和约束的评估函数。因此,它能轻易处理有脊背和高地的函数。只要初温高、退火表适当,它就能得到全局最优。SA成功应用于组合优化、神经网络、图像处理和代码设计。 1模拟退火算法原理 组合优化问题是在给定的约束条件下,求目标函数的最值 的问题。设(S,f)是组合优化问题的一个实例,iopt∈S若对所有 i∈S,都有f(iopt)≥f(i),则称f(iopt)≤f(i)为minf(i)的最优解。 SA来源于物理热力学原理,综合了固体退火与组合优化 之间的类似性。类似固体的复杂系统,先被加热到一个物质粒子能自由移动的很高的温度,当它慢慢冷却时,它的能量减少。如果“冷却”过程足够慢,系统将忽略局部稳定构造,到达能量最低状态,即基态。 在模拟的每一步中,新解的产生按照Metropolistransition法则,一个新的状态从现有的状态中产生,这个法则能以一定的概率接受能量上升(即产生劣解)的新状态,而能量下降是优化的总目的。法则如下所示: p(x=>y)= 1, f$%y≤f$%xexp-f$% xf$%y $ % , otherwis&e f是系统能量,t是温度。SA的一般框架: Generatedinitialstateatrandom;Generatedinitialtemperature;REPEATREPEAT y=generate(,); IFaccept(,y,)THEN=y UNTIL'innerloopstopcriterion'satisfied 为了提高SA的性能,我们应该仔细处理控制参数的协调。(1)初始温度的选择。初始温度太高会花费高昂的计算时间,太低会拒绝劣解的接受,会丢失SA全局优化的优点。本文提出了一个初始温度的公式: t0=’f+ lnx -1 ’f+ 是函数增量的平均值,χ 是初始的接受概率。(2)温度降低策略。温度降低越快,陷入局部的概率就越大。然而,温度降低太慢会导致算法速度慢得不能接受。本文采用了一种快速的非线性降低法: tk= t0 1+k k=1,2,3,…… (3)适当的邻域结构。在退火期间,步长太小导致算法在探索相位空间效率低,太大新解总被拒绝。在持续优化时,新的等价值均一地按间距分布在以xi的坐标为中心的邻域中,沿轴的间距的一半被看作步长向量ξ。当点落在f的定义域内时,就随机产生新解。 (4)终止标准。内循环是单一温度下在各种条件下Marcov链的一种渐进接近全局最优的模拟实现,即循环Marcov链长次数结束。外循环取某个温度t作为算法终止标准,或者是迭代若 软件导刊 SoftwareGuide 第7卷第4期 2008年4月Vol.7No.4Apr.2008

模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。它的思想是再1953 年由metropolis 提出来的,到1983 年由kirkpatrick 等人成功地应用在组合优化问题中。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e- △ E/(kT),其中E为温度T时的内能,AE为其改变量,k 为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解-计算目标函数差T接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooli ng Schedule)控制,包括控制参数的初值t 及其衰减因子△ t、每个t值时的迭代次数L和停止条件S。 模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若厶t‘ <0 则接受S'作为新的当前解S,否则以概率exp(- △ t‘ /T) 接受S'作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。 可在此基础上开始下一轮试验。而当新解被判定为舍弃时,

模拟退火算法及其改进_蒋龙聪

第4卷第2期2007年4月  工程地球物理学报 CHIN ESE J OU RNAL OF EN GIN EERIN G GEOP H YSICS Vol 14,No 12Apr 1,2007 文章编号:1672—7940(2007)02—0135—06 模拟退火算法及其改进 蒋龙聪,刘江平 (中国地质大学地球物理与空间信息学院,武汉430074) 作者简介:蒋龙聪(1983— ),男,硕士研究生,现在主要从事地震数据处理和反演理论方法研究。E 2mail :longcja @https://www.wendangku.net/doc/072450971.html, 刘江平(1957— ),男,教授,博士生导师,主要从事地震勘探的科研与教学工作。E 2mail :liujp @https://www.wendangku.net/doc/072450971.html, 摘 要:借鉴遗传算法中的非均匀变异思想,用非均匀变异策略对当前模型扰动产生新的模型,对传统的模 拟退火算法提出了改进,通过多峰值函数数值优化测试结果表明,该算法在高温的时候能够进行大范围的搜索,随着温度的降低,逐渐缩小解的搜索范围,大大加快了收敛速度,证实了该改进算法的有效性和高效性。 关键词:模拟退火算法;非均匀变异;数值最优化;反演 中图分类号:P631文献标识码:A 收稿日期:2006— 12—07R evised Simulated Annealing Algorithm Jiang Longcong ,Liu Jiangping (I nstitute of Geop hysics and Geomatics ,China Universit y of Geosciences ,W uhan 430074,China ) Abstract :Based on t he idea of non 2uniform mutation in genetic algorit hm ,we present a novel revised simulated annealing (RSA ),which used t he non 2uniform mutation to generate a new model f rom current model.Tested by some numerical f unctions ,RSA can search in t he large area for t he solutions in high temperat ure.Wit h t he lowering of t he temperat ure ,t he area of searching t he solutions will be gradually reduced and convergence will speed up.So t he re 2sult s p rove t he effectiveness of RSA. K ey w ords :simulate annealing ;non 2uniform mutation ;numerical optimal ;inversion 1 引 言 人类对地球内部物理性质(包括速度、密度、电导率、温度等)以及矿产资源分布的了解,大多来自地表地质和地球物理、地球化学资料的反演和解释[1]。反演方法可以分为线性反演和非线性反演两种,线性反演已成为一套科学的反演理论,然而,绝大部分地球物理问题都是非线性的,并且实践表明,线性反演方法有容易陷入局部极值和依赖于初始值等缺点。因此,地球物理学者们不 断的尝试开发非线性反演方法,比如人工神经网 络[2]、小波多尺度反演[3]、模拟退火算法[4]等。 模拟退火算法是近年发展起来的全局最优化算法,其主要优点是;不用求目标函数的偏导数及解大型矩阵方程组,即能找到一个全局最优解,而且易于加入约束条件,编写程序简单。目前此法已开始用于解决非线性地球物理反问题,如波形反演、静校正、叠前偏移速度分析等非线性反演中,并取得了较好的效果。 然而,由于模拟退火法是建立在随机搜寻方法的基础上,要达到一定的精度要求,每一模型参

模拟退火算法基本原理介绍

模拟退火算法 一、模拟退火算法概念 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 二、模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。 终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。 模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

模拟退火算法报告

模 拟退火算法 一 定义 1 概念 什么是退火?在热力学上,退火现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」)时,会导致不是最低能态的非晶形。如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。 似乎,大自然知道慢工出细活:缓缓降温,使得物体分子在每一温度时,能够有足够时间找到安顿位置,则逐渐地,到最后可得到最低能态,系统最安稳。 模拟退火算法(SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo 迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。 模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。在迭代更新可行解时,以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,假定初始解为左边蓝色点A ,模拟退火算法会快速搜索到局部最优解B ,但在搜索到局部最优解后,不是就此结束,而是会以一定的概率接受到左边的移动。也许经过几次这样的不是局部最优的移动后会到达全局最优点D ,于是就跳出了局部最小值。 根据热力学的原理,在温度为T 时,出现能量差dE 的降温的概率为P(dE),表示 为: ()?? ? ??=kT dE E P ex p d 。其中k 是波尔兹曼常数,值为-2310×13)1.3806488(=k ,exp 表示自然指数,且dE<0。因此dE/kT<0,所以P(dE)函数的取值范围是(0,1)。满足概率密度函数的定义。其实这条公式更直观意思就是:温度越高,出现一次能量差为P(dE)的降温的概率就越大;温度越低,则

关于模拟退火算法及其影响因素的研究

关于模拟退火算法及其影 i《_■ SILICONV VALLE工响因素的研究 邓超陈文宣王树青 (东莞南博职业技术学院广东东莞523083)信毫科学 插要:通过使用模拟退火算法模拟逼近函数:y=x+cosx+i开展实验,并在实验过程中对模拟退火算法的影响因素进行比较t并提出相应的改进方案,直观的将两者的差别体现出来。 关键词:模拟退火算法;权系数;阀值:神经网络结构;MATLAB 中圈分类号:TP3文献标识码:A文章编号z1671-7597(2010)0410045--01 1鬟拟量火算法的基本曩客 模辛}l退火算法最初的思想[自Metropolis在1953年提出,其来源统计物理学中对于固体退火过程的模拟。他采用Metropolis准则接收新解,用冷去系数的参数对算法进程进行控制。使得算法在多项时间里得出最优解.2对曩板退火算法进行试t研究 1)用模拟退火算法模拟逼近函数:y=x+cosx+1并对神经网络的权系数、阀值进行学习其神经网络结构为1—3-4_3—1. 2)具体试验过程如下: 模拟退火算法的实现主要采用了¨TLAB软件,利用其中的神经网络工具箱进行编程模拟.在网络UUl练方面,隐层采用logsig(厂(j)=_—二—__-) H’a烈一哪函数作为传递函数。在输出层方面采用线性输出函数imrelin(,(善)=#).降温函数采用t=^t. ①给定的学习样本、初始温度、结柬温度及降温速率^. @在某一温度下.以正态分布(Matlab中用randn)生成函数产生新的权系数增量△翻。‘虬.=缈+△翻生成新的权系数。 ③根据代价函数求出神经网络的输出偏差E∥t 胛=;(歹一y)2. @如果P,rS0,则取翻r+l为新值,即q=够+l? ⑤如果P玎>o,采用接收函数:B(i)=[I+e=V/‘】_1 以其值和[0,l】随机数d进行比较: 若B(i)>d。则Cd=够.。;, 若B(i)≤d,则国不变。 @以t:xt修改参数t.即缓慢降温。返回②执行. 3)试验生产的原函数和网络输出图如下: 4)结果分析t 由学习的结果来看,学习的曲线和原曲线相差较大,而且函数收敛得很慢.其原因是模拟退火法的初始参数包括初温tO,结束温度tf’衰减温度deltaT及控制内循环的马尔可夫链长L的选择对整个结果产生较大影响。 3樱报遗火法的改盛可行性方毫 1)设计合适的状态产生函数:设计高效的退火历程;避免状态的迂回搜索;采用并行搜索结构:改进对温度的控制方式;选择合适的初始状态;设计合适的算法终止准则。 2)也可通过增加某些来实现:如增加升温或重升温过程;增加记忆功能{增加朴充搜索过程。 4-}墨横挂鼍火算法的实验改进方囊 ”对原算法的神经喇络结构进行更改.由卜3-4—3一l改为卜10一h 2)调整即网络训练参数:具体为添加代码为: net.trainParaLepochs23000: net.trainPar∞.goal=0.002: net.trainParanIr20.0l: I开始训练 net2train(net,x.y):) 在对原算法改进后试验产生的原函数和网络输出图如下(改进处在源程序中体现): 由结果可以看到,改进后的算法收敛速度加快,函数的逼近和精度都已经较高。 参考文献: 【l】王士同、陈剑夫等编著。问题求解的人工智能神经网络方法r气象出版社. [2]焦李成.神经网络系统理论,西安,西安电子科技大学出版社,1996.6. 作者简介: 邓超(1979-),男.汉族.广东省韶关市人,硕士.东莞南博职业技术 学院助教,研究方向;神经网络? 万方数据

爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算 法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜 索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点 这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不 能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不 到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头) 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。 以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思) 爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。 模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。 模拟退火的伪代码: 代码 /* * J(y):在状态y时的评价函数值 * Y(i):表示当前状态 * Y(i+1):表示新的状态 * r:用于控制降温的快慢 * T:系统的温度,系统初始应该要处于一个高温的状态 * T_min :温度的下限,若温度T达到T_min,则停止搜索 */ while( T > T_min ) { dE = J( Y(i+1) ) - J( Y(i) ) ; if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动 Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动 else { // 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也 if ( exp( dE/T ) > random( 0 , 1 ) ) Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动 } T = r * T ; //降温退火,0

模拟退火算法

模拟退火算法 摘要:模拟退火算法是一种新的随机搜索方法,它来源于固体退火原理,基于MetropoliS 接受准则,与以往的近似算法相比,具有以一定的概率接受恶化解,引进算法控制参数,隐含并行性等特点;模拟退火算法应用范围很广,其应用需要满足三方面的要求,具有描述简单、使用灵活、运行效率高和较少受初始条件约束等优点,然而收敛速度慢,执行时间长,特别适合并行计算。 关键词:模拟退火算法来源;基本思想;特点;一般要求;优缺点 1.引子 在科学与工程计算中,经常发生的一个问题是在Rn 中或者是在一个有界区域上求某个非线性函数f(x)的极小点。在f(x)可导时,一个最基本的算法就是最速下降法。这一方法从某一选定的初值开始,利用如下公式进行迭代,即 )(1n n n n x f x x ?-=+η 此处f ?表示函数梯度,n η是一个与迭代步数有关的参数,它的适当选取, 保证每步迭代均使函数值下降。除此之外,还存在多种寻求函数极小的算法。然而以速降法为代表的传统算法具有共同的缺点,它们都不保证求得全局极小,只能保证收敛到一个由初值0x 决定的局部极小点。而模拟退火算法的出现很好地解 决了这个问题。 2.SA 算法的起源 模拟退火算法来源于固体退火原理,其核心思想与热力学的原理极为类似,尤其相似于液体流动和结晶以及金属冷却和退火的方式。高温下,液体的大量分子彼此之间进行着相对自由移动。如果该液体慢慢地冷却,热能可动性就会消失。大量原子常常能够自行排列成行,形成一个纯净的晶体,该晶体在各个方向上都被完全有序地排列在几百万倍于单个原子的距离之内。因此,这一过程的本质在于缓慢地冷却,以争取足够的时间,让大量原子在丧失可动性之前进行重新分布,这是确保到低能量状态所必需的条件。简单而言,物理退火过程由以下三部分组成:1)加温过程。其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高时,固体将熔解为液体,从而消除系统原先可能存在的非均匀态,使随后进行的冷却过程以某一平衡态为起点。熔解过程与系统的熵增过程相联系,系统能量也随温度的升高而增大。2)等温过程。物理学的知识告诉我们,对于与周围环境交换热量而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态。3)冷却过程。其目的是使粒子的热运动减弱并渐趋有序,系统能量逐渐下降,从而得到低能的晶体结构。 模拟退火算法与物理退火过程的相似关系

模拟退火算法解决函数优化问题

智能信息处理实验报告 14电科一班 XX XXXX 模拟退火算法解决函数优化问题

实验二 一、实验目的 1. 掌握模拟退火算法的基本原理和步骤。 2. 复习VB 、VC 的基本概念、基本语法和编程方法,并熟练使用VB 或VC 编写遗传算法程序。 二、实验设备 微机 三、实验原理 模拟退火算法是基于Monte Carlo 迭代求解策略的一种随机寻优算法,其出发点是基于物理退火过程与组合优化之间的相似性,模拟退火算法由某一较高初温开始,利用具有概率突跳特性的Metropolis 抽样策略在解空间中进行随机搜索,伴随温度的不断下降重复抽样过程,最终得到问题的全局最优解。 标准模拟退火算法的一般步骤可描述如下: (1) 令m =0,给定初温t m ,随机产生初始状态s m ; (2) Repeat ; s old =s m ; (2.1) Repeat ; (2.1.1) 产生新状态:s new =Generate(s old ); (2.1.2) 若min{1, exp[(C (s old )-C (s new ))/t m ]}≥random[0, 1],则s old =s new ; (2.1.3) Until 抽样稳定准则满足; (2.2) 退温:t m +1=update(t m ),s m +1=s old ,m =m +1; (3) Until 算法终止准则满足; (4) 输出算法搜索结果:s m 。 四、实验内容及步骤 1. 上机编写程序,解决以下函数优化问题:()221min 10i i i f x x =??=≤ ? ?? ∑X 2. 调试程序。 3. 根据实验结果,写实验报告。

模拟退火算法

一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。 图1 二. 模拟退火(SA,Simulated Annealing)思想 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来

接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A 后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 模拟退火算法描述: 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率 P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻: 爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。 模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

模拟退火算法研究概况

模拟退火算法文献综述 吕正祥交控1501 1模拟退火算法简述 1.1模拟退火算法的来源 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。 模拟退火算法(Simulated Annealing,SA)最早由Kirkpatrick 等应用于组合优化领域,它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。 模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。 1.2模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。

1.3模拟退火的基本思想 (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。

模拟退火算法原理及matlab源代码

模拟退火算法 模拟退火算法是一种通用的随机搜索算法,是局部搜 索算法的扩展。它的思想是再1953年由metropolis提出 来的,到1983年由kirkpatrick等人成功地应用在组合优化问题中。 模拟退火算法来源于固体退火原理,将固体加温至充 分高,再让其徐徐冷却,加温时,固体内部粒子随温升变 为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每 个温度都达到平衡态,最后在常温时达到基态,内能减为 最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其 改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目 标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法 终止时的当前解即为所得近似最优解,这是基于蒙特卡罗 迭代求解法的一种启发式随机搜索过程。退火过程由冷却 进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空 间的新解;为便于后续的计算和接受,减少算法耗时,通 常选择由当前新解经过简单地变换即可产生新解的方法, 如对构成新解的全部或部分元素进行置换、互换等,注意 到产生新解的变换方法决定了当前新解的邻域结构,因而 对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标 函数差仅由变换部分产生,所以目标函数差的计算最好按 增量计算。事实表明,对大多数应用而言,这是计算目标 函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接 受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解, 这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。

数学建模优秀方法-模拟退火算法简介

模拟退火算法 算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。 如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了退火过程。假设材料在状态i 之下的能量为)(i E ,那么材料在温度T 时从状态i 进入状态j 就遵循如下规律: (1)如果)()(i E j E ≤,接受该状态被转换。 (2)如果)()(i E j E >,则状态转换以如下概率被接受: 其中K 是物理学中的波尔兹曼常数,T 是材料温度。 在某一个特定温度下,进行了充分的转换之后,材料将达到热平衡。这时材料处于状态i 的概率满足波尔兹曼分布: ∑∈--= =S j KT j E KT i E T e e i x P )()()( 其中x 表示材料当前状态的随机变量,S 表示状态空间集合。 显然

| |1lim )()(S e e S j KT j E KT i E T = ∑∈-- ∞ → 其中||S 表示集合S 中状态的数量。这表明所有状态在高温下具有相同的概率。而当温度下降时, ∑∑∑?-- ∈-- -- →∈-- -- →+ =min min min min min min min )()()(0 )()(0 lim lim S j KT E j E S j KT E j E KT E i E T S j KT E j E KT E i E T e e e e e ?? ? ??∈==∑∈-- -- →其它若 0 ||1 lim min min )()(0 min min min S i S e e S j KT E j E KT E i E T 其中)(min min j E E S j ∈=且})(|{min min E i E i S ==。 上式表明当温度降至很低时,材料会以很大概率进入最小能量状态。 假定我们要解决的问题是一个寻找最小值的优化问题。将物理学中模拟退火的思想应用于优化问题就可以得到模拟退火寻优方法。 考虑这样一个组合优化问题:优化函数为+→R x F :,其中S x ∈,它表示优化问题的一个可行解,}0,|{>∈=+y R y y R ,S 表示函数的定义域。S x N ?)(表示x 的一个邻域集合。 首先给定一个初始温度0T 和该优化问题的一个初始解)0(x ,并由 )0(x 生成下一个解))0(('x N x ∈,是否接受'x 作为一个新解)1(x 依赖于下 面概率: ??? ??<=→--其它若 ))0(()'(0 )) 0(()'( 1)')0((T x f x f e x f x f x x P

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现 模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索功能的随机性近似算法。与求解线性规划的单纯形法、Karmarkar 投影尺度法,求解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。 模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近似最优解。固体退火过程的物理现象和统计性质是模拟退火算法的物理背景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。 1 物理退火过程 物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体的热力学过程。在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏,固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却过程以某一平衡态为始点。溶解过程与系统的熵增过程相联系,系统能量也随温度的升高而增大。 冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有序。当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。退火过程中系统的熵值(衡量不能利用的热能数量)不断减少,系统能量也随温度降低趋于最小值。冷却时,若急剧降低温度,则将引起淬火效应,即固体只能冷凝为非均匀的亚稳态,系统能量也不会达到最小值。 退火过程中系统在每一温度下达到平衡态的过程,可以用封闭系统的等温过程来描述。根据玻尔兹曼(Boltzmann )有序性原理,退火过程遵循应用于热平衡封闭系统的热力学定律——自由能减少定律: “对于与周围环境交换热量而温度保持不变的封闭系统,系统状态的自发变化总是朝着自由能减少的方向进行,当自由能达到最小值时,系统达到平衡态”。 系统的自由能F E TS =-,其中E 是系统的内能,T 是系统温度,S 是系统的熵。设 i 和j 是恒温系统的两个状态,即i i i F E TS =-和j j j F E TS =-,而 ()()j i j i j i F F F E E T S S E T S ?=-=---=?-? 若系统状态由i 自发变化到j ,则应有0F ?<。显然,能量减少(0E ?<)与熵增加

相关文档