文档库 最新最全的文档下载
当前位置:文档库 › 散热器的工作原理及安装位置

散热器的工作原理及安装位置

散热器的工作原理及安装位置

散热器是利用热水或蒸汽将热量传入房间的一种散热设备。采暖期间房间的失热量主要通过散热器的散热量补充,从而使房间的温度维持在设计范围内,达到采暖的目的。

散热器将热量送入房间是一个复杂的传热过程,但在计算中通常将简化为简单的稳定传热过程考虑。即首先由热媒(热水或蒸汽)将热量通过对流或凝结过程传递到散热器内表面,然后由散热器内表面传递到散热器的外表面,再由散热器外表面将热量通过对流和辐射的方式传到室内。

散热器的安装位置应力求使室内温度场均匀,较迅速地加热由室外渗入房间的冷空气,并且尽量少占用室内有效空间。

鉴于以上原则鲁本斯暖气片总结,散热器一般布置在房间外墙一侧,有外窗时应安装在窗台的正下方,这样可直接加热由窗缝渗入室内的冷空气,还可以阻止冷气流沿着外墙下降,避免外围护结构形成的冷辐射和冷空气直接侵袭人体,使室温趋于均匀。

当楼梯间也采暖时,散热器应尽量布置在底层,或按一定的比例分配在下部各层,因为楼梯间形成了利于热空气上升的竖直通道,散热器不止在底层有利于热空气上升,即使高层部分的楼梯间不布置散热器,同样可达到舒适的温度。

汽车散热器结构与生产工艺

汽车散热器结构与生厂工艺 散热器是水冷式内燃机冷却系统中不可缺少的一个组成部分。汽车发动机的冷却系统,一般是由水泵、散热器、节温器、冷却风扇、风扇电机、电机开关、护风罩等部分组成。发动机在工作时机内的温度很高,所以为保证其能够正常工作,必须对其进行冷却。散热器的作用是利用冷风(既可以是汽车行驶时迎面流动空气造成的冷风,也可以是冷却风扇提供的冷风)来冷却被发动机高温零件加热的发动机冷却液。 散热器是由冷却用的散热器芯子、储存冷却液的上水室和下水室组成的。由于散热器工作时会产生水蒸气,所以上水室还承当着气水分离的作用。散热器芯子是散热器的核心部分,起主要的散热作用。散热器芯子由散热管、散热带(或散热片)、上下主片和左右挡板组成。由于它具有足够的散热面积,因此能保证将必须的热量从发动机散发到周围的大气中去。而且散热器芯子是用极薄的导热性能好的金属及其合金造成的,能使散热器芯子以最小的质量和尺寸达到最高的散热效果。 管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。同时还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成。与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。 按照散热器中冷却液流动的方向可以将散热器分为纵流式和横流式。纵流式散热器在汽车发动机上使用极为广泛。由于纵流式散热器的散热芯子垂直分布,芯子上下分别布置了上水室和下水室,因而高度尺寸比较大,在发动机罩盖较低的轿车上布置比较困难。所以有些轿车上采用散热器芯子水平布置,用左右两侧的水室代替传统的上下水室结构,冷却液左右流动就是所谓的横流式散热器。这种散热器宽度尺寸较大,芯子正面有效面积增加10%,从而加大风扇尺寸,得到更多迎风面积,使气流更为流畅。 汽车散热器的材料主要有两种:铝质和铜制,前者用于一般乘用车,后者用于大型商用车;汽车散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势,在轿车与轻型车领域逐步取代铜散热器的同时,铜散热器制造技术和工艺有了长足的发展,铜硬钎焊散热器在客车、工程机械、重型卡车等发动机散热器方面优势明显。

钢制柱形散热器的工作原理

钢制柱形散热器的工作原理 钢制柱形散热器以钢为原料,具有重量轻、金属强度高、耐压能力强、安装维修方便、散热快,生产能耗小,外形美观,样式多、颜色多等优势赢得消费者信赖,但钢制柱形散热器容易氧化腐蚀,对水质要求比较高,不适合使用地热水采暖。钢制柱形散热器主要由走水部分和对流片组成,其主要是水暖,将水作为热媒载体,以散热器钢材为导体首先作用于空气加热然后带动空间温度上升已达到取暖目的,此外,钢制柱形散热器的散热效果主要与散热器内部的热媒温度和外部空气温度以及与空气接触的面积还有空气流速等有关,所以热媒来源的温度高低也直接和根本上决定和影响钢制柱形暖气片的实际使用效果。钢制柱形暖气片—钢制柱形暖气片的特点 钢制柱形散热器承压力高,散热性能好,表面光滑,便于清洁,无需劳神的擦拭,该类型散热器外形色彩丰富,线条简约流畅,造型大方多样,极易与家装所融合。而且钢制柱形散热器水流量大、水阻小、不易结垢、消耗系统能量少,供热成本低,产品结实耐用、不易损坏。目前钢制柱形散热器在工厂、学校、宾馆、机关、高档住宅及其他场所,都被广泛安装运用。钢制柱形散热器风行于世与它的美观是分不开的,钢制散热器颜色大都为标准白色,非常大气时尚;而且现在市场上钢制散热器型号多样,能与不同装修风格的房子完美融合。钢制柱形暖气片—钢制柱形散热器安装保养 专业安装:钢制柱形散热器安装需要专业认真真诚的职业精神,专一专业的职业态度,大致可以比较完美铸就钢制散热器安装温暖生活的第一要义!私人定制散热器历史起源于上世纪末,以全新的理念别具一格的服务水准,为客户提供私人定制360采暖方案,当时钢制散热器量产化刚刚起步,大多数钢制散热器都是单独制作,具有很强的私人性。 保养:采暖季没有特殊的保养要求,诸如,不能再散热器上晾晒衣服;保持散热器清洁等等自不待多言;钢制散热器安装通常在非采暖季,于是这一时段的保养尤其重要了,根据不同材质,钢制散热器需要满水保养因为钢制材质更容易腐蚀,杜绝氧气与钢制材料直接接触是保养钢制散热器安装的最根本要求。以上就是为大家介绍的我们的钢制柱形散热器的一些工作原理及特点还有我们购买了暖气片之后,安装和保养的一些方法,希望大家可以参考了解,当我们大家以后购买使用散热器的话,钢制柱形散热器是不错的选择。

汽车散热器的工作原理审批稿

汽车散热器的工作原理 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

汽车散热器的工作原理 为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。内燃机的冷却装置有三种形式,水冷却、油冷却和空气冷却。汽车发动机冷却装置以水冷却为主,用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。为了保证冷却效果,汽车冷却系统一般由散热器(1)、节温器(2)、水泵(3)、缸体水道(4)、缸盖水道(5)、风扇等组成。以轿车为例,散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器里面的冷却水不是单纯的水,而是由水(符合饮用水质量)、防冻液(通常为乙二醇)和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的沸点,在一定工作压力之下,轿车冷却液的允许工作温度可达摄氏120度,超过了水的沸点且不容易蒸发。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,水泵叶轮推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。节温器实际上是一个阀门,其原理是利用可随温度伸缩的材料,例如石蜡或乙醚之类的材料做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现代轿车已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电动机运转。这两种形式的散热器电扇运转实际上都由温度传感器控制。散热器兼作储水及散热作用,如果单纯依赖散热器,有三个缺点,一是水泵吸水一侧因压力低而容易沸腾,叶轮容易穴蚀;二是气水分离不好容易气阻;三是温度高冷却液容易沸腾逸走。因此设计师就加装了膨胀水箱,它的上下两根水管分别与散热器上部和水泵进水口联接,防止上述问题的产生。现在轿车的冷却系统比过去复杂了,主要是增加了温度控制元件,散热器风扇可随发动机温度变化而“随机应变”,冷却系统普遍采用冷却液。当然,发动机的热也是燃料所产生

散热风扇工作原理

散热风扇工作原理 散热器都需要通过风扇的强制对流来加快热量的散失,因此一款风扇的好坏,对整个散热效果起到了决定性的作用。配备一个性能优良的CPU风扇也是保证整部电脑顺利运转的关键因素之 一。" DC风扇运转原理: 根据安培右手定则,导体通过电流,周围会产生磁场,若将此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移动。在直流风扇的扇叶内部,附着一事先充有磁性之橡胶磁铁。环绕着硅钢片,轴心部份缠绕两组线圈,并使用霍尔感应组件作为同步侦测装置,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。硅钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。当吸斥力大于虱扇的静摩擦力时,扇叶自然转动。 由于霍尔感应组件提供同步信号,扇叶因此得以持续运转,至于其运转方向,可依佛莱明右手定则决定。 AC风扇运转原理: AC风扇与DC风扇的区别。前者电源为交流,电源电压会正负交变,不像DC风扇电源电压固定,必须依赖电路控制,使两组线圈轮流工作才能产生不同磁场。AC风扇因电源频率固定,所以硅钢片产生的磁极变化速度,由电源频率决定,频率愈高磁场切换速度愈快,理论上转速会愈快,就像直流风扇极数愈多转速愈快的原理一样。不过,频率也不能太快,太快将造成激活困难。我们电脑散热器上应用的都是DC风扇。而一般一款好的风扇主要考察风量、转速、噪音、使用寿命长短、采用何种扇叶轴承等。 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约为 0."028立方米/分钟)。50×50x10mm CPU风扇一般会达到10 CFM, 60×60x25mm风扇通常能达到20-30的CFM。在散热片材质相同的情况下,风量

热管散热器的工作原理

热管散热器的工作原理 热管散热器的工作原理,热管:是一种传热性极好的人工构件,常用的热管由三;⑴在真空状态下,液体的沸点降低;;⑵同种物质的汽化潜热比显热高的多;;⑶多孔毛细结构对液体的抽吸力可使液体流动;典型的构造和工作过程如右图所示:;与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸;热管利用“相变”传热的原理与金属铜、铝等实体材料热管散热器的工作原理 热管:是一种传热性极好的人工构件,常用的热管由三部分组成:主体为一根封闭的金属管,内部有少量工作介质和毛细结构,管内的空气及其他杂物必须排除在外。热管工作时利用了三种物理学原理: ⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液体流动。 典型的构造和工作过程如右图所示: 与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸汽携带汽化潜热经空腔流向另一段(冷凝段),汽体经管壁与外界冷媒体换热放出潜热而完成了传热任务,冷凝成液体,经毛细结构的抽吸力量或重力回流到蒸发段进入下一个工作循环。金旗舰铜制散热器114*60 热管利用“相变”传热的原理与金属铜、铝等实体材料的天然传热方式完全不同。热管的有效导热性是铜、铝等有色金属的成百上千

倍,所以热管是传热领域的重大发明和科技成果,给人类社会带来巨大的实用价值。 热管散热器:利用热管技术能对许多老式散热器或换热产品和系统作重大的改进而产生出的新产品。热管散热器就是这一方面的一个很好的典型。散热器的 热阻是由材料的导热性和体积内的有效面积决定的。实体铝或铜散热器在体积达到0.006m3时,再加大其体积和面积也不能明显减小热阻了。对于双面散热的分立半导体器件,风冷的全铜或全铝散热器的热阻只能达到0.04℃/W。而热管散热器可达到0.01℃/W。在自然对流冷却条件下,热管散热器比实体散热器的性能可提高十倍以上。 散热系统:热管问世以来,使电力电子装置的散热系统有了新的发展。无论何种散热方式,其最终散热媒体是空气,其他都是中间环接。空气自然对流冷却是最直接和简便的方式,热管使自冷的应用范围迅速扩大。因为热管自冷散热系统无需风扇、没有噪音、免维修、安全可靠,热管风冷甚至自冷可以取代水冷系统,节约水资源和相关的辅助设备投资。此外,热管散热还能将发热件集中,甚至密封,而将散热部分移到外部或远处,能防尘、防潮、防爆,提高电器设备的安全可靠性和应用范围。

汽车散热系统原理

汽车散热系统原理 一、汽车水冷却系统散热原理 众所周知,发动机是汽车的心脏,它工作时会产生非常大的热量。这些热量必须及时散发掉,不然就会影响发动机的工作效力,严重时(比如缺水状态工作)会损坏发动机缸体,直至瘫痪。 因此,一般汽车都是通过用水冷却的方法进行散热。其原理就是将发动机缸体的外壁做成散热片状安装在密闭的机壳内,通过两根进出水管道与水箱连接,在循环水泵的作用下进行循环,用循环水流将发动机缸体上的高温带至安装在汽车前方迎风处的散热水箱内,利用水箱鳍片式的散热方式将热量散发到空气中,冷却后的循环水流再次进入发动机缸体散热部位。 散热能力下降的原因及后果 从上示意图可以看出,整个发动机的冷却水系统共有三个热交换处:一个是缸体散热部位,热交换的表现方式及目的是用循环水流带走缸体上活塞做功产生的热量。第二个是接近沸腾的热水流进入内壁呈格栅状的散热水箱后,其热量被迅速传递并散发到水箱的铝或铜质的鳍片上。第三是水箱鳍片在吸收热水的热量后,其表面上的高温被气流带到空气中消化所产生的热交换。 从上述的三个热交换的方式及原理我们可以看出,只要任何一个热交换的能力下降,都会导致发动机活塞缸体的散热达不到设计要求。如果这三处的热交换能力同时下降,将会严重影响发动机的输出功率,并且会增加活塞运动的阻力,能源消耗大幅上升,最严重时直接损坏缸体,造成发动机报废。所以,如果平时不注重这些方面的保养,一般车辆会在行驶了5,6万公里后,出现能耗增加、动力下降,发动机噪音加大等现象,有的会因为水温过高而报警并熄火,夏天大家经常会看见公共汽车行驶时开着后盖的景象,那就是因为水箱散热差的问题。

那么是什么原因导致这三个热交换处的能力下降的呢,我们先来看缸体散热部位和水箱内壁,随着发动机使用时间的延长,这二个产生热交换的地方就和我们日常生活中使用铝或铜质的水壶烧开水一样,时间久了会在内壁上凝结一层呈褐色的坚固物体,它主要有两种成分:一种是水中的氧分和金属的化合反应所生成的氧化物(而且水温越高,氧化物的生成越快),它的导热能力不到铜或铝的1/20。另一种是碳酸氢钙(俗称水垢),它在金属表面的生成式 是:Ca(HCO3)2=CaCO3?+H2O+CO2?,它的导热能力就更差了,不到铜或铝的1/40。可能大家已经看见过金属水壶结垢的现象,但并不知道它带来的浪费。我们反复做过试验,用一个新的水壶和一个用了二年的水壶,在里面加入同样多、同样温度的水,放在同一个燃气炉上烧至沸腾,新的水壶所用的时间比旧的要短13,15%。也就是说旧水壶会多用13,15%的燃料,这部分就是因为结垢造成热交换能力下降所带来的能耗浪费,这也是汽车行驶5,6万公里后油耗上升的原因。 而冷却水箱表体鳍片散热能力下降也是因为金属表面和空气中的水份化合 反应生成的氧化物,及车辆行驶过程中吸入的灰尘、油污覆盖在其表面所造成。 二、汽车空调散热系统的原理 很多驾车的朋友都有这样的感受:行驶了一两年后的汽车,其空调器的制冷效果是高速时比低速时好,低速时又比堵车时好许多,碰到在太阳直照时堵车,空调器简直没有效果,而能耗还会增大,动力明显降低,那是什么原因造成的呢, “能量守恒定律”是大家在中学的物理课上都学过的,空调器单位时间内在室内产生的制冷量永远和室外的排热量是相等的。所以,制冷量越大的空调器其室外机的冷凝器(散热片面积)就越大,它们之间的匹配关系是在产品设计时就已经决定了的。

汽车散热器的工作原理

汽车散热器的工作原理 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

汽车散热器的工作原理为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。内燃机的冷却装置有三种形式,水冷却、油冷却和空气冷却。汽车发动机冷却装置以水冷却为主,用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。为了保证冷却效果,汽车冷却系统一般由散热器(1)、节温器(2)、水泵(3)、缸体水道(4)、缸盖水道(5)、风扇等组成。以轿车为例,散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器里面的冷却水不是单纯的水,而是由水(符合饮用水质量)、防冻液(通常为乙二醇)和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的沸点,在一定工作压力之下,轿车冷却液的允许工作温度可达摄氏120度,超过了水的沸点且不容易蒸发。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,水泵叶轮推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。节温器实际上是一个阀门,其原理是利用可随温度伸缩的材料,例如石蜡或乙醚之类的材料做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现代轿车已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电

汽车散热器的工作原理

汽车散热器的工作原理 为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。内燃机的冷却装置有三种形式,水冷却、油冷却和空气冷却。汽车发动机冷却装置以水冷却为主,用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。为了保证冷却效果,汽车冷却系统一般由散热器(1)、节温器(2)、水泵(3)、缸体水道(4)、缸盖水道(5)、风扇等组成。以轿车为例,散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。散热器里面的冷却水不是单纯的水,而是由水(符合饮用水质量)、防冻液(通常为乙二醇)和各种专门用途的防腐剂组成的混合物,也称为冷却液。这些冷却液中的防冻液含量占30%~50%,提高了液体的沸点,在一定工作压力之下,轿车冷却液的允许工作温度可达摄氏120度,超过了水的沸点且不容易蒸发。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动,水泵叶轮推动冷却液在整个系统内循环。这些冷却液对发动机的冷却,要根据发动机的工作情况而随时调节。当发动机温度低的时候,冷却液就在发动机本身内部做小循环,当发动机温度高的时候,冷却液就在发动机—散热器之间做大循环。实现冷却液做不同循环的控制部件是节温器。节温器实际上是一个阀门,其原理是利用可随温度伸缩的材料,例如石蜡或乙醚之类的材料做开关阀门,当水温高时材料膨胀顶开阀门,冷却液进行大循环,当水温低时材料收缩关闭阀门,冷却液小循环。为了提高散热器的冷却能力,在散热器后面安装风扇强制通风。以前的轿车散热器风扇是由曲轴皮带直接带动的,发动机启动它就要转,不能视发动机温度变化而变化,为了调节散热器的冷却力,要在散热器上装上活动百页窗以控制风力进入。现代轿车已经普遍使用风扇电磁离合器或者电子风扇,当水温比较低时离合器与转轴分离,风扇不动,当水温比较高时由温度传感器接通电源,使离合器与转轴接合,风扇转动。同样,电子风扇由电动机直接带动,由温度传感器控制电动机运转。这两种形式的散热器电扇运转实际上都由温度传感器控制。散热器兼作储水及散热作用,如果单纯依赖散热器,有三个缺点,一是水泵吸水一侧因压力低而容易沸腾,叶轮容易穴蚀;二是气水分离不好容易气阻;三是温度高冷却液容易沸腾逸走。因此设计师就加装了膨胀水箱,它的上下两根水管分别与散热器上部和水泵进水口联接,防止上述问题的产生。现在轿车的冷却系统比过去复杂了,主要是增加了温度控制元件,散热器风扇可随发动机温度变化而“随机应变”,冷却系统普遍采用冷却液。当然,发动机的热也是燃料所产生的能量,将其冷却实际上是一种不得已的浪费。因此人们正研究一种无需冷却的陶瓷材料做成的隔热发动机,将来一旦实现,发动机将会又小又简单。

散热器原理

散热器原理 第1章:[散热原理——功耗与热阻] 第1页 第2章:[散热原理——散热方式]第3页 第3章:[散热原理——散热器材质]第7页 第4章:[散热原理——铜铝结合技术]第9页 第5章:[散热原理——热管技术]第15页 第6章:[散热原理——加工成型技术] 第18页 第7章:[散热原理——底面处理工艺] 第26页 第8章:[散热原理——风扇基本原理] 第29页 第9章:[散热原理——轴承和叶片] 第34页 第10章:[散热原理——接口与扣具]第41页 [散热原理——功耗与热阻] 随着处理器发热量的不断提高,很多有助于散热的新兴技术也飞速发展。如果要深入了解一款散热器的性能必须了解其原理。 功耗 功耗是CPU最为重要的参数之一。其主要包括TDP和处理器功耗 TDP是反应一颗处理器热量释放的指标。TDP的英文全称是“Thermal Design Power”,中文直译是“热量设计功耗”。TDP功耗是处理器的基本物理指标。它的含义是当处理器达到负荷最大的时候,释放出的热量,单位未W。单颗处理器的TDP值是固定的,而散热器必须保证在处理器TDP最大的时候,处理器的温度仍然在设计范围之内。 处理器的功耗:是处理器最基本的电气性能指标。根据电路的基本原理,功率(P)=电流(A)×电压(V)。所以,处理器的功耗(功率)等于流经处理器核心的电流值与该处理器上的核心电压值的乘积。 处理器的峰值功耗:处理器的核心电压与核心电流时刻都处于变化之中,这样处理器的功耗也在变化之中。在散热措施正常的情况下(即处理器的温度始终处于设计范围之内),处理器负荷最高的时刻,其核心电压与核心电流都达到最高值,此时电压与电流的乘积便是处理器的峰值功耗。 处理器的功耗与TDP 两者的关系可以用下面公式概括:

散热器类型原理

散热器类型原理 散热器在生活中大家应该都见过并且使用过;金旗舰散热器工作原理是散热器主要靠对流,如果对流被破坏;散热器的结构可以分为弯头形式同集箱形式,弯头形式;散热器的种类:1.水冷散热器:水冷散热器水冷系统;2.热管散热器:热管散热器它包括带有对流口的散热;3.风扇散热器:风冷散热器风扇每分钟送出或吸入的;4.FUL 型散热器:FUL型散热器是—种新型的换;散热器在生活中大家应该都见过并且使用过。首先散热器是用来传导、释放热量的一系列装置的统称。 散热器工作原理是散热器主要靠对流,如果对流被破坏,热效率会被大大降低。传统的家居装饰往往是包暖气罩,而根本不考虑最基本的物理原理——热对流,是取暖设备的正常供暖遭到破坏。热空气轻,冷空气重,因此,空调装在高处,目的是让冷气从头而降,散热器装在低处,易于热气上升。加强对流才能迅速提高热量,取暖费就不白交。 散热器的结构可以分为弯头形式同集箱形式,弯头形式主要用在蒸汽加热空气,导热油加热空气等,这种结构的优点是弯头可以伸缩散热管不容易拉裂,缺点是管与端板处易漏风,解决方法是把弯头用钢板全部封住焊死;集箱形式的散热器也可以用在蒸汽加热空气,导热油加热空气等,这终结构在高温或温差变化的情况下管子容易拉裂,所以设计过程中可以考虑设计成浮头式。

金旗舰暖气片88/60散热器的种类:1.水冷散热器:水冷散热器水冷系统一般由以下几部分构成:热交换器、循环系统、水箱、水泵和水,根据需要还可以增加散热结构。而水因为其物理属性,导热性并不比金属好(风扇制冷通过金属导热),但是,流动的水就会有极好的导热性,也就是说,水冷散热器的散热性能与其中散热液(水或其他液体)流速成正比,制冷液的流速又与制冷系统水泵功率相关。而且水的热容量大,这就使得水冷制冷系统有着很好的热负载能力。相当于风冷系统的5倍,导致的直接好处就是CPU工作温度曲线非常平缓。使用风冷散热器的系统在运行CPU负载较大的程序时会在短时间内出现温度热尖峰,或有可能超出CPU警戒温度,而水冷散热系统则由于热容量大,热波动相对要小得多。 2.热管散热器:热管散热器它包括带有对流口的散热壳体,在散热壳体内置的上、下支承板中置入若干个真空超导管,在超导管内装有热工介质,超导管的下端插入热媒盒内,热媒盒上设有与热源连通的进、出水口,在超导管下部和热媒盒外壁上设有保温层,当热源停止供热时,通过保温层的蓄热释放来维持热传导的,具有热源间歇供热就能满足室内取暖的需要,节约能源,供热成本低等优点。 3.风扇散热器:风冷散热器风扇每分钟送出或吸入的空气总体积,如果按立方英尺来计算,单位就是CFM;如果按立方米来算,就是C MM,散热器产品经常使用的风量单位是CFM。在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指标。显然,风

汽车散热器技术

汽车散热器技术 汽车水冷发动机散热器由冷却用的散热器芯部、进水室和出水室三部分组成。冷却液在散热器芯内流动,空气从散热器芯外高速流过,冷却液和空气通过散热器芯部进行热量交换。 目前,汽车散热器的结构形式可分为直流型和横流型两大类。 散热器芯部的结构形式主要有管片式和管带式两大类。管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。 管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成。与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。开百叶窗波状带的散热器传热效率同普通平片散热片相比可提高160%。 二、散热器对材料的要求 传热系数是评价散热器散热性能的重要参数,散热器材料的导热性能和焊接质量对其影响很大。散热器的工作条件恶劣,一般位于汽车前端迎风处,不仅要经受风吹雨淋和汽车废气的污染,还要承受反复的热循环和周期性的振动。另外,散热器内长期流动着冷却液,对散热器有锈蚀及腐蚀作用。因此,为保证散热器可靠地发挥散热作用,对其材料性能有如下要求:必须具有良好的导热性能,具有一定的强度和较强的耐腐蚀性,具有良好的加工性能及钎焊性能,具有良好的经济性。目前,常用的散热器材料主要有铜、铝和工程塑料等。 三、散热片的材料 散热片选用导热系数较高的材料对提高热传导效率很有帮助,在金属的导热性方面,银的导热系数最高,其次是铜、铝。银的价格昂贵,不适宜做散热材料,目前比较常用是铜、铝及铝合金。铝的导热系数低,但通过增加鳍片增大散热面积,也能起到较好的散热效果。 散热片的主要材料和成型技术可分为: 全铝散热器这是传统散热器,具有生产工艺简单、易于加工、材料成本低廉,价格便宜等优点。缺点是,整体散热效果欠佳。 铝是汽车工业使用较多的金属材料,也是汽车轻量化的首选材料。铝的最大优势是质量轻,比重仅为铜的三分之一,铝资源远较铜丰富,成本也远低于铜;虽然铝的热传导率较铜低,仅为铜的60%,但由于铜散热器存在热传导率更低的锡保护层,使得铝散热器的热效率反而要高于铜散热器。另外,铝还有良好的铸造加工性能。 但是,铝散热器焊接工艺性差、生产设备投入大是长期难以解决的问题,限制了铝散热器的广泛应用。直到20世纪80年代中期,美国采用钎焊工艺制造铝散热器取得成功后,才使铝散热器的规模化生产和应用成为可能。但是,铝散热器较差的耐蚀性,使得铝散热器在使用条件差的重型卡车、工程车及军用车上,则难于使用。 全铜散热器铜是重要的有色金属,也是导热性最好的金属材料,具有优良的成形加工性、可钎焊性和耐蚀性,长期以来一直作为汽车散热器的首选材料。但铜的资源和价格一直是困扰铜散热器广泛应用的主要原因。 散热器的散热效率至关重要,所以对铜板的表面质量要求甚高,要求板材表面无划伤、起皮、氧化、油污等缺陷,要有良好的板型、平直度和导热性等。铜带用于制作散热器鳍片。要求有良好的导热性、焊接性、较高的强度、尺寸公差精确。铜管主要用于制作到热管,要求有良好的导热性、焊接性、内外表面清洁,较高的强度等。铜棒主要用于制作铜铝结合散热器的铜芯,表面直接和CPU粘合在一起,要求有良好的导热性、焊接性、表面清洁,较高的强度等。 为了增加铜散热器的耐腐蚀性,避免铜直接与腐蚀性物质接触,一般要在铜散热器的表面上覆盖锡保护层,但这样却会影响铜散热器的散热效率,使散热性能大幅度下降。近年来,为了进一步提高铜散热器的

汽车散热器生产工艺及汽车散热器报价方法

培训提纲 培训内容提纲 1、行业简介,公司简介,公司的基础架构。人员简介,生产设备等简介。 2、目录书的阅读方法 3、公司产品的构成。(水箱,主边板,水室,机冷,芯体,暧风) 4、生产流程,操作规程 5、安全生产。设备操作,消防安全。 6、品质检验标准 目的与要求: 一、 1、让参训人员了解公司的历程及构架,水箱的甚础知识。 2、让参训人员熟习水箱的结构和品质。 3、懂得生产流程及操作规程,懂得一台产品的制造过程。 二、重点: 1、水箱工作原理,构成知识; 2、制造流程及制造过程中可能出现的品质问题及解决方法; 3、报价方法(成本计算方法)(对象:销售人员)。 三、方法: 采用理论讲解、样品展示、分解说明等方式。 四、内容: 1.水箱工作原理

汽车水箱又称散热器,是汽车冷却系统中主要机件。其功用是散发热量,冷却水在水套中吸收热量,流到散热气后将热量散去,再回到水套内而循环不断。 汽车水箱主要是由散热器芯体、水管、散热空气叶片、上水室及下水室等组合而成,上水室在散热器上,由芯体将上水室与散热器下面之水室相连通,热水由上而下流到下水箱时变为温水,散热空气叶片则构成孔道,由风扇的抽吸及车子前进行驶时的相对风速,使大量的冷空气经空气孔道,将流经水管中冷却水的热量吸收,再发散于大气中。冷却系统的功用是将引擎中多余而无用的热量,从引擎中散发出去,使引擎在各种速率或行驶状况下均能保持在正常温度下运作。 2.水箱构成 水箱(芯体,水室,附件,包装) 材质 a.主板,边板4343/3003/7072 A. 芯体b.扁管带复合&不带复合层 c.网带不带复合&带复合层 a.上下水室PA66 水B.水室b.机冷全铝、全铜、铜铝 箱c.胶条三元乙丙 C.附件 a.外侧板铁、铝 b .挂耳铁、铝

散热器工作原理

工作原理: 汽车发动机在工作时产生大量热量,为了保护发动机正常工作以及提高汽油燃烧率,因此在发动机达到一定工作温度时必须使用一定冷却方式促使发动机工作温度降低。 在汽车发动机的缸体里,有条多供冷却水循环的水道,与置于汽车前部的散热器(俗称水箱)通过水管相连接,构成一个大的水循环系统,在发动机的上出水口,装有一个水泵,通过风扇皮带来带动,把发动机缸体水道内的热水泵出,把冷水泵入。以此方式冷却液在发动机缸套内以及散热器之间做循环运动,其中共分为两种循环模式: 一、当发动机内部温度(即冷车)未达到节温器默认工作状态时(一般认定为80度),冷却水泵不做工作,冷却液不流经汽车散热器,只在发动机内部进行循环,靠冷却液与发动机之间的温差进行热交换。 在发动机与循环冷却液温度达到节温器默认工作状态时(80度以上),发动机循环水泵开始工作,将发动机内部冷却液泵入散热器之内,使之在散热器内部进行一次循环,由汽车运动时产生的冷风以及为保证散热风量安装的电子扇工作时带动的冷却风吹过散热器,将大部分热量带走,完成一次热交换,再由水泵将冷却液泵入发动机内部进行再次热交换工作。以此方式进行汽车发动机降温工作。(注:汽车散热器循环管道为扁平状管体,可以接近最大程度的散热面积,同时与散热管接触的为带有开窗的散热带,在保证有效尺寸的同时,开窗可以改变冷却风风向的同时,将最多热量带入空气中,总之这种结构可以实现最大热交换面积) 为及时补充消耗的冷却热,通常在散热器旁安装一自动补偿储液桶,这样可以实现自动补偿损耗的冷却液,保证散热器工作稳定性。 当发动机内部蒸汽压力高于设定值时,为保证散热器工作安全性,其加水盖上部压力阀自动弹开,部分冷却液通过溢水管流入储水罐之中,使散热器内部压力降低;当冷却液温度降低时,冷却液通过真空阀再回流至散热器内,有效避免了冷却液的流失损耗。

膨胀水箱工作原理

膨胀水箱工作原理文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

三根软管分别接:发动机冷却液加注口(加冷却液),发动机出水口处有个出气口(除气,高压水进入膨胀箱),水箱出气口(除气,高压水进入膨胀箱)。 1-散热器;2-水泵进水管;3-水泵;4-节温器;5-水套出气管;6-水套出水管;7-进水口处保持较高的水压,减少膨胀水箱;8-散热器出气管;9-补充 水管;10-旁通管 )膨胀水箱 1.结构 膨胀水箱多用半透明材料(如塑料)制成。透过箱体可直接方便地观察到液面高度,无需打开散热器盖。如图所示,膨胀水箱的上部用一个较细的软管与水箱的加水管相连,底部通过水管与水泵的进水侧相连接,通常位置略高于散热器。 2.作用 (1)把冷却系变成永久性封闭系统,减少了冷却液的损失; (2)避免空气不断进入,避免了机件的氧化腐蚀; (3)减少了穴蚀; (4)使冷却系中水、汽分离,保持系统内压力稳定,提高了水泵的泵水量。

膨胀水箱的作用原理 一般冷却系冷却液的流动是靠水泵的压力来实现的。水泵吸水的一侧压力低,易产生蒸汽泡,使水泵的出水量显着下降,并引起水泵叶轮和水套的穴蚀,在其表面产生麻点或凹坑,缩短了叶轮和水套的使用寿命。加装膨胀水箱后,由于膨胀水箱和水泵进水口之间存在补充水管,使水泵了汽泡的产生。散热器中的蒸汽泡和水套中的蒸汽泡通过导管和进入膨胀水箱,从而使气水彻底分离。由于膨胀水箱温度较低,进入的气体得到冷凝,一部分变成液体,重新进入水泵。而积存在膨胀水箱液面上的气体起缓冲作用,使冷却系内压力保持稳定状态。 一管式膨胀水箱 有的冷却系不用膨胀水箱而使用储液罐。即用一根管子把散热器和储液罐的底部或上部(管口插入液面以下)连通。但这种装置只能解决气水分离及冷却液消耗问题,而对穴蚀没有明显的改善。当冷却液温度升高时,散热器中液体膨胀、汽化,使散热器盖蒸汽阀开启,散热器中的蒸汽或液体沿导管流入储液罐。当冷却水温度降低时,散热器内压力下降,液体沿原路径流向散热器。 补充冷却液 储液罐上有两条刻线,冷却液应加到上刻线(FULL),当液面降到下刻线(LOW)时,应及时补充。

汽车散热器的结构

汽车水箱(散热器)原理、分类、材质、结构及 其相关介绍 水箱散热器属于汽车冷却系统,发动机水冷系统中的散热器由进水室、出水室、主片及散热器芯等三部分构成。冷却液在散热器芯内流动,空气在散热器芯外通过。热的冷却液由于向空气散热而变冷,冷空气则因为吸收冷却液散出的热量而升温,所以散热器是一个热交换器。 【汽车水箱(散热器)的原理】 为了避免发动机过热,燃烧室周围的零部件包括缸套、缸盖、气门等必须进行适当的冷却。为了保证冷却效果,汽车冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。 冷却液在散热器芯内流动,空气在散热器芯外通过。热的冷却液由于向空气散热而变冷,冷空气则因为吸收冷却液散出的热量而升温,所以散热器是一个热交换器。 【散热器分类】 按照散热器中冷却液流动的方向可将散热器分为纵流式和横流式两种。 散热器芯部的结构形式主要有管片式和管带式两大类。 【散热器材质】

汽车散热器主要有两种:铝质和铜制。汽车散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势,在轿车与轻型车领域逐步取代铜散热器的同时,铜散热器制造技术和工艺有了长足的发展,铜硬钎焊散热器在客车、工程机械、重卡等发动机散热器方面优势明显。 国外轿车配套的散热器多为铝散热器,主要是从保护环境的角度来考虑 (尤其是欧美国家)。在欧洲新型的轿车中,铝散热器占有的比例平均为64%。从我国汽车散热器生产的发展前景看,硬钎焊生产的铝散热器逐渐增多。硬钎焊铜散热器也在公共汽车、载货汽车和其他工程设备上得到应用。 【散热器结构】 汽车散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,目前,正朝着轻型、高效、经济的方向发展。汽车散热器结构也不断适应新发展,最常见的汽车散热器的结构形式可分为直流型和横流型两类。 散热器芯部的结构形式主要有管片式和管带式两大类。管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。 散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。同时还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。 管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成,与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。

汽车散热器的结构

汽车散热器的结构 Modified by JACK on the afternoon of December 26, 2020

汽车水箱(散热器)原理、分类、材质、结构及其相 关介绍 属于汽车系统,水冷系统中的散热器由进水室、出水室、主片及散热器芯等三部分构成。在散热器芯内流动,空气在散热器芯外通过。热的冷却液由于向空气散热而变冷,冷空气则因为吸收冷却液散出的热量而升温,所以散热器是一个热交换器。 【汽车水箱(散热器)的原理】 为了避免发动机过热,燃烧室周围的零部件包括、缸盖、气门等必须进行适当的冷却。为了保证冷却效果,汽车冷却系统一般由散热器、、、缸体水道、缸盖水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。 冷却液在散热器芯内流动,空气在散热器芯外通过。热的冷却液由于向空气散热而变冷,冷空气则因为吸收冷却液散出的热量而升温,所以散热器是一个热交换器。 【散热器分类】 按照散热器中冷却液流动的方向可将散热器分为纵流式和横流式两种。 散热器芯部的结构形式主要有管片式和管带式两大类。 【散热器材质】

汽车散热器主要有两种:铝质和铜制。汽车散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势,在轿车与轻型车领域逐步取代铜散热器的同时,铜散热器制造技术和工艺有了长足的发展,铜硬钎焊散热器在客车、工程机械、等发动机散热器方面优势明显。 国外轿车配套的散热器多为铝散热器,主要是从保护环境的角度来考虑(尤其是欧美国家)。在欧洲新型的轿车中,铝散热器占有的比例平均为64%。从我国汽车散热器生产的发展前景看,硬钎焊生产的铝散热器逐渐增多。硬钎焊铜散热器也在公共汽车、载货汽车和其他工程设备上得到应用。 【散热器结构】 汽车散热器是汽车水冷发动机冷却系统中不可缺少的重要部件,目前,正朝着轻型、高效、经济的方向发展。汽车散热器结构也不断适应新发展,最常见的汽车散热器的结构形式可分为直流型和横流型两类。 散热器芯部的结构形式主要有管片式和管带式两大类。管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。 散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。同时还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。 管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成,与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。

散热器的基本原理之知识普及篇

散热器的基本原理之知识普及篇 众所周知电子器件的工作温度直接决定其使用寿命和稳定性,要让PC各部件的工作温度保持在合理的范围内,除了保证PC工作环境的温度在合理范围内之外,还必须要对其进行散热处理。而随着PC计算能力的增强,功耗与散热问题日益成为不容回避的问题。一般说来,PC内的热源大户包括CPU、主板(南桥、北桥及VRM部分)、显卡以及其他部件如硬件、光驱等,它们工作时消耗的电能会有相当一部分转化为热量。尤其对CPU而言,如果用户进行了超频,其内部元件的发热量更是不可小觑,要保证其稳定地工作更必须有效地散热。 热传递的原理与基本方式 学过中学物理的朋友都知道,热传递主要有三种方式: 第一传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 第二对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。 热对流的公式为“Q=H×A×ΔT”。公式中Q依旧代表热量,也就是热对流所带走的热量;H为热对流系数值,A则代表热对流的有效接触面积;ΔT代表固体表面与区域流体之间的温度差。因此热对流传递中,热量传递的数量同热对流系数、有效接触面积和温度差成正比关系;热对流系数越高、有效接触面积越大、温度差越高,所能带走的热量也就越多。 第三辐射:热辐射是一种可以在没有任何介质的情况下,不需要接触,就能够发生热交换的传递方式,也就是说,热辐射其实就是以波的形式达到热交换的目的。 既然热辐射是通过波来进行传递的,那么势必就会有波长、有频率。不通过介质传递就需要的物体的热吸收率来决定传递的效率了,这里就存在一个热辐射系数,其值介于0~1之间,是属于物体的表面特性,而刚体的热传导系数则是物体的材料特性。一般的热辐射的热传导公式为“Q =E×S×F×Δ(Ta-Tb)”。公式中Q代表热辐射所交换的能力,E是物体表面的热辐射系数。在实际中,当物质为金属且表面光洁的情况下,热辐射系数比较小,而把金属表面进行处理后(比如着色)其表面热辐射系数值就会提升。塑料或非金属类的热辐射系数值大部分都比较高。S是物体的表面积,F则是辐射热交换的角度和表面的函数关系,但这里这个函数比较难以解释。Δ(Ta-Tb)则是表面a的温度同表面b之间的温度差。因此热辐射系数、物体表面积的大小以

相关文档