文档库 最新最全的文档下载
当前位置:文档库 › 软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性
软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

一、实验目的

1.掌握共沉淀法合成无机功能材料的原理和方法。

2.掌握XRD、SEM进行无机材料的晶相,形态分析方法。

3.理解并测试磁性材料的基本性能参数。

二、实验原理

近年来,纳米Fe3O4颗粒的制备及性能研究受到广泛关注。Fe3O4纳米颗粒在磁记录、微波吸波、废水净化,特别是核磁共振成像、药物运输和热磁疗等生物学领域有着巨大的应用价值。纳米材料的粒径是影响其物理化学性质的重要因素,不同的应用领域对Fe3O4纳米颗粒的粒径有着不同的要求。因此制备尺寸和性能可调的纳米Fe3O4颗粒有着十分重要的意义。制备Fe3O4纳米颗粒的方法有很多:如沉淀法、水热和溶剂热法、微乳液法、溶胶-凝胶法等,但制备粒径可调的Fe3O4纳米颗粒的方法却并不多。其中一些方法涉及的反应条件苛刻而且工序复杂,给工业生产带来了极大的不便,寻求一种简便有效的方法来实现粒径调控的纳米Fe3O4颗粒的制备显得尤为重要。

沉淀法实在原料溶液中加入适当的沉淀剂,使得原料溶液中的阳离子形成各种形式的沉淀物的方法。沉淀颗粒的大小和形状可由反应条件来控制,然后再经过滤、洗涤、干燥,有时还需经过加热分解等工艺过程二得到陶瓷粉体。沉淀法又可分为直接沉淀法、共沉淀法和均匀沉淀法。

直接沉淀法是使溶液中的某一种金属阳离子发生化学反应二形成沉淀物,其优点是可以制备高纯度的氧化物粉体。

化学共沉淀法一般是把化学原料以溶液状态混合。并向溶液加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共同沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解。由于反应在液相中可以均匀进行,从而获得在微观线度中按化学计量比混合的产物。共沉淀法是制备含有两种或两种以上金属元素的复合氧化物粉体的重要方法。

Fe3O4纳米粒子付费共沉淀制备反应如下:

Fe2++2Fe3++8OH—→Fe3O4+4H2O

在室温或者更高温度惰性氛围下,通过共沉淀Fe2+/Fe3+盐溶液合成Fe3O4,此法简便易得。磁性纳米粒子的粒径、形状及组成取决于所用盐的种类(如氯酸盐、硫酸盐、硝酸盐)、Fe2+/Fe3+的比率、反应温度、pH值以及介质的离子强度。

共沉淀法最大的困难是如何阻止粒子的团聚现象。近年来,通过使用有机添加剂作为固定剂或还原介质,在制备不同尺寸单分散磁性纳米粒子的方法上有了重大的改进。

三、实验设备及材料

实验设备:容量瓶,烧杯,分析天平,水浴锅,搅拌器,鼓风干燥箱,电动搅拌机,酸度计(ph试纸)

实验材料:氯化铁,氯化亚铁,氢氧化钠和无水乙醇。

四、实验内容及步骤

(一)四氧化三铁纳米粒子的共沉淀法合成

首先配制0.026mol/L的FeCl3.6H2O溶液和浓度为0.014mol/L的FeCl2.4H2O溶液,然后,在室温条件下,将各100mL上述溶液混合,搅拌,缓慢滴加0.4mol/L的NaOH溶液至体系pH值为11,将反应容器移入50℃恒温水浴晶化2h。最后,用磁铁分理处产物,再用蒸馏水和无水乙醇交替洗涤数次,室温干燥。

维持反应溶液铁离子的总浓度0.04mol/L及其他工艺条件不变,改变体系中n(Fe2+):n(Fe3+)比例,制备不同粒径的Fe3O4纳米颗粒。

(二)样品的表征

1.采用X-射线衍射仪测定样品的XRD图谱,确定物质结构。

2.用扫描电子显微镜观察样品的形貌。

3.用振荡样品磁强计测试样品的磁性能,主要测试磁滞回线,获得基本磁性参数:比饱和磁化强度和矫顽力。

五、实验结果与讨论

1.将测得的XRD图与标准卡片对比,确定合成产物的晶相,通过XRD图谱分析晶粒尺寸随n(Fe2+):n(Fe3+)比例变化的变化趋势。

2.观察样品的形貌,观察粒子尺寸随n(Fe2+):n(Fe3+)比例变化的变化趋势。与XRD结果对照分析粒子尺寸的变化。分析控制Fe3O4纳米颗粒粒径的方法。

3.对样品进行磁性测试,获得比饱和磁化强度、矫顽力基本磁性参数。得到磁性能随粒子尺寸变化的规律。

六、问题与讨论

1.共沉淀法合成Fe3O4纳米颗粒中,对粒子尺寸影响因素有哪些?试分析。

2.试分析磁性能随粒子尺寸变化的原因。

3.分析XRD测得的晶粒尺寸的SEM观察到的粒子尺寸的区别和关系。

纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO〃Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向 移动,粒径在一定范围之 内具有超顺磁性,以及在 外加交变电磁场作用下能 产生热量等特性,其化学 性能稳定,因而用途相当 广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过

在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、纳米四氧化三铁的配置方法 由于纳米四氧化三铁特殊的理化学性质 , 使其在实际应用中越来越广泛 , 而其制备方法和性质的研究也得到了深入的进展。磁性纳米微粒的制备方法主要有物理方法和化学方法。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀 , 易被氧化 , 且很难制备出10nm 以下的纳米微粒 , 所以在工业生产和试验中很少被采纳。 化学方法主要有共沉淀法、溶胶 - 凝胶法、微乳液法、水解法、水热法等。采用化学方法获得的纳米微粒的粒子一般质量较好 , 颗粒度较小 , 操作方法也较为容易 , 生产成本也较低 , 是目前研究、生产中主要采用的方法。

纳米晶软磁材料的应用

纳米晶软磁材料的应用 【摘要】本文首先回顾了纳米晶软磁材料的发展过程,介绍了纳米晶软磁材料的组织结构与磁特性,并介绍了纳米晶软磁合金的应用。 【关键词】纳米晶;软磁材料;铁芯;铁基合金 引言 八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D 约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B (M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。 1 纳米晶软磁合金的性能 1.1 软磁合金的磁特性 对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。 (1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。 (2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性 一、实验目的 1.掌握共沉淀法合成无机功能材料的原理和方法。 2.掌握XRD、SEM进行无机材料的晶相,形态分析方法。 3.理解并测试磁性材料的基本性能参数。 二、实验原理 近年来,纳米Fe3O4颗粒的制备及性能研究受到广泛关注。Fe3O4纳米颗粒在磁记录、微波吸波、废水净化,特别是核磁共振成像、药物运输和热磁疗等生物学领域有着巨大的应用价值。纳米材料的粒径是影响其物理化学性质的重要因素,不同的应用领域对Fe3O4纳米颗粒的粒径有着不同的要求。因此制备尺寸和性能可调的纳米Fe3O4颗粒有着十分重要的意义。制备Fe3O4纳米颗粒的方法有很多:如沉淀法、水热和溶剂热法、微乳液法、溶胶-凝胶法等,但制备粒径可调的Fe3O4纳米颗粒的方法却并不多。其中一些方法涉及的反应条件苛刻而且工序复杂,给工业生产带来了极大的不便,寻求一种简便有效的方法来实现粒径调控的纳米Fe3O4颗粒的制备显得尤为重要。 沉淀法实在原料溶液中加入适当的沉淀剂,使得原料溶液中的阳离子形成各种形式的沉淀物的方法。沉淀颗粒的大小和形状可由反应条件来控制,然后再经过滤、洗涤、干燥,有时还需经过加热分解等工艺过程二得到陶瓷粉体。沉淀法又可分为直接沉淀法、共沉淀法和均匀沉淀法。 直接沉淀法是使溶液中的某一种金属阳离子发生化学反应二形成沉淀物,其优点是可以制备高纯度的氧化物粉体。 化学共沉淀法一般是把化学原料以溶液状态混合。并向溶液加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共同沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解。由于反应在液相中可以均匀进行,从而获得在微观线度中按化学计量比混合的产物。共沉淀法是制备含有两种或两种以上金属元素的复合氧化物粉体的重要方法。 Fe3O4纳米粒子付费共沉淀制备反应如下: Fe2++2Fe3++8OH—→Fe3O4+4H2O 在室温或者更高温度惰性氛围下,通过共沉淀Fe2+/Fe3+盐溶液合成Fe3O4,此法简便易得。磁性纳米粒子的粒径、形状及组成取决于所用盐的种类(如氯酸盐、硫酸盐、硝酸盐)、Fe2+/Fe3+的比率、反应温度、pH值以及介质的离子强度。 共沉淀法最大的困难是如何阻止粒子的团聚现象。近年来,通过使用有机添加剂作为固定剂或还原介质,在制备不同尺寸单分散磁性纳米粒子的方法上有了重大的改进。 三、实验设备及材料 实验设备:容量瓶,烧杯,分析天平,水浴锅,搅拌器,鼓风干燥箱,电动搅拌机,酸度计(ph试纸)

纳米四氧化三铁的应用

精心整理纳米四氧化三铁的应用 一、纳米四氧化三铁的简介 )前面 显+2与大, 胶溶化法和添加改性剂及分散剂的方 法,通过在颗粒表面形成吸附双电层结 构阻止纳米粒子团聚,制备稳定分散的 水基和有机基纳米磁性液体。制备的磁

性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、 泛, ,所 ,操 磁性 目前,制备磁性Fe3O4纳米颗粒方法的机理已研究得很透彻,归结起来一般分为两种。一是采用二价和三价铁盐,通过一定条件下的反应得到磁性Fe3O4纳米颗粒;另一种则是用三价铁盐,在一定条件下转变为三价的氢氧化物,最后通过烘干、煅烧等手段得到磁性Fe3O4纳米颗 粒。

(一)共沉淀法 沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。 (二)溶胶-凝胶法 溶胶-凝胶方法(Sol-Gel)是日本科学家Sugimoto等于上世纪90年代发展 ,油(OΠ , 对实验设备和制备条件方面的要求相对高一些,因而大多数也只停留在研究阶段。 三、纳米四氧化三铁的应用 当粒子的尺寸降至纳米量级时,由于纳米粒子的小尺寸效应、表面效

应、量子尺寸效应和宏观量子隧道效应等的影响,使其具有不同于常规体相材料的特殊的磁性质。这也使其在工业、生物医药等领域有着特殊的应用。(一)生物医药 磁性高分子微球(也称免疫磁性微球)是一种由磁性纳米颗粒和高分子骨架材料制备而成的生物医用材料,其中的高分子材料包括聚苯乙烯、硅烷、聚乙烯、聚丙烯酸、淀粉、葡聚糖、明胶、白蛋白、乙基纤维素等,骨架 .用 能长期稳定的存在,不产生沉淀与分离。目前,磁性流体已经广泛应用于选矿技术、精密研磨、磁性液体阻尼装置、磁性液体密封、磁性液体轴承、磁性液体印刷、磁性液体润滑、磁性液体燃料、磁性液体染料、磁性液体速度传感器和加速度传感器、磁性液体变频器、磁性液体陀螺仪、水下低

磁性纳米材料的特性、发展及其应用

2011412690 应用化学董会艳 题目纳米材料的磁学性质、发展及其应用前景 内容摘要:磁性纳米材料的特性不同于一般的磁性材料,当与磁性相关联的特征物理长度恰好出于纳米量级,以及电子平均自由路程等大致处于1~100nm量级,或磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。不同分类的磁性纳米材料有着大不相同的特性。从纳米科技诞生的那一刻起就对人类产生着深远的影响。同时磁性材料一直是国民经济,国防工业的重要支柱与基础,与此同时在信息化高度发展的今天,磁性纳米材料的地位显的更加的重要与不可替代。 关键词:磁性,纳米,磁性纳米材料,应用 Abstract:Characteristics of magnetic nanomaterials is different from the general magnetic materials and magnetic properties associated with the characteristics of the physical length of just for the nanoscale, and the electron mean free path, etc. generally in the 1 ~ 100nm orders of magnitude, or magnetic body size and characteristicsphysical length is quite showing the anomalous magnetic and electrical properties. Different classification of magnetic nanomaterials differ materially from those features. The moment of the birth of nanotechnology on humans with far-reaching impact. Magnetic materials has been an important pillar and foundation of the national economy, defense industry, at the same time in the development of information technology today, the status of magnetic nanomaterials significantly more important and irreplaceable. Key words:Magnetic ,Nano ,Magnetic nanomaterials,Application 前言:在社会发展和科技进步的同时,磁性纳米材料的研究和应用也有了很大的突 破。磁性纳米材料在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。 当磁性微粒处于单畴尺寸时, 矫顽力将呈现极大值。铁磁材料, 如铁、钻等磁性单畴临界尺寸大约在l0 nm 量级,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关, 如果尺寸进一步减小, 颗粒将在一定的温度范围内呈现出超顺磁性。利用微粒的这个特性, 人们在开始对镍纳米微粒进行低温磁性研究, 并提出磁宏观量子隧道效应的概念, 随后在60年代末期研制成了磁性液体。80 年代以后, 在理论与实验二方面, 开始研究纳米磁性微粒的磁宏观量子隧道效应,在1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应, 也为磁性纳米材料的研究奠定了更夯实的基础。 正文 磁性纳米材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。利用这些新特性已涌现出一系列新材料,尤其在信息存储,处理与传输中已成为不可或缺的组成部分,广泛地应用于电信,自动控制,通讯,家用电器等领域,信息化发展的总趋势是向小,轻,薄以及多功能方

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其在磁性电 子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部 一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双各向异性控制下大 幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效各向异性和体积共 同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和各相的体积分数对 新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰器件的设计理论和 器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米薄膜、颗粒膜及多 层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄片平面内,利用形 状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的铁基磁性纳米颗

磁性纳米粒子的制备与应用.

磁性纳米粒子的制备与应用 孙超 (上海大学环境与化工工程学院,上海200444) 摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。 关键词:磁性纳米材料;氧化铁;载药 Preparation and Application of Magnetic Nanoparticles Sunchao (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。 Key words: Magnetic nanoparticles;Iron oxide;Drug loading 1.引言

四氧化三铁综述

四氧化三铁纳米的制备应用及表征 摘要:总结了磁性纳米Fe3O4粒子的制备方法,有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等,并讨论了磁性纳米Fe3O4粒子在磁性液体、生物医学、微波吸附材料磁记录材料、催化剂载体等领域的应用。简述了Fe3O4得表征手段,最后对纳米Fe3O4的研究前景进行了展望。 关键词:四氧化三铁;磁性纳米颗粒;制备;应用;表征 The Preparation and Application of Fe3O4 Magnetic Nano- particles 【Abstract】The chemical preparation methods were summarized including co-precipitation,sol-gel method, microemulsion , hydro-thermal method etc. Based on the recent progress , relative meritsof those methods were analyzed. The application of Fe3O4nano-particles in magnetic fluid , magnetic recording materials , catalytical and microwave materials and medicine were introduced. 【Key Words】Fe3O4; magnetic nanoparticle; preparation; progress Fe3O4磁性纳米颗粒由于具有与生物组织的相容性、与尺寸和形貌有关的电学和磁学性能,且具有好的亲水性、生物兼容性、无毒和高的化学稳定性,所以成为生物磁应用方面的理想材料使其在电子与生物敏感材料,尤其是生物医学领域被人们广泛关注【1】。应用于生物技术的纳米颗粒需要优良的物理、化学以及磁学特性【2】:(1)具有高磁化率,使材料的磁性较强,一般为铁磁性纳米颗粒;(2)颗粒尺寸为6~15 nm(当颗粒直径小于15 nm 时,就变为单磁畴磁体而具有超顺磁性并且饱和磁化强度很高),比表面积高;(3)具备超顺磁性等。另一方面,磁性纳米颗粒表面需要被特种有机物质修饰,才能具有独特的生物医学功能。磁性纳米微粒的制备方法主要有物理方法和化学方法【3-4】。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一般产品纯度低、颗粒分布不均匀,易被氧化,且很难制备出10nm以下的纳米微粒,所以在工业生产和试验中很少被采纳。化学方法主要有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等。采用化学方法获得的纳米微粒的粒子一般质量较好,颗粒度较小,操作方法也较为容易, 生产成本也较低, 是目前研究生产中主要采用的方法【5-8】。 1、制备方法 1.1共沉淀法 共沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中, 加入适当的沉淀剂, 使金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得纳米微粉. 共沉淀法是目前最普遍使用的方法, 其反应原理是: Fe2++ Fe3++ 8OH==Fe3O4+ 4H2O 付云芝【9】等采用共沉淀法制备出立方晶系的单分散、小粒径Fe3O4 颗粒。通过控制制备最佳条件为:铁盐溶液浓度为0. 5mol /L,沉淀剂溶液浓度为0. 2mo l/L,Fe2+:Fe3 +:OH- = 1. 00 :1. 00 :6. 00, 反应温度为30℃,搅拌速度为1000 r /m in. T. Fried【10】等在80℃氩气保护下将氨水缓慢滴加到FeCl2与FeCl3的混合溶液中得到纳米Fe3O4颗粒, 并使用油酸对其进行包覆,得到了平均粒径为2 nm 的Fe3O4颗粒膜。Yong- kang sun【11】等人采用部分限制共沉淀法,只是向酸化了的磁性纳米悬浮液中通入空气进行氧化的情况下制备了平均粒径为7 ~ 13 nm 的纳米Fe3O4。陈亭汝【12】等在搅拌速度较快的情况下,n ( Fe3+ ) /n( Fe2+ )为1. 8 :1,熟化温度70℃,熟化时间30min,以氨水作沉淀剂最佳pH值是9左右,可制得

铁基纳米晶合金

铁基纳米晶合金 为了得到对共模干扰最佳的抑制效果,共模电感铁芯必须具有高导磁率、优良的频率特性等。从前绝大多数采用铁氧体作为共模电感的铁芯材料,它具有极佳的频率特性和低成本的优势。但是,铁氧体也具有一些无法克服的弱点,例如温度特性差、饱和磁感低等,在应用时受到了一定限制。 近年来,铁基纳米晶合金的出现为共模电感增加了一种优良的铁芯材料。铁基纳米晶合金的制造工艺是:首先用快速凝固技术制成厚度大约20-30微米的非晶合金薄带,卷绕成铁芯后经过进一步加工形成纳米晶。与铁氧体相比,纳米晶合金具有一些独特的优势: 1.高饱和磁感应强度:铁基纳米晶合金的Bs达1.2T,是铁氧体的两倍以上。作为共模电感铁芯,一个重要的原则是铁芯不能磁化到饱和,否则电感量急剧降低。而在实际应用中,有不少场合的干扰强度较大(例如大功率变频电机),如果用普通的铁氧体作为共模电感,铁芯存在饱和的可能性,不能保证大强度干扰下的噪声抑制效果。由于纳米晶合金的高饱和磁感应强度,其抗饱和特性无疑明显优于铁氧体,使得纳米晶合金非常适用于抗大电流强干扰的场合。 2.高初始导磁率:纳米晶合金的初始导磁率可达10万,远远高于铁氧体,因此用纳米晶合金制造的共模电感在低磁场下具有大的阻抗和插入损耗,对弱干扰具有极好的抑制作用。这对于要求极小泄漏电流的抗弱干扰共模滤波器尤其适用。在某些特定场合(如医疗设备),设备通过对地电容(如人体)造成泄漏电流,容易形成共模干扰,而设备本身又对此要求极严。此时使用高导磁率的纳米晶合金制造共模电感可能是最佳选择。此外,纳米晶合金的高导磁率可以减少线圈匝数,降低寄生电容等分布参数,因而将由于分布参数引起的在插入损耗谱上的共振峰频率提高。同时,纳米晶铁芯的高导磁率使得共模电感具有更高的电感量和阻抗值,或者在同等电感量的前提下缩小铁芯的体积。 3.卓越的温度稳定性:铁基纳米晶合金的居里温度高达570oC以上。在有较大温度波动的情况下,纳米晶合金的性能变化率明显低于铁氧体,具有优良的稳定性,而且性能的变化接近于线性。一般地,纳米晶合金在-50oC----130oC的温度区间内,主要磁性能的变化率在10%以内。相比之下,铁氧体的居里温度一般在250oC以下,磁性能变化率有时达到100%以上,而且呈非线性,不易补偿。纳米晶合金的这种温度稳定性结合其特有的低损耗特性,为器件设计者提供了宽松的温度条件。而图3为不同材料的饱和磁感应强度的温度特性。

油酸修饰的四氧化三铁磁性纳米颗粒

无论是三氧化二铁还是四氧化三铁等都是常用的磁性纳米材料,其中又以纳米磁性四氧化三铁应用尤其广泛。而随着纳米技术的进步由各种各样大分子修饰的四氧化三铁磁性纳米材料的应用也在逐渐增加,本次就分享油酸修饰的四氧化三铁磁性纳米颗粒。 油酸修饰的磁性Fe3O4纳米颗粒(OA@Fe3O4),具有优异的磁性、分散性和稳定性,可广泛应用于纳米探针构建、磁共振造影与分子影像、磁热疗、药物载体及靶向诊疗一体化研究等。OA@Fe3O4纳米颗粒为油溶性,可分散在环己烷、氯仿、四氢呋喃等溶剂中,用于掺杂水包油纳米乳、修饰纳米脂质体、构建磁性纳米药物等。高温热解法所制备的油酸修饰的磁性Fe3O4纳米颗粒,磁性更强、尺寸更均一。 油酸修饰的四氧化三铁磁性纳米颗粒制备方法主要有:微乳液法、水热合成法、热分解铁有机物法、化学共沉淀合成法、凝胶-溶胶法等。四氧化三铁纳米颗粒通过表面修饰过程可以降低磁性纳米粒子的表面能,从而改善提高磁性纳米粒子的分散性,还可以通过特定的修饰方法引入功能性基团实现磁性纳米微粒的

功能化。 经油酸修饰的四氧化三铁磁性纳米粒子晶体的晶体结构为反立方的尖晶石型结构。用方程d=Xk/(Bcos0)可估算出四氧化三铁磁性纳米粒子的晶体粒径,在方程中λ=0.15406,0为衍射角,β为半峰宽,k=0.89。有研究表明油酸修饰未改变磁性四氧化三铁纳米粒子晶体结构;修饰后的磁性四氧化三铁纳米粒子的粒径约2Inm;其饱和磁化强度在50ermu/g以上,磁响应性能佳、具有超顺磁性。 以上是对油酸修饰的四氧化三铁磁性纳米颗粒的相关介绍,下面介绍一家生产纳米材料的公司。南京东纳生物科技有限公司,是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究 摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质, 已经引起众多专家学者的关注。纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。 关键词:纳米四氧化三铁;磁性;合成 近年来,有关磁性纳米粒子的制备方法与性质备受关注。然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。 1.实验部分 1.1 实验原理 化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。 1.2仪器与试剂 三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等 四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。1.3实验步骤 室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。高速搅拌下,向溶液中缓慢滴加0.1mol/L氢氧化钠溶液,至pH>11,继续搅拌1h使反应完全。反应结束后用磁铁进行固液分离,再用去离子水反复冲洗至中性,以除去多余电解质。在60℃下真空干燥24h. 1.5样品检验 相关资料

液相沉淀法在材料合成中应用进展

液相沉淀法合成纳米粉体的应用进展 材料科学与工程赵小龙2011201307 摘要:液相沉淀法是一种合成纳米粉体最为普遍的方法。本文将介绍液相沉淀法的三种方法:直接沉淀法、共沉淀法和均匀沉淀法。对液相沉淀法合成纳米粉体的沉淀反应过程、洗涤过程、干燥过程以及煅烧过程等环节的控制方法及原理作了详述。由于纳米TiO2粉体具有是优良的光催化活性,且具有极大的商业价值,本文还将介绍一下纳米TiO2粉体制备工艺。 关键词:液相沉淀;控制;洗涤;干燥;煅烧;制备工艺 纳米粉体是指线度处于1 nm~100 nm的粒子聚合体,包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通粉体相比,纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应[1],因而在催化、磁性材料、医学、生物工程、精细陶瓷和化妆品等众多领域显示出广泛的应用前景,成为各国竞相开发的热点。纳米粉体的制备方法很多,可归纳为固相法、气相法和液相法三大类。其中液相化学法是目前实验室和工业上采用最为广泛的合成纳米粉体的方法,包括沉淀法、醇盐水解法、溶胶-凝胶法和水热合成法等[2]。本文主要讨论了液相沉淀法合成纳米粉体的分类、方法、控制过程及原理。 1 液相沉淀法介绍 液相沉淀法是液相化学反应合成金属氧化物纳米材料最普通的方法。它是利用各种溶解在水中的物质反应生成不溶性氢氧化物、碳酸盐、硫酸盐和乙酸盐等,再将沉淀物加热分解,得到最终所需的纳米粉体。液相沉淀法可以广泛用来合成单一或复合氧化物的纳米粉体,其优点是反应过程简单,成本低,便于推广和工业化生产。液相沉淀法主要包括直接沉淀法、共沉淀法和均匀沉淀法。 1.1 直接沉淀法 直接沉淀法是使溶液中的金属阳离子直接与沉淀剂,如OH-、C 2O 2 -4、CO 2 -3, 在一定条件下发生反应而形成沉淀物,并将原有的阴离子洗去,经热分解得到纳 米粉体。直接沉淀法操作简便易行,对设备、技术要求不太苛刻,不易引入其他杂质,有良好的化学计量性,成本较低,因而对其研究也较多,只不过其合成的纳米粉体粒径分布较宽。廖莉玲等[3]以硝酸镁、碳酸钠为原料,用直接沉淀法合成得到纳米氧化镁,其平均粒径为30 nm。文献[4]报道了用一定溶度的ZrOCl 2 和氨水溶液在聚乙二醇水溶液中混合反应,经抽滤、洗涤、干燥、煅烧后得到纳米 ZrO 2 。其中聚乙二醇起到保护胶粒的作用。 1.2 共沉淀法 共沉淀法是在混合的金属盐溶液(含有两种或两种以上的金属离子)中加入合适的沉淀剂,反应生成均匀沉淀,沉淀热分解后得到高纯纳米粉体材料。它是制备含有两种以上金属元素的复合氧化纳米粉体的主要方法。其在制备过程中完成了反应及掺杂过程,因而得到的纳米粉体化学成分均一、粒度小而且均匀。共沉淀法已被广泛用于制备钙钛矿型材料、尖晶石型敏感材料、铁氧体及荧光材料。 文献[5]报道了用Al(NO 3) 3 和ZrO(NO 3 ) 2 混合溶液,加氨水共沉淀制备了一系列Al 2 O 3 含量由低到高的ZrO 2-Al 2 O 3 纳米复合氧化物。焦正等[6]采用喷射共沉淀法制备了 尖晶石型ZnGa 2O 4 纳米晶,晶粒细小均匀,形状完整,粒径小于10nm,无ZnO杂 相峰。

纳米四氧化三铁

纳米四氧化三铁 简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 制备方法 1、水热法制备纳米四氧化三铁(2012年) 聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学参数。结果所 得样品为四氧化三铁晶体,粒径为200 nm,质量饱和磁场强度为79.8 em u/g Fe。结论:制备的样品粒径均一,分散性好,超顺磁性,水溶性好,可用于物理化学溶栓。 2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年) 直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的制备方法。要求卟啉与四氧化三铁纳米粒子成键单元,如中心金属原子、羟基等。 用一锅高温合成法合成了单分散的油胺包覆四氧化三铁纳米粒子,在DMF 溶液中,原卟啉IX与多巴胺的偶联反应制备了连有多巴胺的原卟啉(PPD),然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD,然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD包覆的四氧化三铁纳米粒子 (PPDNP),其中粒度单一(<7nm),具有清晰的晶格和高的结晶度,在室温有明确的超顺磁性行为。

11.2 磁性Fe304纳米粒子

磁性Fe304纳米粒子 1 磁性Fe304纳米粒子的表面修饰及功能化 与磁性Fe304纳米粒子尺寸相关联的一个不可避免的问题是其在较长一段时间内固有的不稳定性,这主要表现在两个方面:(1)分散性的降低,小粒径的纳米粒子聚集并形成大的颗粒以降低表面能,从而降低了粒子的分散性能;(2)磁性能的损耗,裸的磁性Fe304纳米粒子由于其高化学活性容易在空气中氧化,进而损失部分磁性能。因此,在Fe304纳米粒子的应用中(后)重要的是要制定一个保护策略来保护Fe304不受损坏。尤其在生物医学应用方面,需要获得亲水性的纳米Fe304颗粒,因为大多数生物介质是接近中性的水溶液,因此更有必要对Fe304颗粒表面进行有效的修饰及功能化。近年来,各种材料已被用来对Fe304颗粒表面进行修饰及功能化,主要分为有机材料和无机材料(图3.1)。 图3.1 Fe304颗粒表面修饰及功能化材料分类图 1.1 有机材料修饰 表面经一些有机材料修饰后的磁性纳米粒子主要用于磁记录,电磁屏蔽,磁共振成像,尤其是生物领域的药物靶向,磁性细胞分离,生物监测等。外加高磁场下磁性纳米粒子的稳定性对其在生物体内应用以及其他领域的应用是非常重要的。采用有机材料对磁性纳米粒子的表面修饰及功能化的方法有很多,包括原位涂层法和合成后涂层法。此外,为防止团聚及确保纳米粒子具有好的生物相容性,使用不同的有机材料对磁性纳米粒子表面进行修饰,比如葡萄糖,淀粉,聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),聚乙烯亚胺(PEI),特别是一些亲水性的有机材料。 1.1.1 小分子及表面活性剂

经适当的表面改性后,磁性纳米粒子的表面带有一些特殊官能团(例如-OH,-COOH,-NH2,-SH),有利于通过连接不同的生物活性分子做进一步修饰从而适应各种应用。 作为小分子,硅烷常被用来修饰磁性纳米粒子及对裸露的磁核表面有效官能团化,常见的硅烷修饰剂有3-氨基丙基三乙氧基硅烷(APTES),p-氨基苯基三甲氧基硅烷(APTS)及巯基丙基三甲氧基硅烷(MPTES)。Shen等人报道了采用一步水热法将APTS加入到含有Fe2+的溶液中,134℃下反应3h制备了可用于生物医学领域的APTS修饰的磁性氧化铁纳米粒子(Fe304@APTS)。细胞毒性和溶血分析结果表明氧化铁纳米粒子表面上的氨基基团乙酰化后显著改善了粒子的细胞相容性和血液相容性。此外,Wu等人研究发现,APTES在对Fe304纳米粒子进行表面修饰的过程中能够有效维持纳米粒子的形貌,而MPTES修饰时会导致磁化强度值的减少。 此外,对于亲油性磁性纳米粒子一般都具有很好的单分散性,而常见的赋予磁性纳米粒子亲油性的表面修饰剂主要有油酸及油胺。通常情况下,油酸及油胺用在高温热分解反应过程中,例如,Salas等人研究发现,高温分解油酸铁化合物能够得到超顺磁性纳米晶体,且粒子的尺寸约为10nm,能稳定地分散在非极性溶剂中。 为直接获得亲水性磁性纳米粒子,一种方法就是在反应过程中加入小分子(如氨基酸,柠檬酸,维生素,环糊精等)。比如,Gao等人使用改进的一步溶剂热法制备了平均粒径为195nm的亲水性超顺磁性纳米团簇凝胶。反应中含有磺酸酯和羧酸酯基的阴离子聚电解质聚(4-苯乙烯磺酸-共-马来酸)钠盐(PSSMA)作为稳定剂,经PSSMA修饰的磁性纳米团簇能够很好的分散在水溶液、磷酸盐缓冲溶液(PBS)及乙醇中。 1.1.2 聚合物 与小分子及表面活性剂相比,聚合物不仅能够提供多官能团以及更好的胶体稳定性,还能对有关磁性纳米粒子在生物学(即药代动力学和生物分布)方面的应用起到了显著的作用。此外,大量的天然及合成的生物可降解的聚合物,如聚天冬氨酸盐,多糖,明胶,淀粉,藻酸盐,聚丙烯酸(PAA),聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),壳聚糖以及聚甲基丙烯酸甲酯(PMMA)等,是目前使用较多的用于磁性纳米粒子表面功能化的聚合物。 Dresco等人报道了采用单个反相微乳液法制备了聚合物包覆的磁性纳米粒子。首先,在含有水/双(2-乙基己基)钠/甲苯的反相微乳液中合成Fe304纳米粒子,然后将水,单体(甲基丙烯酸和羟乙基甲基丙烯酸酯),交联剂(N,N’-亚甲基二(丙烯酰胺))及引发剂(2,2’-偶氮二(异丁腈))加入到反应体系中,55℃下通氮气反应。聚合反应结束后,经过量丙酮/甲醇混合物(9:1)析出收集。所制得的产物具有超顺磁性性能,粒径约为80nm且粒径分布窄,

相关文档