文档库 最新最全的文档下载
当前位置:文档库 › 工程材料及成形技术基础课程

工程材料及成形技术基础课程

工程材料及成形技术基础课程
工程材料及成形技术基础课程

课程名称:工程材料及成形技术基础

总学时: 64/48学时 (理论学时56/40)

适用专业:机械设计制造及其自动化、机械电子工程/汽车服务工程

一、课程的性质与任务

《工程材料及成型技术基础》是研究机械零件的材料、性能及成形方法的综合性课程,是高等工科师范院校机械工程专业必修的专业基础课,其内容包括工程材料和成形技术基础两部分。

本课程是在修完高等数学、大学物理(含实验)和机械制图等课程的基础上开设的。其任务是使学生掌握工程材料及成形技术的基本知识,为后继学习机械设计、模具制造工艺、先进制造技术和毕业设计等课程,培养专业核心能力;为今后从事职业学校机械类专业相关课程的教学,奠定必要的专业基础。

本课程教学开设了实验教学。通过实验教学,在巩固和验证课程的基本理论知识的同时,拓展学生的创新思维,着重培养学生实践动手能力和创新能力。

二、课程教学基本要求

1、获得有关材料学的基本理论与工程材料的一般知识,掌握常用工程材料的成分、热加工工艺与组织、性能及应用之间的相互关系,熟悉常用工程材料的种类、牌号与特点,使学生具备合理选用工程材料、热处理方法、妥善安排热处理工艺路线的基本能力。

2、初步掌握工程材料主要成形方法的基本原理与工艺特点,获得具有初步选择常用工程材料、成形方法的能力和进行工艺分析的能力。

3、具有综合运用工艺知识,初步分析零件结构工艺性的能力。

4、初步了解新材料、新技术、新工艺的特点和应用。

四、本课程的教学内容

绪论

一、材料科学的发展与地位:材料科学的发展通常是和人类文明联系在一起的。

古代文明:人类的发展史上,最先使用的工具是石器;新石器时代(公元前6000年~公元前5000年)烧制成陶器;东汉时期发明了瓷器;到了西汉时期, 炼铁技术又有了很大的提高,采用煤作为炼铁的燃料,这要比欧洲早1700多年。在河南巩县汉代冶铁遗址中,发掘出20

多座冶铁炉和锻炉。炉型庞大,结构复杂,并有鼓风装置和铸造坑。可见当年生产规模之壮观。

三次产业革命:

产业经济迅猛发展是以新材料的发现为依托的。如:半导体材料等。

知识经济时代:

进入21世纪,被称为现代科学技术四大支柱领域的材料、信息、能源和生物工程得到了前所未有的重视和发展。材料作为人类生产和社会发展的物质基础,占有十分重要的地位。

我国在新材料新工艺的研究和应用方面取得重大成果:航空、航天事业迅速崛起,带动航空、航天材料的发展。

北京奥运会主会场“鸟巢”结构设计奇特新颖,钢结构最大跨度达到343米。如果使用普通钢材,厚度至少要达到220毫米。这样一来,“鸟巢”钢材重量将超过8万吨。从工程的实际需求出发,Q460是最好的选择。需要的大约是4.3万吨高质量钢材 --低合金高强

度钢 。二、材料分类: 材料按工业工程来分类:机械工程材料,土建工程材料,电子材料等等;

本课程主要涉及的是机械工程材料

三、金属材料及其学习方法金属材料的性能均其化学成分、显微组织及加工工艺之间的

关系. 四、这门课的主要内容:

工程材料:金属材料(主要)、非金属材料(次要) 主线:性能与化学成分、组织和热处理工艺之间关系 成型技术:铸、锻、焊;非金属材料 实验: 性能测试、材料热处理

第一章 工程材料结构与性能 1.1 材料原子(或分子)的相互作用

各种工程材料是由各种不同的元素组成,由不同的原子、离子或分子结合而成。原子、离子或分子之间的结合力称为结合键。一般可把结合键分为离子键、共价健、金属键和分子键四种。

一、离子键

当周期表中相隔较远的正电性元素原子和负电性元素原子接触时,前者失去最外层价电子变成带正电荷的正离子,后者获得电子变成带负电荷的满壳层负离子。正离子和负离子由

飞船

运载火箭

卫星 歼10战斗机

静电引力相互吸引;同时当它们十分接近时发生排斥,引力和斥力相等即形成稳定的离子键。NaCl、CaO、Al2O3等由离子键组成。

离子键的结合力很大,因此离子晶体的硬度高,强度大,热膨胀系统小,都是良好的绝缘体。在离子键结合中,由于离子的外层电子比较牢固地被束缚,可见光的能量一般不足以使其受激发,因而不吸收可见光,所以典型的离子晶体是无色透明的。

二、共价键

处于周期表中间位置的三、四、五价元素,原子既可能获得电子变为负离子,也可能丢失电子变为正离子。当这些元素原子之间或与邻近元素原子形成分子或晶体时,以共用价电子形成稳定的电子满壳层的方式实现结合。这种由共用价电子对产生的结合键叫共价键。

最具有代表性的共价晶体为金刚石。金刚石由碳原子组成,每个碳原子贡献出4个价电子与周围的4个碳原子共有,形成4个共价键,构成正四面体:一个碳原子在中心,与它共价的另外4个碳原子在4个顶角上。硅、锗、锡等元素也可构成共价晶体。属于共价晶体的还有SiC、Si3N4、BN等化合物。

三、金属键

周期表中Ⅰ、Ⅱ、Ⅲ族元素的原子在满壳层外有一个或几个价电子。原子很容易丢失其价电子而成为正离子。被丢失的价电子不为某个或某两个原子所专有或共有,而是为全体原子所公有。这些公有化的电子叫做自由电子,它们在正离子之间自由运动,形成所谓电子气。正离子在三维空间或电子气中呈高度对称的规则分布。正离子和电子气之间产生强烈的静电吸引力,使全部离子结合起来。这种结合力就叫做金属键。

在金属晶体中,价电子弥漫在整个体积内,所有的金属离子皆处于相同的环境之中,全部离子(或原子)均可被看成是具有一定体积的圆球,所以金属键无所谓饱和性和方向性。

金属由金属键结合,因此金属具有下列特性:

1. 良好的导电性和导热性。

金属中有大量自由电子存在,当金属的两端存在电势差或外加电场时,电子可以定向地流动,使金属表现出优良的导电性。金属的导热性很好,一是由于自由电子的活动性很强,二是依靠金属离子振动的作用而导热。

2. 正的电阻温度系数。

即随温度升高电阻增大。绝大多数金属具有超导性,即在温度接近于绝对零度时电阻突然下降,趋近于零。

3. 不透明并呈现特有的金属光泽。

金属中的自由电子能吸收并随后辐射出大部分投射到表面的光能。

4. 良好的塑性变形能力,金属材料的强韧性好。

金属键没有方向性,原子间也没有选择性,所以在受外力作用而发生原子位置的相对移动时,结合键不会遭到破坏。

四、分子键

原子或分子之间是靠范特瓦尔斯力结合起来,这种结合键叫分子键。

在含氢的物质,特别是含氢的聚合物中,一个氢原子可同时和两个与电子亲合能力大的、半径较小的原子(如F、O、N等)相结合, 形成所谓氢键。氢健是一种较强的、有方向性的范特瓦尔斯键。其产生的原因是由于氢原子与某一原子形成共价健时,共有电子向那个原子强烈偏移,使氢原子几乎变成一半径很小的带正电荷的核,因而它还可以与另一个原子相吸引。

1.2 晶体材料的原子排列

1.2.1 理想晶体结构

常见的金属晶体结构:

(1)体心立方晶格:

纯铁(912度以下)

Cr、M。、W、V、K等。(2)面心立方晶格

Cu、A1、Au、

(3)排六方晶格

?Be、Mg、Zn

1.2.2 实际晶体结构

1.单晶体与多晶体

单晶体:结晶方位完全一致的晶体称为“单晶体”:

单晶体具有各向异性多晶体:实际金属结构是有许多单晶体组成:晶粒。多晶粒组

成的晶体结构称为多晶体。多晶体呈现各向同性

2.晶体缺陷(I)点缺陷:间隙原子;置换原子;(2)线缺陷:即位错,在晶体中,有一列或若干列原子发生了有规律的错排现象。

(3)面缺陷:金属中的晶界和亚晶界1.3 合金的晶体结构

1.3.1 合金的相、组织及其关系

相是指合金中具有相同的物理、化学性能,并与其余部分以界面分开的物质部分

固态合金中有两类基本相:固溶体和金属化合物

组织:将一小块金属材料用金相砂纸磨

光后进行抛光, 然后用侵蚀剂侵蚀, 即

获得一块金相样品。在金相显微镜下观

察,可以看到金属材料内部的微观形貌。

这种微观形貌称做显微组织(简称组织)。

是合金的微观形态。

1.3.2 固溶体

置换固溶体

间隙固溶体

1.3.3 金属间化合物:

金属化合物一般熔点较高, 硬度高, 脆性大。合金中含有金属化合物时, 强度、硬度和耐磨性提高, 而塑性和韧性降低。

Fe3C是钢铁中的一种重要的间隙化合物,又称为渗碳体.具有复杂的斜方晶格,它作为强化相对钢铁材料的性能有重大的影响。

1.3.4 合金性能

实际金属的强化机制

1 固溶体与固溶强化----点缺陷

2位错强化--------线缺陷

3细晶强化--------面缺陷

4化合物与第二相强化---体缺陷

1.4 高聚物的结构

1.4.1 大分子链的结构

线型结构:线型结构是由许多链节联成

一条长链

体型结构:体型结构是分子链与分子链

之间有许多链节相互交联在一起,形成网状或

立体结构

1.5 陶瓷的结构

1.7.工程材料的力学性能

常见的有强度(屈服强度、断裂强度、疲劳强度等)、硬度、塑性、冲击韧性和断裂韧性等。

强度:是指在外力作用下材料抵抗变形和断裂的能力,是材料最重要、最基本的力学性能指

标之一。

屈服强度:表示材料抵抗微量塑性的能力抗

拉强度:反映了材料产生最大均匀变形的抗

塑性:材料在外力作用下,产生塑性变形而

不断裂的性能称为塑性。

硬度:在外力作用下材料抵抗局部塑性变

形的能力。

(1)布氏硬度: HB /HBS

(2)洛氏硬度: HRC/HRB/HRA

(3)维氏硬度: HV

性能指标工程意义:结合材料的拉伸试验引出材料的抗拉强度和屈服强度的概念,这两个指标在工程设计中的意义。一个是设计机械零件的强度指标,一个是安全性指标(配合延伸率)。硬度是材料局部强度的指标。疲劳是材料在循环作用下的安全指标。断裂韧性也是材料安全性指标,这一指标更注重材料缺陷方面的安全性。

第二章金属材料的凝固与固态相变

2.1 纯金属的结晶

2.1.1 凝固的基本概念

结晶:原子由近程有序状态转变为长程有序状态的过程。

过冷度概念: 理论结晶温度T0与开始结晶

温度Tn之差叫做过冷度,用ΔT表示。

结晶的必要和充分条件是具有一定的过冷

2.1.2 金属的结晶

金属的结晶过程:形核和长大两个过程。

自发形核(均质形核)、非自发形核(异质形核)影响形核和长大的因素:(1)过冷度的影响(2)难熔杂质的影响晶粒大小及控制方法。

1)增大过冷度

2)变质处理2.1.3 材料的同素异构现象

晶体的同素异构:有些晶体随着外界条件(如温度、压力)

的变化而具有不同类型的晶体结构,称为同素异构现象。

铁发生同素异构转变,不仅晶体结构发生变化,而且体积

也发生改变,这是钢铁可进行热处理主要原因。

2.2 合金的凝固

2.2.1 二元合金相图与凝固

1. 匀晶相图;

两组元在液态和固态均能无限互溶所构成的相图称为二元匀晶相图。 杠杆定律:

设合金的质量为Q 合金 , 其中 Ni 质量分数为b%, 在 T1温度时, L 相中的 Ni 质量分数为a%, α相中的Ni 质量分数为c%。

则合金中含Ni 的总质量=L 相中含Ni 的质量+ α相中含Ni 的质量

因为

所以

化简后得

c-b 为线段 bc 的长度; b-a 为线段 ab 的长度。 故得:

这个式子与力学中的杠杆定律相似, 因而亦被称作杠杆定律。由杠杆定律不难算出合金中液相和固相在合金中所占的质量分数(即相对质量)分别为:

运用杠杆定律时要注意, 它只适用于相图中的两相区, 并且只能在平衡状态下使用。杠杆的两个端点为给定温度时两相的成分点, 而支点为合金的成分点。 2.共晶相图:

两组元在液态无限互溶,在固态有限溶解(或不溶),并在结晶时发生共晶转变所构成的相图称为二元共晶相图

N

C E L βα+??→←恒温

共晶反应式

2.2.2 合金的性能与相图的关系

1.合金的使用性能与相图的关系;2.合金的工艺性能与相图的关系2.2.3 铸锭(件)的凝固

2.3 铁碳合金平衡态的相变基础

2.3.1 Fe—Fe3C相图

1.铁碳合金的相结构与性能

2.相图分析

3.相图中重要三条水平线

2.3.2 铁碳合金在平衡状态下的相变;

2.4 钢在加热时的转变

2.4.1 钢在实际加热时的转变点

2.4.2 奥氏体的形成过程及影响因素

1.奥氏体的形成过程;2.奥氏体形成的影响因素

2.5 钢在冷却时的转变

钢在奥氏体化后的冷却过程决定了冷却后钢的组织类型和性能。热处理时常用的冷却方式有两种:

一是等温冷却;二是连续冷却。

过冷奥氏体的转变可分为三种基本类型,即珠光体型转变(扩

散型转变)、贝氏体型转变(过渡型或半扩散型转变)和马氏体型转

变(无扩散型转变)。

2.5.1 过冷奥氏体等温转变图

C曲线的左边一条线为过冷奥氏体转变开始线,右边一条线为

过冷奥氏体转变终了线。该曲线下部还有两条水平

线,分别表示奥氏体向马氏体转变的开始温度Ms线和转变结束温

度Mf线。

1.含碳量的影响

2.合金元素的影响

3 奥氏体化温度和保温时间的影响

2.5.2 过冷奥氏体连续冷却转变图

2.5.3 过冷奥氏体的转变产物及性能

珠光体类型组织、贝氏体类型组织和马氏体类型

第三章金属材料的塑性变形

3.1 单晶体和多晶体的塑性变形

3.1.1单晶体的塑性变形

单晶体的塑性变形有两种,即滑移和孪生。

滑移是指在切应力作用下,晶体的一部分沿一定晶面(滑移面)和晶向(滑移方向)相对于另一部分发生的滑动。

滑移是通过位错的运动来实现的。

孪生是指在切应力作用下,晶体的一部分沿一定的晶面(孪晶面)和晶向(挛晶方向)相对于另一部分所发生的切变表现为各向同性特性

3.1.2 多晶体金属塑性变形的特点

1.晶粒取向对塑性变形的影响2.晶界对塑性变形的影响

细晶强化是金属的一种很重要的强韧化手段。表现为各向异性特性。大量的图标见讲稿。

3.2 金属的形变强化

3.2.1 形变强化现象

金属经过冷态下的塑性变形后其性能发生很大的变化,最明显的特点强度随塑性变形的增加而大为提高,其塑性却随之有较大的降低:这种现象称为“形变强化”,也称为加工硬化或冷作硬化。

3.2.2 塑性变形后金属的组织结构变化

3.2.3 塑性变形产生的残余应力

3.3 塑性变形金属在加热时组织和性能的变化

3.3.1 回复

加工硬化后的金属,在加热到一定温度后.原子获得热能,使原子得以恢复正常排列,消除了晶格扭曲.可使加工硬化得到部分消除。这一过程称为“回复”,这时的温度称为回复温度。

3.3.2 再结晶

当温度继续升高到该金属熔点热力学温度的0.4倍时,金属原子获得更多的热能,则开始以某些碎晶或杂质为核心结晶成新晶粒,从而消除了残余应力和加工硬化现象。这个过程称为再结晶,这时的温度称为最低再结晶温度

利用金属的形变强化可提高金属的强度,这是工业生产中强化金属材料的一种手段。在塑性加工生产中,加工硬化给金属继续进行塑性变形带来困难,应加以消除。常采用加热的方法使金属发生再结晶,从而再次获得良好塑性。

3.3.3 晶粒长大

3.3.4 冷变形和热变形

凡在金属的再结晶温度以下进行的塑性变形称为冷加工;而在再结晶温度以上进行的塑性变形称为热加工。热加工通常不会带来强化效果。

3.5 金属纤维组织及其应用

为了获得具有最好力学性能的零件,在设计和制造零件时,都应使零件在工作中产生的最大正应力方向与纤维方向一致,最大切应力方向与纤维方向垂直,并使纤维分布与零件的轮廓相符合,尽量使纤维组织不被切断。

3.4 塑性加工性能及影响因素

3.4.1 塑性加工性能及其指标

塑性加工性能常用金属的塑性和变形抗力来综合衡量。

3.4.2 塑性加工性能的影响因素

1.金属的本质:2.加工条件:

第四章金属材料热处理

金属材料的热处理是金属材料在固态下,通过适当的方式进行加热、保温和冷却.改变材料内部组织结构,从而改善材料性能的一种工艺方法,也称之为金属材料的改性处理。

4.1 退火与正火

在机械零件或工具的加工制造过程中,退火与正火常作为预备热处理。

4.1.1 退火

退火是将钢加热到预定温度,保温一定时问后缓慢冷却(通常随炉冷却),获得接近于平衡组织的热处理工艺。

1.完全退火

2.球化退火

3.扩散退火(均匀化退火)

4.去应力退火

4.1.2 正火

正火是将钢加热到Ac3(亚共析钢)或Accm(共析

和过共析钢)

以上30—50 ℃,保温适当时间后在静止空气中冷却

的热处理工艺。

4.2 钢的淬火

淬火是将钢加热到Ac3或Ac1以上30~50度,经过保温后在冷却介质中迅速冷却的热处理工艺。

目的:淬火可以使钢件获得马氏体和贝氏体组织,以提高钢的力学性能。

淬火是强化钢件的最主要的而且是最常用的热处理方法。

亚共析钢的淬火加热温度为加热到Ac3以上

30~50度。淬火后的组织为均匀细小的马氏

体。过共析钢的淬火加热温度为Ac1以上

30~50度,淬火后的组织为均匀细小的马氏

体和粒状二次渗碳体,有利于增加钢的硬度

和耐磨性。

4.2.2 淬火冷却介质

4.2.3 淬火冷却方法

1.单介质淬火法

2.双介质淬火

3 马氏体分级淬火

4.贝氏体等温淬火

5.冷处理

4.3 钢的表面淬火

表面淬火方法是将淬火零件表层金属迅速加热至相变温度以上.而心部末被加热.然后迅速冷却,使零件表层获得马氏体而心部仍为原始组织的“外硬内韧”状态。

表面淬火法所用零件材料的含碳量:0.40%—0. 50%。

4.3.1 感应加热表面淬火

感应加热是将钢件置于通人交变电流的线圈中,由于电磁感应,钢件产生频率相同、方向相反的交变电流。由于集肤效应,集中在钢件表层的高密度电流.在具有较大电阻的钢件表层呈涡旋流动并产生热效应,将钢件表层迅速加热至淬火温度.而钢件中心电流几乎为零.温度变化很小,这时经喷水冷却.钢件表面快冷淬火,得到一定深度的马氏体层。低温回火。

4.3.2 火焰加热表面淬火

火焰加热表面淬火法是用乙炔—氧或其他可燃气体燃烧时形成的高温火焰将工件表面加热到相变温度以上,然后立即喷水淬火冷却的方法。

4.4 钢的回火

回火就是把经过淬火的零件重新加热到低于Ac1,的某一温度,适当保温后,冷却到室温的热处理工艺。

4.4.1 回火目的

4.4.2 回火组织转变及性能变化

1.钢在回火时的组织转变

2. 回火后的组织和性能

(1)回火马氏体(250 ℃以下)是由淬火马氏体分解的极细小的高度弥散的ε碳化物分布在针状的低过饱和固溶体基体上,并保持共格关系。 (2)回火托氏体(350~450 ℃)是由高度弥

散的渗碳体分布在铁索体基础上 (3)回火索氏体(500~650 ℃)是由较细的渗碳体颗粒分布在铁索体基体上。

硬度和强度随回火温度升高而下降.其塑性和韧性随回火温度升高而提高。其原因是由于回火温度的提高,产生马氏体分解.渗碳体析出和聚集长大,固溶强化消失,弥散强化减弱,内应力消除。

4.4.3 回火工艺及应用

1.低温回火2.中温回火3.高温回火

4.4.4 回火脆性

第一类回火脆性;第二类回火脆性

4.5钢的淬透性

钢的淬透性;

淬透层的深度;

钢的淬硬性

钢的淬透性的影响因素:影响钢的淬透性主要是钢的临界冷却速度

淬透性与选材的关系。

4.7 钢的化学热处理

化学热处理是将钢件置于一定温度的活性介质中保温,使介质中的一种或几种元素原子渗入工件表面,以改变钢件表层化学成分和组织,进而达到改进表面性能,满足技术要求的热处理工艺。

化学热处理基本过程:

①化学介质的分解即活性原子的产生;②活性原子被钢件表面吸收和溶解;③活性原子由表面向内部扩散,形成一定的扩散层。

4.7.1 渗碳

将钢放入渗碳的介质中加热并保温,使活性碳原子渗入钢的表层的工艺称为渗碳。注意和表面淬火的区别

1.渗碳方法;2.渗碳工艺参数

渗碳时主要工艺参数是加热温度和保温时间。加热温度高可以使渗碳速度加快,但温度过高会使钢件品粒粗大,渗碳温度一般在900~950度。而渗碳后零件表面含碳量最好在0.85%。~1.05%范围内。

渗碳后的组织常用于渗碳的钢为低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、12CrNi3等。渗碳后缓冷组织自表面至心部依次为:过共析组织(珠光体+碳化物)、共析组织(珠光体)、亚共析组织(珠光体+铁素体)的过渡区,直至心部的原始组织。

3.渗碳后的热处理

渗碳后的工件表面为过共析钢组织,其硬度和耐磨性满足不了零件要求,必须进行淬火和低温回火。

渗碳件在淬火后必须要进行低温回火,回火温度为150~200度,以减少应力和脆性。回火后零件表面组织为回火马氏体和渗碳体

4.7.2 渗氮

渗氮是在一定温度下(一般在Ac1,温度下)使活性氯原子渗人工件表面的化学热处理工艺4.8热处理零件的结构工艺性及技术条件标注

第六章金属材料

6.1 工业用钢概述

6.1.1 钢中杂质

锰、硅、硫、磷在钢中的分布、对性能的影响。

6.1.2 钢的分类与编号

1.钢的分类:(10min)

1).按化学成分分类;2).按质量分类;3)按用途分类

2.钢的编号(20min)

按碳含量、合金元素的种类和数量以及质量级别来编号:

1.普通碳素结构钢Q253-A.F

2.优质碳素结构钢45、40Mn

3.碳素工具钢T8或T10A

4.铸造碳钢

3.合金钢的编号

1).低合金结构钢Q353-C

2).合金结构钢60Si2Mn

3).合金工具钢5CrMnMo

4).特殊性能钢

6.2 合金元素在钢中的作用

6.2.1 合金元素对钢中基本相的影响(15min)

1.形成合金铁素体

2.形成碳化物

6.2.2 合金元素对铁碳相图的影响(10min)

6.2.3 合金元素对热处理及性能的影响(15min)

1.对钢在加热时奥氏体化的影响

2.对过冷奥氏体分解的影响

3.对回火转变的影响

6.3 结构钢

6.3.1 普通结构钢(10min)

普通碳素结构钢和低合金高强度结构钢

1.成分特点

2.热处理特点

普通结构钢使用时一般不进行热处理,大多数是在热轧状态下或热轧后正火状态下使用。其组织为铁素体和少量珠光体

普通碳素结构钢:一般工程用热轧钢板、钢带、型钢、棒钢等

低合金高强度结构钢:这类材料是用来制造桥梁、船舶、大型钢结构

6.3.2优质结构钢(40min)

硫、磷含量均控制在0.035%以下

1.性能要求

2.成分特点

3.热处理特点

机器零件制造工艺流程一般为:下料毛坯成形(通常为锻造)预备热处理粗加工最终热处理精加工装配。

6.4 工具钢

6.4.1 性能要求

6.4.2 成分特点

6.4.3 锻造及热处理特点

6.5 特殊性能钢

特殊性能钢是指具有特殊的物理、化学性能的钢,如不锈钢、耐热钢和耐磨钢等

6.5 特殊性能钢

特殊性能钢是指具有特殊的物理、化学性能的钢,如不锈钢、耐热钢和耐磨钢等.

6.6 铸铁

6.6.1 铸铁的石墨化(20min)

6.6.2 常用铸铁(50min)

1.铸铁的组织、分类与牌号

铸铁的性能除了与成分及基体组织有关外,更主要的是取决于石墨的形态(形状、大小、数量、分布等),因此,工业铸铁一般根据石墨的形态来进行分类。

2.成分特点

3.铸铁性能特点

4.热处理特点

5.铸铁的应用

6.6.3 合金铸铁(20min)

1.耐磨铸铁

2.耐热铸铁

3.耐蚀铸铁

6.7铝及其合金

6.7.1 纯铝

6.7.2 铝合金的分类

形变铝合金和铸造铝合金两大类

形变铝合金又可分为防锈铝合金、硬铝合金、超硬铝合金和锻造铝合金。

铝硅铸造铝合金:又称为硅铝明

6.8铜及其合金

6.8.1 纯铜

6.8.2 黄铜

黄铜是以锌作为主要合金元素的铜合金.通常把铜锌二元合金称为普通黄铜,用“黄”字汉语拼音字首“H”表示,其后附以数字表示平均含铜量。

6.8.3 青铜

6.9 轴承合金

锡基轴承合金

6.10新型金属材料

形状记忆合金

第七章铸造(金属液态成形)

7.1 砂型铸造(60min)

砂型铸造的工艺过程包括:混砂、造型和造芯、烘干、合箱、熔化与浇注、铸件的清理和检验等工序。

液态成形(铸造)的优点:

(1)适应性广,工艺灵活性大(材料、大小、形状几乎不受限制)

(2)最适合形状复杂的箱体、机架、阀体、泵体、缸体等

(3)成本较低(铸件与最终零件的形状相似、尺寸相近)

主要问题:组织疏松、晶粒粗大,铸件内部常有缩孔、缩松、气孔等缺陷产生,导致铸件力学性能,特别是冲击性能较低。

分类:铸造从造型方法来分,可分为砂型铸造和特种铸造两大类。

其中砂型铸造工艺如图7-1所示。

图7-1 砂型铸造工艺流程图

7.1.1 造型方法

造型是砂型铸造的重要工序,有手工造型和机器造型两类。

1.手工造型

手工造型特点:操作方便灵活、适应性强,模样生产准备时间短。但生产率低,劳动强度大,铸件质量不易保证。只适用于单件小批量生产。

各种常用手工造型方法的特点及其适用范围见下表:

表常用手工造型方法的特点和应用范围

2.机器造型:机器造型是指用机械设备实现紧砂和起模的造型方法。

机器造型特点:

大批量生产砂型的主要方法,能够显著提高劳动生产率,改善劳动条件,并提高铸件的

尺寸精度、表面质量,使加工余量减小。

1). 基本原理图7-2所示为顶杆起模式震压造型机的工作过程。

填砂→震击紧砂→辅助压实→起模

2).工艺特点机器造型工艺是采用模底板进行两箱造型。

模底板是将模样、浇注系统沿分型面与底板联结成一个整体的专用模具。造型后,底板形成分型面,模样形成铸型空腔。

3.造芯

用途:当制作空心铸件,或铸件的外壁内凹,或铸件具有影响起模的外凸时,经常要用到型芯,制作型芯的工艺过程称为造芯。型芯可用手工制造,也可用机器制造。形状复杂的型芯可分块制造,然后粘合成形。

注意:为了提高型芯的刚度和强度,需在型芯中放入芯骨;为了提高型芯的透气性,需在型芯的内部制作通气孔;为了提高型芯的强度和透气性,一般型芯需烘干使用。

7.1.2砂型铸造工艺

目的:为了获得健全的合格铸件,减小铸型制造的工作量,降低铸件成本,在砂型铸造的生产准备过程中,必须合理地制订出铸造工艺方案,并绘制出铸造工艺图。

铸造工艺图:在零件图中用各种工艺符号表示出铸造工艺方案的图形,其中包括:铸件的浇注位置;铸型分型面;型芯的数量、形状、固定方法及下芯次序;加工余量;起模斜度;收缩率;浇注系统;冒口;冷铁的尺寸和布置等。铸造工艺图是指导模样(芯盒)设计、生产准备、铸型制造和铸件检验的基本工艺文件。依据铸造工艺图,结合所选造型方法,便可绘制出模样图及合箱图。图7-3为支座的铸造工艺图、模样图及合箱图。

(一)浇注位置的选择

浇注位置:浇注时铸件在铸型中所处的位置,选择原则如下:

1.铸件的重要加工面应朝下或位于侧面

图7-4所示为车床床身铸件的浇注位置方案。由于床身导轨面是重要表面,不允许有明显的表面缺陷,而且要求组织致密,因此应将导轨面朝下浇注。

图7-5为起重机卷扬筒的浇注位置方案。采用立式浇注,由于全部圆周表面均处于侧立位置,其质量均匀一致、较易获得合格铸件。

1.铸件的大平面应朝下

型腔的上表面除了容易产生砂眼、气孔、夹渣等缺陷外,大平面还常容易产生夹砂缺陷。因此,对平板、圆盘类铸件的大平面应朝下。

2.面积较大的薄壁部分置于铸型下部或使其处于垂直或倾斜位置

可以有效防止铸件产生浇不足或冷隔等缺陷。图7-6为油盘铸件的合理浇注位置。

3.对于容易产生缩孔的铸件,应将厚大部分放在分型面附近的上部或侧面

以便在铸件厚壁处直接安置冒口,使之实现自下而上的定向凝固。如前述之铸钢卷扬筒,浇注时厚端放在上部是合理的;反之,若厚端在下部,则难以补缩。

(二)铸型分型面的选择

铸型分型面的选择恰当与否会影响铸件质量,使制模、造型、造芯、合箱或清理等工序复杂化,甚至还可增大切削加工的工作量。

分型面的选择原则:

1.便于起模,使造型工艺简化尽量使分型面平直、数量少,避免不必要的活块和型芯。

图7-7为一起重臂铸件,按图中所示的分型面为一平面,故可采用较简便的分模造型;

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

材料成形技术基础知识点总结

材料成形技术基础第一章 1-1 一、铸造的实质、特点与应用 铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。 1、铸造的实质 利用了液体的流动形成。 2、铸造的特点 A适应性大(铸件重量、合金种类、零件形状都不受限制); B成本低 C工序多,质量不稳定,废品率高 D力学性能较同样材料的锻件差。力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松,成分不均匀 3、铸造的应用 铸造毛胚主要用于受力较小,形状复杂(尤其是腔内复杂)或简单、重量较大的零件毛胚。 二、铸造工艺基础 1、铸件的凝固 (1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程。它由晶核的形成和长大两部分组成。通常情况下,铸件的结晶有如下特点: A以非均质形核为主 B以枝状晶方式生长为主。 结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒。晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或混合组织等。 (2)铸件的凝固方式 逐渐的凝固方式有三种类型:A逐层凝固B糊状凝固C中间凝固 2、合金的铸造性能 (1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。 生产上改善合金的充型能力可以从一下各方面着手: A选择靠近共晶成分的趋于逐层凝固的合金,它们的流动性好; B 提高浇注温度,延长金属流动时间; C 提高充填能力 D 设置出气冒口,减少型内气体,降低金属液流动时阻力。 (2)收缩性 A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中。对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。适当控制凝固顺序,让铸件按远离冒口部分最先凝固,然后朝冒口方向凝固,最后才是冒口本身的凝固(即顺序凝固方式),就把缩孔转移到最后凝固的部位——冒口中去,而去除冒口后的铸件则是所要的致密铸件。 具有宽结晶温度范围,趋于糊状凝固的合金,由于液固两相共存区很宽甚至布满整个断

工程材料与成型技术基础复习总结

工程材料与成型技术基础 1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大 应力。 2.工程上常用的强度指标有屈服强度和抗拉强度。 3.弹性模量即引起单位弹性变形所需的应力。 4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留 一部分残余成形,这种不恢复的参与变形,成为塑性变形。 5.产生塑性变形而不断裂的性能称为塑性。 6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断 前的最大承载能力。 7.发生塑性变形而力不增加时的应力称为屈服强度。 8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材 料软硬程度的指标。 9.硬度是检验材料性能是否合格的基本依据之一。 10. 11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两 种硬度。 12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。 13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称 为疲劳断裂。 14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的 最大应力。

熔点。 16.晶格:表示金属内部原子排列规律的抽象的空间格子。 晶面:晶格中各种方位的原子面。 晶胞:构成晶格的最基本几何单元。 17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。 面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。 密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间 隙原子、置换原子、空位。 19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸 很小的缺陷,呈线状分布,其具体形式是各种类型的位错。 20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很 小的缺陷,如晶界和亚晶界。 21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。 结晶过程由形成晶核和晶核长大两个阶段组成。 22.纯结晶是在恒温下进行的。 23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其 差值称为过冷度ΔT,即ΔT=Tm﹣Tn。 24.同一液态金属,冷却速度愈大,过冷度也愈大。 25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金, 当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。这种方法称为变质处理。 26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的 晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。 27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。 28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体 强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

工程材料及成型技术 鞠鲁粤编

第一章工程材料 1)固体材料的主要性能包括力学性能、物理性能、化学性能、工艺性能 力学性能包括弹性、强度、塑性、硬度、韧性、疲劳强度、蠕变和磨损 2)材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力 最常用的强度指标有屈服强度和抗拉强度 固态物质按原子的聚集状态分为晶体和非晶体 常见的晶格类型:体心立方格,面心立方格,密排六方晶格 3)晶格缺陷:点缺陷,面缺陷,线缺陷 4)细化液态金属结晶晶粒的方法:增加过冷度,变质处理,附加振动 5)合金:由两种或两种以上的金属或金属与非金属组成的具有金属性质的物质 组元:组成合金的最基本、最独立的物质 二元合金:由两种组元组成的合金 相:合金中成分相同、结构相同,并与其他部分以界面分开的均匀组成部分 组织:一种或多种相按一定方式相互结合所构成的整体 6)固态合金中的相可分为固溶体和金属化合物 固溶体分为间隙固溶体和置换固溶体 7)固溶强化:当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的现象 弥散强化:金属化合物呈细小颗粒均匀分布在固溶体基体上时,使合金的强度、硬度、耐热性和耐磨性明显提高 8)铁碳合金的基本相有铁素体、奥氏体、渗碳体、珠光体、莱氏体和低温莱氏体 9)铸铁的类型 铸铁分为一般工程应用铸铁和特殊性能铸铁 一般工程性能铸铁按石墨形貌不同分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁 10)影响石墨化的因素主要有化学成分和冷却速度 11)钢的热处理:将固态钢采用适当的方式进行加热、保温和冷却,以获得所需组织结构与性能的一种工艺 热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理等) 12)铁碳合金相图(分析题)P32 第二章铸造成形 1)铸件的生产工艺方法 按充型条件不同分为重力铸造、压力铸造、离心铸造 按形成铸件的铸型分为砂型铸造、金属型铸造、熔模铸造、壳型铸造、陶瓷型铸造、消失模铸造、磁型铸造等 2)影响金属充型能力的因素和原因 ①合金的流动性②浇注温度③充型能力④铸型中的气体⑤铸型的传热系数⑥铸型温度⑦浇注系统的结构⑧铸件的折算厚度⑨铸件复杂程度 影响原因①流动性好,易于浇出轮廓清晰,薄而复杂的铸件,有利于非金属夹杂物和气体的上浮和排除,易于对铸件补缩 ②浇注温度越高,充型能力越强 ③压力越大,充型能力越强,但压力过大或充型速度过高会发生喷射、飞溅和冷隔④铸型中的气体能产生气膜,减少摩擦阻力 ⑤传热系数越大,铸型的激冷能力越强,金属液于其中保持液态的时间越短,充型能力下降

工程材料及成形技术基础课程

课程名称:工程材料及成形技术基础 总学时: 64/48学时 (理论学时56/40) 适用专业:机械设计制造及其自动化、机械电子工程/汽车服务工程 一、课程的性质与任务 《工程材料及成型技术基础》是研究机械零件的材料、性能及成形方法的综合性课程,是高等工科师范院校机械工程专业必修的专业基础课,其内容包括工程材料和成形技术基础两部分。 本课程是在修完高等数学、大学物理(含实验)和机械制图等课程的基础上开设的。其任务是使学生掌握工程材料及成形技术的基本知识,为后继学习机械设计、模具制造工艺、先进制造技术和毕业设计等课程,培养专业核心能力;为今后从事职业学校机械类专业相关课程的教学,奠定必要的专业基础。 本课程教学开设了实验教学。通过实验教学,在巩固和验证课程的基本理论知识的同时,拓展学生的创新思维,着重培养学生实践动手能力和创新能力。 二、课程教学基本要求 1、获得有关材料学的基本理论与工程材料的一般知识,掌握常用工程材料的成分、热加工工艺与组织、性能及应用之间的相互关系,熟悉常用工程材料的种类、牌号与特点,使学生具备合理选用工程材料、热处理方法、妥善安排热处理工艺路线的基本能力。 2、初步掌握工程材料主要成形方法的基本原理与工艺特点,获得具有初步选择常用工程材料、成形方法的能力和进行工艺分析的能力。 3、具有综合运用工艺知识,初步分析零件结构工艺性的能力。 4、初步了解新材料、新技术、新工艺的特点和应用。 四、本课程的教学内容 绪论 一、材料科学的发展与地位:材料科学的发展通常是和人类文明联系在一起的。 古代文明:人类的发展史上,最先使用的工具是石器;新石器时代(公元前6000年~公元前5000年)烧制成陶器;东汉时期发明了瓷器;到了西汉时期, 炼铁技术又有了很大的提高,采用煤作为炼铁的燃料,这要比欧洲早1700多年。在河南巩县汉代冶铁遗址中,发掘出20

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料成形技术基础试题

材料成形技术基础复习题 一、填空题 1、熔模铸造的主要生产过程有压制蜡模,结壳,脱模,造型,焙烧和浇注。 2、焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 3、接的主要缺陷有气孔,固体夹杂,裂纹,未熔合,未焊透,形状缺陷等。 4、影响陶瓷坯料成形性因素主要有胚料的可塑性,泥浆流动性,泥浆的稳定性。 5、焊条药皮由稳弧剂、造渣剂、造气剂、脱氧剂、合金剂和粘结剂组成。 6、常用的特种铸造方法有:熔模铸造、金属型铸造、压力铸造、离心铸造、低压铸造和陶瓷型铸造等。 7、根据石墨的形态特征不同,可以将铸铁分为普通灰口铸铁、可锻铸铁和球墨铸铁等。 二、单项选择题 1.在机械性能指标中,δ是指( B )。 A.强度 B.塑性 C.韧性 D.硬度 2.与埋弧自动焊相比,手工电弧焊的优点在于( C )。 A.焊接后的变形小 B.适用的焊件厚 C.可焊的空间位置多 D.焊接热影响区小 3.A3钢常用来制造( D )。 A.弹簧 B.刀具 C.量块 D.容器 4.金属材料在结晶过程中发生共晶转变就是指( B )。 A.从一种液相结晶出一种固相 B.从一种液相结晶出两种不同的固相 C.从一种固相转变成另一种固相 D.从一种固相转变成另两种不同的固相 5.用T10钢制刀具其最终热处理为( C )。 A.球化退火 B.调质 C.淬火加低温回火 D.表面淬火 6.引起锻件晶粒粗大的主要原因之一是( A )。 A.过热 B.过烧 C.变形抗力大 D.塑性差 7.从灰口铁的牌号可看出它的( D )指标。 A.硬度 B.韧性 C.塑性 D.强度 8.“16Mn”是指( D )。 A.渗碳钢 B.调质钢 C.工具钢 D.结构钢 9.在铸造生产中,流动性较好的铸造合金( A )。 A.结晶温度范围较小 B.结晶温度范围较大 C.结晶温度较高 D.结晶温度较低 10.适合制造齿轮刀具的材料是( B )。 A.碳素工具钢 B.高速钢 C.硬质合金 D.陶瓷材料 11.在车床上加工细花轴时的主偏角应选( C )。 A.30° B.60° C.90° D.任意角度 12.用麻花钻加工孔时,钻头轴线应与被加工面( B )。 A.平行 B.垂直 C.相交45° D.成任意角度 三、名词解释 1、液态成型液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。 2、焊缝熔合比熔焊时,被熔化的母材金属部分在焊道金属中所占的比例,叫焊缝的熔合比。 3、自由锻造利用冲击力或压力使金属在上下砧面间各个方向自由变形,不受任何限制而获得所需形状及尺寸和一定机械性能的锻件的一种加工方法,简称自由锻 4、焊接裂纹在焊接应力及其它致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏,形成新的界面所产生的缝隙称为焊接裂纹。 5、金属型铸造用重力浇注将熔融金属浇入金属铸型(即金属型)中获得铸件的方法。 四、判断题: 1、铸造的实质使液态金属在铸型中凝固成形。(√) 2、纤维组织使金属在性能上具有了方向性。(√) 3、离心铸造铸件内孔直径尺寸不准确,内表面光滑,加工余量大。(×)

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

工程材料及其成形技术基础课作业参考答案

工程材料及其成形技术基础课作业参考答案 1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用? 答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。 2-9 从铁-碳相图的分析中回答: ⑴随碳质量百分数的增加,硬度、塑性是增加还是减小? ⑵过共析钢中网状渗碳体对强度、塑性的影响怎样? ⑶为何钢有塑性而白口铁几乎无塑性? ⑷哪个区域熔点最低?哪个区域塑性最好? ⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大? 答:⑴随碳质量百分数的增加,硬度、增加塑性减小。 ⑵过共析钢中网状渗碳体对强度、塑性均降低。 ⑶塑性主要与铁-碳合金中的铁素体相含量多少有关,铁素体相含量越多塑性越好。钢含碳量低(ωc<2.11%)铁素体相含量多为基体而有塑性,白口铁含碳量高(ωc>2.11%),渗碳体相含量高为基体而几乎没有塑性。 ⑷共晶点熔点最低,奥氏体区塑性最好。 ⑸ C点共晶成分(ωc=4.3%)结晶间隔最小(为零),E点(ωc=2.11%)成分结晶间隔最大。 3-1 什么是珠光体、贝氏体、马氏体?它们的组织及性能有何特点? 答:珠光体(P)—铁碳合金平衡状态下,在PSK线(727℃)发生共析转变的转变产物,即铁素体片和渗碳体片交替排列的机械混合物组织。强度比铁素体和渗碳体都高,塑性、韧性和硬度介于铁素体和渗碳体之间。热处理后可得到在铁素体基体上分布着粒状渗碳体的粒状珠光体,综合性能更好。 贝氏体(B)—从550℃到Ms范围内中温转变、半扩散型转变的非平衡组织,即含过饱和碳的铁素体和渗碳体的非片层状混合物组织。按组织形态不同分羽毛状的上贝氏体(B上)和针片状的下贝氏体(B下)。上贝氏体脆性大无实用价值,下贝氏体的铁素体针细小,过饱和度大,碳化物弥散度大,综合性能好。 马氏体(M)—Ms-Mf之间低温转变、非扩散型转变的非平衡组织,即过饱和碳的α固溶体。体心正方晶格,分板条马氏体(低碳马氏体ωc<0.20%,位错马氏体),强韧性较好;针状马氏体(高碳马氏体ωc>1.0%,孪晶马氏体),大多硬而脆;ωc在0.2%~1.0%之间为两者的混合组织。马氏体的含碳量越多,硬度越高,马氏体有弱磁性。A→M,体积要膨胀,产生较大的内应力。 3-12 钢淬火后为什么一定要回火?说明回火的种类及主要应用范围。 答:钢淬火后一般不能直接使用,因为:①零件处于高应力状态(>300~500MPa),放置或使用时很容易变形和开裂;②淬火态的组织(M+A)是极端非平衡的亚稳定状态,有向稳

工程材料及成形技术题库答案

《工程材料与成形技术》课复习提纲 一、工程材料部分 1.常见金属晶格类型。 2. 三种晶体缺陷。 3. 相的概念。 4.固态合金有哪些相。 5.过冷度的概念。 6.过冷度与晶粒度的关系。 7.结晶过程的普遍规律。8.控制晶粒度的方法。 9.同素异构转变的概念。 10.绘制铁碳合金相图(各线、特殊点、成份、温度、组织、相)。 11.分析钢从奥氏体缓冷至室温时的结晶过程,画出典型铁碳合金(钢)显微组织示意图。 12.共晶反应式和共析反应式。 13.金属塑性变形的两种方式。14.加工硬化的概念。 15再结晶温度的计算。16热加工与冷加工的区别。 17.钢的热处理概念。18.热处理工艺分类。 19.过冷奥氏体转变的产物。20.决定奥氏体转变产物的因素。 21.马氏体的概念。 22会分析过冷奥氏体转变曲线。知道淬透性与C曲线的关系。 23.退火和正火的目的。24.淬火的概念。 25.一般怎样确定碳钢的淬火温度?26.影响淬透性的因素。 27.回火的目的。28.何为回火脆性? 29.回火的种类。 30.一般表面淬火的预备热处理方法和表面淬火后的组织。 31渗碳的主要目的。32.钢按化学成分分类。 33.钢按质量分类。34 钢按用途分类。 35.机器结构钢的分类。36 钢中S、P杂质的影响。 37合金元素在钢中的作用。38.结构钢牌号表示的含义。 39.能区别渗碳钢、调质钢、弹簧钢、轴承钢的牌号和一般采用的热处理方法。40按刃具钢的工作条件,提出哪些性能要求? 41.根据碳钢在铸铁中存在形式及石墨形态,铸铁的分类。 二、材料成形技术部分 1、铸造工艺参数主要包括哪些内容? 2、流动性对铸件质量的影响。 3、什么合金易于形成缩孔、什么合金易于形成缩松?。 4、铸造应力分为哪几类? 5、减小和消除铸造应力的主要方法。 6、绘制自由锻件图主要考虑哪些问题?。 7、何谓拉深系数?有何意义?8.焊接的实质。

材料成型技术基础复习重点

材料成型技术基础复习重点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1.1 1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。

工程材料及成型技术基础考试题目

工程材料及成型技术基础考试题目 一、填空 1、常见的金属晶体结构:体心立方晶格、面心立方晶格、密排立方晶格。 2、晶体缺陷可分为:点缺陷、线缺陷、面缺陷。 3、点缺陷包括:空位、间隙原子、置换原子。 线缺陷包括:位错。位错的最基本的形式是:刃型位错、螺型位错。 面缺陷包括:晶界、亚晶界。 4、合金的相结构可分为:固溶体、化合物。 5、弹性极限:σe 屈服极限:σs 抗拉强度:σb弹性模量:E 6、低碳钢的应力应变曲线有四个变化阶段:弹性阶段、屈服阶段、抗拉阶段(强化阶段)、 颈缩阶段。 7、洛氏硬度HRC 压印头类型:120°金刚石圆锥、总压力:1471N或150kg 8、疲劳强度表示材料经无数次交变载荷作用而不致引起断裂的最大应力值。 9、冲击韧度用在冲击力作用下材料破坏时单位面积所吸收的能量来表示。 10、过冷度影响金属结晶时的形核率和长大速度。 11、以纯铁为例α– Fe为体心立方晶格(912℃以下) γ– Fe为面心立方晶格(1394℃以下)、δ– Fe为体心立方晶格(1538℃以下) 12、热处理中,冷却方式有两种,一是连续冷却,二是等温冷却。 13、单晶体的塑性变形主要通过滑移和孪生两种方式进行。 14、利用再结晶退火消除加工硬化现象。 15、冷变形金属在加热时的组织和性能发生变化、将依次发生回复、再结晶和晶粒长大。 16、普通热处理分为:退火、正火、淬火、回火。 17、退火可分为:完全退火、球化退火、扩撒退火、去应力退火。 18、调质钢含碳量一般为中碳、热处理为淬火+高温回火。 19高速钢的淬火温度一般不超过1300℃、高速钢的淬火后经550~570℃三次回火。 三次回火的目的:提高耐回火性,为钢获得高硬度和高热硬性提供了保证。 高速钢的淬火回火后的组织是:回火马氏体、合金碳化物、少量残余奥氏体。 20、铸铁的分类及牌号表示方法。P142

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

工程材料与成型技术_复习要点与答案

第一章 1、按照零件成形的过程中质量 m 的变化,可分为哪三种原理?举例说明。 按照零件由原材料或毛坯制造成为零件的过程中质量m的变化,可分为三种原理 △m<0(材料去除原理); △m=0(材料基本不变原理); △m>0(材料累加成型原理)。 2、顺铣和逆铣的定义及特点。 顺铣:铣刀对工件的作用力在进给方向上的分力与工件进给方向相同的铣削方式。 逆铣;铣刀对工件的作用力在进给方向上的分力与工件进给方向相反的铣削方式。 顺铣时,每个刀的切削厚度都是有小到大逐渐变化的 逆铣时,由于铣刀作用在工件上的水平切削力方向与工件进给运动方向相反,所以工作台丝杆与螺母能始终保持螺纹的一个侧面紧密贴合。而顺铣时则不然,由于水平铣削力的方向与工件进给运动方向一致,当刀齿对工件的作用力较大时,由于工作台丝杆与螺母间间隙的存在,工作台会产生窜动,这样不仅破坏了切削过程的平稳性,影响工件的加工质量,而且严重时会损坏刀具。 逆铣时,由于刀齿与工件间的摩擦较大,因此已加工表面的冷硬现象较严重。 顺铣时的平均切削厚度大,切削变形较小,与逆铣相比较功率消耗要少些。 3、镗削和车削有哪些不同? 车削使用围广,易于保证零件表面的位置精度,可用于有色金属的加工、切削平稳、成本低。镗削是加工外形复杂的大型零件、加工围广、可获得较高的精度和较低的表面粗糙度、效率低,能够保证孔及孔系的位置精度。 4、特种加工在成形工艺方面与切削加工有什么不同? (1)加工时不受工件的强度和硬度等物理、机械性能的制约,故可加工超硬脆材料和精密微细零件。 (2)加工时主要用电能、化学能、声能、光能、热能等去除多余材料,而不是靠机械能切除多余材料。 (3)加工机理不同于切削加工,不产生宏观切屑,不产生强烈的弹塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。 (4)加工能量易于控制和转换,故加工围广、适应性强。 (5)各种加工方法易复合形成新工艺方法,便于推广。 第二章 1、什么是切削主运动和进给运动?车削、铣削、镗削及磨削时主运动及进给运动都是什么运动? 主运动是切削多余金属层的最基本运动,它的速度最高,消耗的功率最大,在切削过程中主运动只能有一个;进给运动速度较低,消耗的功率较小,是形成已加工表面的辅助运动,在切削过程中可以有一个或几个。 车削工件的旋转运动车刀的纵向、横向运动 铣削铣刀的旋转运动工件的水平运动 磨削砂轮的旋转运动工件的旋转运动 镗削镗刀的旋转运动镗刀或工件的移动

工程材料及成形技术作业题库(带答案)

工程材料及成形技术作业题库 一. 名词解释 1.间隙固溶体:溶质原子溶入溶剂晶格间隙所形成的固溶体。 2.过冷度:理论结晶温度与实际结晶温度之差。 3..同素异构性:同一合金在不同温度下晶格类型不同的现象。 4.同素异构性:同一合金在不同温度下晶格类型不同的现象。 5.再结晶:金属发生重新形核和长大而晶格类型没有改变的结晶过程。 6.枝晶偏析:结晶后晶粒内成分不均匀的现象。 7.淬透性:钢淬火时获得淬硬层深度的能力。 8.淬硬性:钢淬火时得到的最大硬度。 9.临界冷却速度:奥氏体完全转变成马氏体的最低冷却速度。 10.热硬性:钢在高温下保持高硬度的能力。 11.时效强化:经固溶处理后随着时间的延长强度不断提高的现象。 12.形变强化:由于塑性变形而引起强度提高的现象。 13.调质处理:淬火+高温回火得到回火索氏体的热处理工艺。 14.变质处理:在浇注是向金属液中加入变质剂,使其形核速度升高长大速度减低,从而实现细化晶粒的 处理工艺。 15.顺序凝固原则:铸件时使金属按规定从一部分到另一部分逐渐凝固的原则。 16.同时凝固原则: 17.孕育铸铁:经过孕育处理的铸铁。 18.热固性塑料: 19.热塑性塑料: 二. 判断正误并加以改正 1.细化晶粒虽能提高金属的强度,但增大了金属的脆性. (╳) 改正:细化晶粒不但能提高金属的强度,也降低了金属的脆性。 2.结构钢的淬透性,随钢中碳含量的增大而增大. (╳) 改正:结构钢的淬硬性,随钢中碳含量的增大而增大。 3.普通低合金结构钢不能通过热处理进行强化。(√) 4. 单晶体必有各向异性. (√) 5. 普通钢和优质钢是按其强度等级来区分的. (╳) 改正:普通钢和优质钢是按钢中有害杂质硫、磷的含量来划分的。 6. 过热钢经再结晶退火后能显著细化晶粒. (√) 7. 奥氏体耐热钢也就是奥氏体不锈钢。(╳) 改正:奥氏体耐热钢不是奥氏体不锈钢。 8. 马氏体的晶体结构和铁素体的相同. (√) 9. 面心立方金属的塑性比体心立方金属的好. (╳) 10. 铁素体是置换固溶体. (╳) 改正:铁素体是碳溶于α-Fe中形成的间隙固溶体体。

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

工程材料及成形技术基础A答案

一、填空题(每空1分,共20分) 1. 机械设计时常用屈服强度和抗拉强度两种强度指标。 2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。 3. 实际金属存在点、线和面缺陷等三种缺陷。 4.F和A分别是碳在α-Fe 、γ-Fe 中所形成的间隙固溶体。5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。 6. QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa 。7.金属晶体通过滑移和孪生两种方式来发生塑性变形。 8.设计锻件时应尽量使零件工作时的正应力与流线方向相同 ,而使切应力与流线方向相垂直。 9.电焊条由药皮和焊芯两部分组成。 10.冲裁是冲孔和落料工序的简称。 1.在铁碳合金相图中,碳在奥氏体中的最大溶解度为( b )。 a、0.77% b、2.11% c、0.02% d、4.0% 2.低碳钢的焊接接头中,( b )是薄弱部分,对焊接质量有严重影响,应尽可能减小。 a、熔合区和正火区 b、熔合区和过热区 c、正火区和过热区 d、正火区和部分相变区 3.碳含量为Wc=4.3%的铁碳合金具有良好的( c )。 a、可锻性 b、可焊性 c、铸造性能 d、切削加工性 4.钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而( b ) b、增加淬透性 c、减少其淬透性 d、增大其淬硬性 a、增大V K 5. 高碳钢淬火后回火时,随回火温度升高其( a ) a、强度硬度下降,塑性韧性提高 b、强度硬度提高 ,塑性韧性下降 c、强度韧性提高,塑性硬度下降 d、强度韧性下降,塑性硬度提高 6.感应加热表面淬火的淬硬深度,主要决定于因素( d ) a、淬透性 b、冷却速度 c、感应电流的大小 d、感应电流的频率 7.珠光体是一种( b ) a、单相间隙固溶体 b、两相混合物 c、Fe与C的混合物 d、单相置换固溶体8.灰铸铁的石墨形态是( a ) a、片状 b、团絮状 c、球状 d、蠕虫状

工程材料及成形技术基础课程

课程名称:工程材料及成形技术基础 总学时 : 64/48学时 (理论学时56/40) 适用专业:机械设计制造及其自动化、机械电子工程/汽车服务工程 一、课程的性质与任务 《工程材料及成型技术基础》是研究机械零件的材料、性能及成形方法的综合性课程,是高等工科师范院校机械工程专业必修的专业基础课,其内容包括工程材料和成形技术基础两部分。 本课程是在修完高等数学、大学物理(含实验)和机械制图等课程的基础上开设的。其任务是使学生掌握工程材料及成形技术的基本知识,为后继学习机械设计、模具制造工艺、先进制造技术和毕业设计等课程,培养专业核心能力;为今后从事职业学校机械类专业相关课程的教学,奠定必要的专业基础。 本课程教学开设了实验教学。通过实验教学,在巩固和验证课程的基本理论知识的同时,拓展学生的创新思维,着重培养学生实践动手能力和创新能力。 二、课程教学基本要求 1、获得有关材料学的基本理论与工程材料的一般知识,掌握常用工程材料的成分、热加工工艺与组织、性能及应用之间的相互关系,熟悉常用工程材料的种类、牌号与特点,使学生具备合理选用工程材料、热处理方法、妥善安排热处理工艺路线的基本能力。 2、初步掌握工程材料主要成形方法的基本原理与工艺特点,获得具有初步选择常用工程材料、成形方法的能力和进行工艺分析的能力。 3、具有综合运用工艺知识,初步分析零件结构工艺性的能力。 4、初步了解新材料、新技术、新工艺的特点和应用。 四、本课程的教学内容 绪论 一、材料科学的发展与地位:材料科学的发展通常是和人类文明联系在一起的。 古代文明:人类的发展史上,最先使用的工具是石器;新石器时代(公元前6000年~公元前5000年)烧制成陶器;东汉时期发明了瓷器;到了西汉时期,炼铁技术又有了很大的提高,采用煤作为炼铁的燃料,这要比欧洲早1700多年。在河南巩县汉代冶铁遗址中,发掘出20多座冶铁炉和锻炉。炉型庞大,结构复杂,并有鼓风装置和铸造坑。可见当年生产规模之壮观。

相关文档
相关文档 最新文档