文档库 最新最全的文档下载
当前位置:文档库 › 化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施
化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施

摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。

关键词:换热器;腐蚀;防腐

1 概述

换热器是将热流体的部分热量传递给冷流体或将冷流

体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。

随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。

2 化工换热器的常见腐蚀现象

引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。

2.1 换热器表面的腐蚀磨损

磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。

2.2 沉积物引起的电化学腐蚀

当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

蚀。

2.3 换热管水侧的腐蚀

由于换热器常用水做为热交换介质,因此水的腐蚀不容忽视。水的腐蚀主要是由于水中pH值降低、水汽渗透、溶解氧的存在以及水中有害的阴离子侵蚀而引起的化学或电化学腐蚀。

3 化工换热器的防腐措施

由于腐蚀问题越来越引起人们的重视,领域内有越来越多的学者、专家对腐蚀问题进行深入研究,也得到了很多针对不同情况下的防腐蚀技术、方法,国内外目前主要采用的是以下几种措施:(1)牺牲阳极保护法;(2)使用换热器防腐涂料;(3)添加缓蚀剂;(4)提高循环水的pH;(5)强化工艺防腐管理。

3.1 牺牲阳极保护法

发生电化学腐蚀时,阴阳极之间产生腐蚀电流。采用电极电位比被防腐体低的金属并与被防腐体接触,利用低电位金属的腐蚀电流作为高电位被防腐体的防腐蚀电流,这种防腐蚀方法称为牺牲阳极保护法。牺牲阳极材料一般选择碳素钢,碳素钢的基本金相组织是铁素体(Fe),若选择铝作为阳极,容易形成氧化膜,反而不产生腐蚀电流。其他材料则比较昂贵,所以选择锌作为牺牲阳极比较合适。

3.2 使用换热器防腐涂料

一层相当薄的金属涂层和无机涂层能够在金属和环境

之间提供有效的屏障,这就是这类涂层的主要作用。金属涂层的施工方法有:电镀、火焰喷涂、包镀、热浸和蒸汽镀。无机涂层的施工方法有:喷涂、渗镀、或化学转化。喷涂后通常在高温烘烤。金属涂层往往显现出一些可变形性,而无机涂层则很脆,两种涂层都必须具有完全隔离的作用,如果存在微孔或其他缺陷,则由于电偶效应将引起金属局部腐蚀的加速。防腐涂料系环氧氨基涂料,其特点:耐腐蚀性能好,耐大多数酸碱、耐水、耐溶剂,耐温可达200℃;漆膜物理机械性能好,硬度大,表面光滑,附着力强,抗冲击,抗摩擦。CH-784防腐涂料底漆面漆含有金属颜料,不生锈不结垢,增加水的流速,提高换热效果。

3.3 添加缓蚀剂

这是一种行之有效的方法,只要缓蚀剂选用得当,一般都能把腐蚀率控制在允许的范围内,并且还能与阻垢结合起来选用药剂,既达到缓蚀的目的,又达到阻垢的目的。常见的缓蚀剂有:聚磷酸盐、有机多元膦酸、磷酸盐、水玻璃等。

3.4 提高循环水的pH

提高循环水中的pH浓度,可以抑制阴极溶解氧的反应过程。从而使金属腐蚀速率大大降低。但pH值不可无限制地提高,因为碱性太强时,某些两性金属能与碱反应生成盐,特别是采暖系统,由于温度较高,当pH很高时,除了锌、

铝等两性金属,铁也能溶解生成铁酸盐。

3.5 强化工艺防腐管理

工艺防腐中应用较为成功的是常压系统的“一脱三注”,它对延缓换热器等设备的腐蚀起到了非常积极的作用。实际上,对原油进行预处理,将原油中的腐蚀杂质尽量脱除,可避免或减轻换热器等设备腐蚀的发生。

4 加强对换热设备的维护管理

使换热器运行在合理的工况下,避免因偏离设计工况过大而造成逐步温度或流速过高使腐蚀加剧。同时,为避免换热器中因污垢或淤泥堵塞或微生物繁殖而引起腐蚀,应根据换热器的工作条件进行反冲洗或化学清洗或机械清洗。

5 结论

换热器的防腐蚀是一个任重而道远的过程,靠单一方法效果有限,上述措施只能较大程度的减缓腐蚀速度,但离从根本上彻底解决腐蚀的问题还远远不够,笔者认为必须加强设备管理,采取综合措施,且针对性治理,才能最大限度的延长换热设备的使用寿命,取得很好的社会效益和经济效益。

参考文献

[1] 张大厚.防腐蚀复合材料及其应用[M].化学工业出版社.2006.

[2] 夏智富.段间换热器腐蚀原因分析与对策[D].2004.

[3] 夏强.化工设备换热器的常见腐蚀与防腐[J].装备制

造技术.2010.

[4] 孙峰.何红梅.换热设备软化水的腐蚀分析及水处理防护[J].科学技术与工程.2010.

[5] 杨启明.石油化工设备腐蚀与防护[M].石油工业出版社.2010.

作者简介:

孙娜,女,1987年3月出生,助理工程师,现于辽宁方大工程设计有限公司在职。设备室,化工设备设计人员。

张杨,方大锦化化工科技股份有限公司环氧丙烷厂石灰压滤车间。

管道的腐蚀与防护方法

管道的腐蚀与防护方法集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

管道的腐蚀与防护方法一、碱线腐蚀与防护 1.概况 大庆石化总厂炼油厂输转车间81单元碱管道用于向生产装置提供浓度30%~40%的碱液,管道材质为碳钢,连接采用焊接方式,工作压力为0.6~0.7Mpa,工作方式为间歇式。冬季操作时需用0.3Mpa压力的蒸气伴热,由于碱液温度高,造成管道焊口开裂,碱液经常泄漏,生产很被动。同时泄漏出的碱液腐蚀其它管道,每年维修费用很大,这种现象94年前一直没有得到解决。 2.腐蚀原因分析 普通碳钢在碱液中会形成一层以Fe3O4或Fe2O3为主要成分的表面膜,同时由于晶界上有碳化物和氮化物析出,使晶界上的表面膜不稳定,易溶解。在外应力的作用下产生了晶界裂纹,使新暴露出来的铁产生FeO2-的选择性溶解,形成应力腐蚀。 碳钢在NaOH溶液浓度5%以上的全部浓度范围都可能产生碱脆,而以30%左右的浓度最危险,发生碱脆的最低温度为50℃,在沸点附近的高温区最易发生。见图一。

管道使用过程中,夏季或管道不加热时,浓度在30~40%的碱液不发生碱脆;而在冬季,管道加热时,温度超过50℃,碱浓度仍为30~40%时则发生碱脆,因为实际碱管道在加热的情况下往往都高于50℃。 另外,碱性溶液只有在非常富集的情况下,才会通过如下反应溶解铁: 3Fe+7NaOH→Na3FeO3·2Na2FeO2+7H Na3FeO3·2Na2·2Na2FeO2+4H2O→7NaOH+Fe3O4+H 7H+H→4H2 3Fe+4H2O→Fe3O4+4H2 该管道每10日左右送一次碱,容易在焊口处沉积碱液。管道一般为单面焊,内壁常有未焊透处,存有间隙。随时间延长,碱液浓缩,造成碱液在焊口处富集,使焊口处首先腐蚀,而且使焊道不存在金属钝化膜,常露出新鲜的金属表面。根据电化学腐蚀原理,该处的金属表面常处于阳极处,处于腐蚀状态。 原管道的接头为焊接,焊口附近的金相组织比基体的金相组织晶粒大,加之焊接组织不均匀性及焊接后存在较多的缺陷,这样焊道与基体金属的表面机械性能及化学成分存在较大的差异。 该管道在50℃以上的情况下使用和停用交替进行时,由于碱液的富集及较高温度的双重作用,很快发生应力腐蚀开裂,使管道泄漏在冬季频繁发生。 3.材料选择依据

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施 摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。 关键词:换热器;腐蚀;防腐 1 概述 换热器是将热流体的部分热量传递给冷流体或将冷流 体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。 随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。 2 化工换热器的常见腐蚀现象 引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。 2.1 换热器表面的腐蚀磨损 磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。 2.2 沉积物引起的电化学腐蚀 当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

换热器的防腐蚀措施标准版本

文件编号:RHD-QB-K5840 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换热器的防腐蚀措施标 准版本

换热器的防腐蚀措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。

(2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。 (3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。在同

一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。 ②胀管深度应达管板底部,以消除全部缝隙。 ③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。

换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施 陶志远 (山东华鲁恒升化工股份有限公司山东德州253000) 【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。 【关键词】换热器泄漏局部腐蚀蒸汽加热 在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。 某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。 1设备技术参数 设备技术参数及操作数据见表1 筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。 表1 2泄漏情况 该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。 堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

金属管道的腐蚀及防腐对策

目录 一、金属管道腐蚀的危害1 1.金属管道腐蚀程度鉴别 (2) 2. 金属管道的腐蚀及使命 (2) 3.管道腐蚀实例及分析 (5) 4.金属管道腐蚀的危害 (8) 二、金属管道腐蚀的原因 1.化学腐蚀 (8) 2.电化学腐蚀 (9) 3.其它原因 (10) 三、防腐对策 (10) 1.做好金属管道的防腐层处理 (11) 2.合理选用管材及阀件 (13) 3. 合理设计 (13) 4.精心施工,严格按规范操作 (13) 5.加强运行维护管理 (14) 6.质量控制及检验 (14) 结论 (19) 致谢 (21) 参考文献 (22)

金属管道的腐蚀及防腐对策 摘要介绍了金属管道腐蚀的危害及实例。简述了化学腐蚀、电化学腐蚀和由于安装原因造成的管道腐蚀,提出了覆盖层保护法,加强运行维护管理和精心施工,合理选用管材管件等防腐措施。 关键词:金属管道化学腐蚀电化学腐蚀防腐质量控制 一、金属管道腐蚀的危害 金属及金属管道腐蚀是一个世界性的问题。用于建筑设备配管的金属管道由于直接接触各种易产生腐蚀的介质,其腐蚀问题尤为突出。建筑设备配管的金属管道按材质分主要有钢管(含镀锌钢管)、铸铁管、不锈钢管、铜管、铝管等,按用途分有生活、生产的冷、热给水管、蒸汽及其它气体、污废水排水、凝结水、消防给水管等。因钢管的用量最大、最容易腐蚀,本文将予以重点讨论。 1.1 金属管道腐蚀程度的鉴别方法可用表1 来表述(指安装前内外壁检查)。 1.2 金属管道的腐蚀及其使用寿命 腐蚀将严重影响金属管道使用寿命。随着时间的推移,金属管道的腐蚀是不可避免的。即使做了防腐涂层,其涂层也会逐渐老化而丧失其防腐蚀性能。金属管道的腐蚀有多方面因素,主要原因可用表2 来表述。

换热器的腐蚀分析正式样本

文件编号:TP-AR-L2856 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 换热器的腐蚀分析正式 样本

换热器的腐蚀分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)管子本身材料缺陷在腐蚀介质和高温条件 下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点 腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛 刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介 质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段 和未胀管间过渡区,管子内外壁存在较大拉应力,易 产生应力腐蚀破裂;管子与折流板处产生局部应力集 中,加之间隙存在,腐蚀介质浓聚,其结合部位易产 生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

第五章 常见的局部腐蚀 25分

一.电偶腐蚀:异种金属在同一介质中接触,由于腐蚀电位不相等有电偶电流流动,使电位较低的金属溶解速度增加,造成接触处的局部腐蚀。而电位较高的金属,溶解速度反而减小,这就是电偶腐蚀。又称为接触腐蚀或双金属腐蚀。 实质:由两种不同的电极构成的宏观原电池的腐蚀。 差异效应:一个腐蚀的金属,由于外加阳极极化引起其内部腐蚀微电池电流改变,这种现象称为差异效应 正差异效应:外加阳极极化引起内部腐蚀微电池电流的减少。 负差异效应:外加阳极极化引起内部腐蚀微电池电流的增加。 电偶序:根据金属(或合金)在一定条件下测得的稳定电位(腐蚀电位)的相对大小排列而成的表。 影响因素:(1)面积比阴阳极面积比越大,阳极腐蚀速度越快(避免大阴极小阳极结构)(2)介质的电导率一般来说,介质的电导率高,金属的腐蚀速度加快。但对电偶腐蚀来说,介质电导率的高低对阳极金属的腐蚀程度的影响有所不同。例如:海水、软水或普通大气 控制方法:避免异金属接触避免大阴极小阳极尽可能采取绝缘处理或表面处理二.小孔腐蚀:在金属表面的局部地区,出现向深处发展的小孔,其它地区不腐蚀或腐蚀很轻微,这种腐蚀形态称为小孔腐蚀,简称孔蚀或点蚀。 小孔腐蚀的基本机理:当处于钝态的金属在含有活性阴离子介质中时,会在表面上形成孔蚀核。蚀孔内的金属表面处于活态,电位较负;蚀孔外的金属表面处于钝态,电位较正,于是孔内和孔外构成一个活态-钝态微电偶腐蚀电池,具有大阴极小阳极的结构,加速腐蚀。孔内介质相对于孔外呈滞流状态,成为贫氧区,溶解氧不易扩散过来,Cl-扩散进来以保持电中性,Cl-又可使孔内表面继续维持活态。同时氯化物水解使孔内介质酸度增加,阳极溶解加速,同时水中可溶性盐如Ca (HCO3)2转化为CaCO3沉淀,锈层与垢层一起在孔口处沉积形成一个闭塞电池,从而使得腐蚀进一步加速。这种作用成为“自闭塞酸化作用”,加速小孔腐蚀。影响孔蚀的因素:合金/金属性质:钝化能力越强,敏感性越高; 介质的性质:孔蚀的发生和介质中含有活性阴离子或氧化性阳离子有关;氯离子 浓度增加,孔蚀电位下降,孔蚀容易发生; 温度:温度上升,孔蚀加速; 流动状态:静止状态的金属的孔蚀速度 比介质处于流动状态时大。 表面状态:光滑的和清洁的表面不易发 生孔蚀。 4孔蚀的控制方法:选用耐孔蚀合金,减 少钢中硫、碳含量;尽量减少介质中活性 阴离子的浓度;加入缓蚀剂,目的增加钝 化膜的稳定性或使受损金属再钝化;进行 钝化处理(用一定浓度的酸控制温度浸 泡);采用外加阴极电流抑制孔蚀。 三.缝隙腐蚀:金属部件在介质中,由于 金属与金属或金属与非金属之间形成特 别小的缝隙,使缝隙内介质处于滞流状态, 引起缝内金属加速腐蚀,这种局部腐蚀称 为缝隙腐蚀。 基本机理:开始时,氧去极化反应在缝 内外以均匀速度进行,但随着反应的进行, 缝隙内的氧逐渐消耗,因为缝内为滞流状 态,所以缝外的氧无法扩散进来,缝内外 构成了宏观的氧浓差电池。缝内贫氧区为 阳极,发生金属溶解反应,缝外为阴极, 且构成大阴极小阳极的结构,二次产物在 缝口处形成,发展为闭塞电池。此时金属 离子难以扩散到缝外,随着缝内Fe离子 的积累,缝内正电荷过剩,促使缝外氯离 子迁移入内以保持电荷平衡。金属氯化物 的水解使缝内介质酸化,pH可下降到3 左右,因此,加速了阳极溶解,引起更多 的氯离子迁入,形成一个自催化过程,使 金属的溶解加速进行下去。 影响缝隙腐蚀的因素:金属本身:钝化 能力的高低影响缝隙腐蚀 介质:充气中性氯化物介质中发生,介质 中Cl浓度越高,发生腐蚀的可能性越大; 溶解氧的浓度大于0.5ppm时便会引起腐 蚀 温度越高,缝隙腐蚀的危害性越大 缝隙腐蚀的控制:选材:采用高钼、铬、 镍不锈钢可耐缝隙腐蚀;结构设计: 采用电化学保护法:使保护电位控制在击 穿电位和活化电位之间。 四.晶间腐蚀 腐蚀沿着金属或合金的晶粒边界或它的 邻近区域发展,晶粒本身腐蚀很轻微,这 种腐蚀称为晶间腐蚀。晶粒与晶界之间存 在一定的电位差,这主要是合金在受热不 当时,组织发生改变而引起的,所以晶间 腐蚀是一种组织电化学不均匀引起的局 部腐蚀 晶间腐蚀机理贫化理论以不锈钢的贫铬 理论为例:不锈钢在出厂前已经固溶处理, 即将钢加热到1050~1150℃后进行淬火 处理,目的是获得均相固溶体。奥氏体中 含有少量碳,碳在奥氏体中的固溶度随着 温度下降而减少,所以经固溶处理的钢, 碳是过饱和的。当钢无论是受热或冷却通 过450~850 ℃时,碳便会形成(Fe,Cr) 23 C6从奥氏体中析出分布在晶界上。(Fe, Cr)23C6的含铬量比奥氏体基体的含铬量 高很多,它的析出消耗了晶界处附近大量 的铬,而消耗的铬不能从晶粒中通过扩散 及时得到补充,结果晶界附近的含铬量低 于钝化必须的限量(12%),形成贫铬区, 因而钝态受到破坏,晶界电位下降,而晶 粒本身仍维持钝态,电位较高,晶粒与晶 界构成钝态-活化微电偶电池,电池具有 大阴极小阳极的面积比,这样就导致晶界 区的腐蚀。 晶间腐蚀的控制:重新固溶处理:稳定化 处理:加入一定量的钛和铌采用超低碳 不锈钢采用双相钢:在奥氏体中含有 10~20%铁素体的钢 五.应力腐蚀:金属材料在固定拉应力和 特定介质的共同作用下引起的破裂。简称 SCC。 六.腐蚀疲劳:金属材料在循环应力和腐 蚀介质的联合作用下,所引起的另一种腐 蚀形态。金属构件发生腐蚀疲劳时,局部 地区呈现宏观裂纹。纯机械疲劳要高于临 界循环应力值(疲劳极限)才能发生疲劳 破裂。腐蚀疲劳可以在很低的循环应力下 破裂。 七.磨损腐蚀:由于介质的运动速度大或 介质与金属构件相对运动速度大,导致构 件局部表面遭受严重的磨损,称为磨损腐 蚀,简称磨蚀。 八.选择性腐蚀:合金在腐蚀过程中,腐 蚀介质不是按合金的比例侵蚀,而是发生 了其中某种成分的选择性溶解,使合金的 机械强度下降,这种腐蚀形态称为成份选 择性腐蚀。

换热器的防腐蚀措施

编号:SM-ZD-43372 换热器的防腐蚀措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

换热器的防腐蚀措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。 (2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。

(3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。在同一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。

给水管道管材对水质的影响及防腐措施

第29卷第11期Vol.29NO.11重庆工商大学学报(自然科学版)J Chongqing Technol Business Univ.(Nat Sci Ed )2012年11月Nov.2012 文章编号:1672-058X (2012)11-0093-06 给水管道管材对水质的影响及防腐措施 * 廖伟伶 (四川大学建筑与环境学院,成都610225)收稿日期:2012-05-07;修回日期:2012-06-04. *基金项目:重庆市教委科研项目(090703). 作者简介:廖伟伶(1991-),女,重庆石柱人,从事给排水工程研究. 摘要:介绍了给水管网中各类管材材质对水质的影响。这些影响包括有机物与无机物的溶出、生长环的生长难易程度、余氯衰减、管道涂层材料脱落产生的杂质及浓度的增加等,并指出提高出厂水水质和稳定性,更新供水管道系统和维护旧供水管道系统等相关防治措施。 关键词:给水管网、管材现状、管材、水质、防治措施 中图分类号:TU993文献标志码:A 近年来,随着人民生活水平的逐渐提高,国内相关规范对管道管材的质量要求越来越严,有关部门对管道管材技术的发展非常重视,并投入大量的资金进行开发和研究。规范指出:给水系统所采用的管材,应符合现行产品标准的要求。正确选择管道管材对于系统的正常运行及水质的达标有深远的意义。例如,水中 碳酸作用所引起的结垢, 过氧化理论下形成的铁锈对管道的腐蚀,还有生物性堵塞等情况,都是选择管道管材的重要影响因素[1]。 1对给水管材的要求 目前给水管网中所用的管道材料种类较多,但是在一定的应用环境与条件下有其最佳选择,如果选择得当,将会带来好的技术经济效果,工程技术人员对此应该引起足够的重视和注意[2]。 筛选给水管道管材的条件:具备一定的抗外载荷能力;能承受所需内压;长期输水后,内壁仍然光滑,能继续保持很好的输水能力;与水接触后不会发生反应并产生有毒有害物质;耐腐蚀,使用寿命长;可就地取材,造价低;安装方便,维修简单[3]。 但由于多方面的原因,在实际工程中,给水管材一直难以完全达到上述要求。给水管道基本上以选用金属材料管道为主。因此,常有管道腐蚀结垢、堵塞的现象,管内的水质卫生状况也缺乏有效的监督保障。2给水管道管材现状 目前,在给水工程中,我国输配水管网应用的主要管材为球墨铸铁管、环氧树脂涂衬球墨铸铁管、不锈钢管、玻璃钢管和塑料管等。此5种管材的基本情况如下。(1)球墨铸铁管。在对原铁成分的严格精选基础上,将镁和镁合金等碱土金属加入到溶化了的铁水中,使铁中石墨呈球状[3]。其特点是强度高、韧性大(在压环试验中将压环的直径压扁到直径的50%时,环两侧

(仅供参考)换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

管道的腐蚀及防腐措施

管道的腐蚀及防腐措施 城市燃气管网中,燃气管道一般采取地下敷设,这容易给金属管道包括钢管带来严重的腐蚀。而且与长输管道相比,城市燃气管道多为环状、枝状,管件密布,管道变径较普遍;随着城市建设的进展逐步形成并拓展,质量缺陷较多;周边环境复杂甚至突变,城市杂散电流干扰严重。这都要求我们要做好钢管的防腐工作。 1、钢制管道腐蚀类型 埋地金属管道的腐蚀形式分为均匀腐蚀和局部腐蚀两种,多以局部腐蚀为主,其危害性也最大。钢管在土壤中的腐蚀过程主要是电化学溶解过程,由于形成了腐蚀电池从而导致管道的锈蚀穿孔。按腐蚀电池阳极区与阴极区间距的大小,又可将钢管的腐蚀形态分为微电池腐蚀和宏电池腐蚀两大类。 所谓微电池腐蚀,是指由相距仅为几毫米甚至几微米的阳极和阴极所组成的微电池作用所引起的管道腐蚀。其外形特征十分均匀,故又称均匀腐蚀。由于微阳极与微阴极相距非常近,故微电池腐蚀的速度不依赖于土壤电阻率,仅决定于微阳极和微阴极的电极过程。微电池腐蚀对埋地钢管的危害性较小。 所谓宏电池腐蚀,是指由相距几厘米甚至几米的阳极区和阴极区所组成的宏电池作用所引起的管道腐蚀。宏电池腐蚀也称局部腐蚀。由于阳极区与阴极区相距较远,土壤介质电阻在腐蚀电池回路总电阻中占相当大比例,因此宏电池腐蚀的速度除与阳极和阴极的电极过程有关外,还与土壤电阻率有关。土壤电阻率大,就能降低宏电池腐蚀的速度。在埋地钢管表面出现的斑块状或孔穴状的腐蚀即由宏电池腐蚀造成,其危害性相当大。 综上所述,埋地管道在土壤中主要遭受电化学腐蚀,、该腐蚀分为阳极过程、阴极过程、电流流动三个过程,相互独立又彼此联系,其中一个过程受阻,另两个过程也受阻,腐蚀电池就会停止和减慢。这给我们采取防腐对策提供了理论依据。 2、钢管的防腐方法 针对埋地管道电化学腐蚀的三个过程,钢管的防腐方法也从抑制其中某一过程入手。如在管道外壁加防腐涂层,可增大回路电阻,减少腐蚀电流;外加直流电源,使钢管对土壤造成负电位、形成阴极保护,可消除阴阳极电位差,从根本

换热器的防腐蚀措施

编号:AQ-JS-07325 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 换热器的防腐蚀措施 Anti corrosion measures of heat exchanger

换热器的防腐蚀措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.采用能耐介质腐蚀的金属和非金属材料 2.采取有效的防腐蚀措施 (1)防腐涂层 在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。对水冷系统,管内清洗干净后进行预膜处理。 (2)金属保护层 常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。 (3)电化学保护 阴极保护因费用太高,一般不用。阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。 (4)防应力腐蚀措施 ①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中

其电极电位越高,腐蚀倾向越大。在同一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。 ②胀管深度应达管板底部,以消除全部缝隙。 ③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。 ④消除氯离子的浓缩条件,如采用内孔焊接,消除管头缝隙。 这里填写您的公司名字 Fill In Your Business Name Here

油田注水管道的腐蚀现状及防腐措施

编号:AQ-JS-06710 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 油田注水管道的腐蚀现状及防 腐措施 Corrosion status and anti-corrosion measures of oilfield water injection pipeline

油田注水管道的腐蚀现状及防腐措 施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1前言 注水采油技术是国内各大油田提高原油采收率的主要方法,随着油田开采时间的增长,注水水质的不断恶化,硫酸盐氧化还原菌的不断增多,油田井下管柱和输油管线的腐蚀及结垢问题,一直是困扰油气开采和输送的'顽症',所造成的严重损失令人触目惊心。据2003年9月对我国第二大油田——胜利油田的调查发现,11个采油厂8000余口注水井、总长度1583万m的统计,平均腐蚀速度达1.5mm/a,平均穿孔率达2.4次/(km·a)。在部分严重损失区块,管线换新周期不足3a,最短的仅(3~4)个月,所报废的注水管柱中有90%以上是因腐蚀、结垢而造成,整个胜利油田由于腐蚀引起的管柱、管线材料费直接经济损失就达3亿元,并由于更换管

柱、管线影响作业和生产,导致间接经济损失达10亿元左右。而全国各大油田的管线和管柱到2001年年底,总计高达10亿余米,这方面的损失更分别高达100亿元和1000亿元之多。因此,研究注水系统的腐蚀规律及防腐蚀措施刻不容缓,具有重要的意义。 2油田注水管道腐蚀的影响因素 油田注水管道的腐蚀也符合金属腐蚀的一般规律,主要影响因素有: (1)pH值。一般情况下,当pH值在4~10时,腐蚀过程主要受氧扩散过程控制,腐蚀速率不受PH值影响。在PH值不大于4的酸性范围内,碳钢表面的氧化物覆盖膜将完全溶解,致使钢铁表面和酸性介质直接接触。因此,提高注水PH值,可以解决酸蚀问题,但不一定能解决其它腐蚀类型。从理论上讲,注水的最佳pH值应为7。当pH值在10~13的碱性范围内时,随碳钢表面的pH值升高,Fe2O3覆盖膜逐渐转化为具有钝化性能的r—Fe2O3保护膜,腐蚀速率会有所下降。但是当pH值过高时,腐蚀速率又会上升,其原因是碳钢表面的钝化膜溶解成可溶性的铁酸钠(NaFeO2)。

换热器的结垢与清洗

换热器结垢的原因及清洗。 换热器是合理利用与节约能源、开发新能源的关键设备。随着新技术、新工艺、新材料的应用,板式换热器以占地面积小、投资少、换热效率高等特点,逐步取代原的管壳式换热器。但由于板式换热器流通截面积小,结垢后容易产生阻塞,是板式换热器的换热效率降低的主要原因。 1结垢的原因分析 1.1以离子或分子状态溶解于水中的杂质 a.钙盐类:在水中的主要构成有Ca(HCO3)2、CaCl2、CaSO4、CaSiO3等。钙盐是造成换热器结垢的主要成分。 b.镁盐:在水中的主要构成有Mg(HCO3)2、MgCl2、MgSO4等。镁溶解在水中后,在受热分解后生成Mg(OH)2沉淀,构成泥渣或水垢。 c.钠盐:主要构成有NaCl、Na2SO4、NaH-CO3等。NaCl不生成水垢,但水中有游离氧存在,会加速金属壁的腐蚀;Na2SO4的含量过高会结盐,影响安全运行;水中的NaHCO3在温度和压力的作用下会分解出NaCO3、NaOH、CO2,使金属晶粒受损。 1.2以胶体状态存在的杂质 a.铁化合物:主要成分是Fe2O3,它会生成铁垢。 b.微生物:由于循环水的水温、溶解氧等对微生物提供了有利

于繁殖的条件,微生物将大量繁殖。循环水的温度较高时,在水中投加磷酸盐等药剂,正好是微生物的养料,微生物的繁殖不但阻塞板片通道,有时还会堵塞管路,还会使金属腐蚀。 c.污泥:冷却循环水中的污泥,来源于空气中的尘土及补充水中的悬浮物,逐渐沉积在流速较低的换热器中。 d.粘垢:主要是微生物的分泌物与水中泥沙、腐蚀产物、菌藻残骸粘结而成,常常附着在换热器壁面上。 2板式换热器结垢的清洗方式 2.1清洗剂的选择 清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。 换热器材质为镍钛合金,使用盐酸为清洗液.容易对板片产生强腐蚀,缩短换热器的使用寿命。多采用的是硝酸。硝酸清洗所用的缓蚀剂可为0.2%~0.3%的乌洛托平,加入0.15%~0.2%的苯胺和0.05%~0.1%的硫氟酸铵。经硝酸清洗并冲洗干净后的设备在空气中可自行钝化。 通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。通过对水垢样本的化学试验研究表明,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。 2.2清除水垢的基本原理 2.2.1溶解作用:酸溶液容易与钙、镁、碳酸盐水垢发生

设备防腐蚀办法

设备防腐蚀办法引言 防腐蚀的方法总的来说可以分为两大类:一是正确地选择防腐蚀材料和其他防腐蚀措施;二是选择合理的工艺操作及设备结构。严格遵守化工生产的工艺规程,可以消除不应当发生的腐蚀现象,而即使采用良好的耐腐蚀材料,在操作工艺上不腐蚀规程,也会引起严重的腐蚀。目前,化工生产中常用的防腐蚀方法有以下几种。 1 正确选材和设计 了解不同材料的耐蚀性能,正确地、合理地选择防腐蚀材料是最行之有效的方法。众所周知,材料的品种很多,不同材料在不同环境中的腐蚀速度也不同,选材人员应当针对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等满足设计要求的材料,以便设备获得经济、合理的使用寿命。 2 调整环境 如果能消除环境中引起腐蚀的各种因素,腐蚀就会终止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去,且化工生产流程也不可能随意更改。但是有些局部环境是可以被调整的,如锅炉进水先去除氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉免遭腐蚀;又如空气进入密闭的仓库前先出去水分,也可避免贮存的金属部件生锈;为了防止冷却水对换热器和其他设备造成结垢和穿孔,可在水中加入碱或酸以调节PH值至最佳范围(接近中性);炼油工艺中常加碱或 氨使生产流体保持中性或碱性。温度过高时,可在器壁冷却降温,或在设备内壁砌衬耐火砖隔热,等。这些都是改变环境且不影响产品和工艺的前提下采用的方法,在允许的前提下,建议工艺中选用缓和的介质代替强腐蚀介质。 3

加入缓蚀剂 通常,在腐蚀环境中加入少量缓蚀剂就可以大大减缓金属的腐蚀,我们一般将它分为无机、有机和气相缓蚀剂三类,其缓蚀机理也各不相同。 1无机缓蚀剂 有些缓蚀剂会使阳极过程变慢,称之为阳极型缓蚀剂,它包括促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、铁离子等)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐等),它们主要在阳极区域反应,促进阳极极化。一般阳极缓蚀剂会在阳极表面生成保护膜,这种情况下的缓蚀效果较好,但也存在一定风险,因为如果剂量不充足,会造成保护膜不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,更容易发生穿孔。另一类缓蚀剂是在阴极反应,如钙离子、锌离子、镁离子、铜离子、锰离子等与阴极产生氢氧根离子,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。除此之外,也有同时阻滞阳极和阴极的混合型缓蚀剂,但加入量一般都需要先通过试验才可确定。 2有机缓蚀剂 有机缓蚀剂是吸附型的,吸附在金属表面,形成几个分子厚的不可视膜,可同时阻滞阳极和阴极反应,但对二者的影响力稍有不同。常用无机缓蚀剂有含氮、含硫、含氧及含磷的有机化合物,其吸附类型随有机物分子构型的不同可分为静电吸附、化学吸附及π键(不定位电子)吸附。有机缓蚀剂的发展很快,用途十分广泛,但是使用它同时也会产生一些缺点,如污染产品,特别是食品类,缓蚀剂可能对生产流程的这一部分有利,但进入另一部分则变为有害物质,也有可能会阻抑需要的反应,如酸洗时使去膜速度过缓,等。 3气相缓蚀剂 这类缓蚀剂是挥发性很高的物质,含有缓蚀基团,一般用来保护贮藏和运输中的金属零部件,以固体形态应用居多。它的蒸汽被大气中的水分解出有效的缓蚀基团,吸附在金属表面,达到减缓腐蚀的目的。另外,它也是一种吸附性缓蚀剂,被保护的金属表面不需要除锈处理。

换热器管束腐蚀案例分析及预防

换热器管束腐蚀案例分析及预防 发表时间:2020-01-18T09:19:09.970Z 来源:《基层建设》2019年第28期作者:盛洁 [导读] 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 国核电力规划设计研究院有限公司北京市 1000095 摘要:管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。换热器是化工装置中重要的设备之一。换热器工作原理是由管壳程中两种不同介质再在换热管壁两侧进行流动,达到动态平衡来起到冷热介质热量交换的作用。常用的换热管尺寸为Φ19x2和Φ25x2.5。常规化工设备,碳钢设备腐蚀量取2mm到2.5mm,设备壁厚最薄取8mm,所以与其他化工设备相比较换热管的壁厚特别薄,容易进行产生腐蚀穿透的现象。一旦换热管发生腐蚀穿透现象,换热器中压力高侧介质会流入压力低侧介质,破坏压力平衡,物料平衡和温度平衡状态。介质泄露会引发下游物料被掺混、催化剂中毒、计划外停产检修的事故。对于泄露的管束,一般无法进行更换,通常采用的维修方法为通过对壳程打压的方式找出泄露的换热管,将泄露的换热管两端用管堵堵住。堵住以后此换热管封闭,换热器面积会减小。当换热器管热面积小到无法满足换热性能要求,则需要更换换热器。文章以某工厂为例,对其换热器管束腐蚀情况进行了详细的分析,希望能够给相关人士提供重要的参考价值。 关键词:换热器;管束;防腐蚀 引言:合理设置换热器结构,规避不必要的腐蚀,决定着化工生产装置长期稳定的运行及安全的生产。换热器作为化工生产装置中重要部分,对换热器结构设计提出了特殊的要求。设计人员需要储备扎实的基础知识和丰富的工程经验,设计前充分考虑各种影响因素,设计出满足长期运行的换热器设备。 1.换热器目前的运行工况 某工厂甲醇-凝结水换热器1190-E1102A/B管束与管板自2017年4月份以来连续泄漏5次,泄漏频率明显提高,严重制约生产,烯烃中心申请质量技术部委托设计院,对此换热器的材质和工况进行重新核准,核准此管板和管束材质能否长期满足此工况运行,如果材质比较低,请给出升级后的材质建议,便于中心立刻上报采购计划,解决换热器泄漏的难题。管程:介质凝结水,出入口工作温度120/162℃,工作压力0.3MPa。壳程:介质甲醇,出入口工作温度76/100℃,工作压力0.8MPa。 2.换热器目前材质 规格型号BJS1300-2.5-465-6/25-41,管板材质16MnIII,换热管材质10#钢,每台管束共有1024根换热管,4管程,单台换热面积为467.1平方,上下重叠式安装。管程介质凝结水,壳程介质甲醇。 3.腐蚀介质的影响 换热器管程介质为加氢反应流出物,管程操作温度为240~260℃,操作压力为3.5MPa,该环境下加氢反应流出物中的腐蚀介质硫化氢、氨、水、氯化氢、氢均呈气相存在,可能对管束造成硫化氢+氢气腐蚀和氢损伤,而管束材质选用了耐硫化氢+氢气腐蚀和氢损伤的0Crr18ni10Ti奥氏体不锈钢,因此,其腐蚀轻微。腐蚀介质中虽含有氯元素,但其以气相化合物的形式存在,不可能导致管束性氯化物应力腐蚀开裂。因此,管程腐蚀介质不是导致管束开裂的主要影响因素。换热器壳程介质为冷低分油,操作温度为144~219℃,操作压力为0.6MPa,该环境下冷低分油中存在液相水,部分腐蚀介质溶于水中形成电化学腐蚀溶液,对换热管造成腐蚀。该冷凝水ph值为9.12,呈碱性,硫化氢含量较高,氯离子及铁离子含量较低。碳钢和低合金钢对硫化物应力腐蚀开裂比较敏感,而0Crr18ni10Ti奥氏体不锈钢对氯化物应力腐蚀开裂比较敏感,因此,冷低分油中的腐蚀介质氯化物给换热管的应力腐蚀开裂提供了腐蚀环境。 4.换热器目前泄漏维修状况 自2017年4月至今,共计检修5次。累计A台堵管70根,B台堵管120根。其中B台凝结水出口管程已经堵漏1/3,对工艺生产造成重大影响,能耗增加。 案例分析:(1)从腐蚀方面考量:本换热器管壳程介质为凝结水和甲醇,碳钢材质对此介质均有良好内腐蚀性,且从业主拍的换热器截面图片看,管束一侧有较多的管子腐蚀,说明不属于腐蚀导致管子泄露。如果是因为介质腐蚀导致管子泄露,则会均匀的有泄露换热管存在,不会集中在换热器某一区域。(2)从冲刷方面考量:本换热器壳程流量为236842kg/h密度741.06~711.25kg/m3入口管为DN300,出口管线为两个DN250。入口流量ρv2为1193.67kg(m.s2)因为壳程含有0.0015%酸值壳程介质为有腐蚀液体,在流速ρv2>740kg/(m.s2)会产生冲刷腐蚀情况。本设备壳程一个入口两个出口,入口DN300,出口DN250。DN300管口流通截面积为0.07065m2,一个出口流通截面积为0.049m2,两个出口流通截面积合计为0.098m2。在不介质密度影响不大的状态下壳程介质由壳程入口进入换热器,自设备出口流出时,换热器出口截面积大于入口截面积,壳程介质流体流速会更低一些[1]。如果由于两个出口由于配管等因素,压力降不同会导致在此换热器中壳程介质会发生壳程流体流向压力低侧,即绝大部分壳程流体流向一端出口。则可能会在壳程出口处出现流速激增,加重冲刷腐蚀现象。(3)从折流板方面考量:换热器壳体内有折流板以引导壳程流体在壳程中穿行。因为折流板与壳程流体垂直,且同一块折流板有死区,有缺口,所以在壳程流体冲击情况下会产生振动。换热管穿过折流板但并没有焊接,所以折流板如果发生振动,会对换热管产生割锯作用。如果折流板一端振动,振动区域附近换热管均会受此影响。换热器管束腐蚀预防:在重新设计换热器时,要采取相应

相关文档
相关文档 最新文档