文档库 最新最全的文档下载
当前位置:文档库 › 中频表面淬火工艺技术报告

中频表面淬火工艺技术报告

中频表面淬火工艺技术报告
中频表面淬火工艺技术报告

关于中频表面淬火工艺的技术报告

热处理是机械制造中热加工工艺的一种。它对保证机械产品的质量,延长使用寿命,有着重大的作用。钢的热处理就是利用钢在加热、保温和冷却作用下,其内部发生组织状态(晶体结构、组织形态)、物理状态(比容、残余内应力等)和化学成分分布的变化,而使工件具有预期的工艺性能、机械性能、物理性能和化学性能,以达到便于冷热加工,提高使用寿命,充分发挥材料潜力的目的。钢的热处理基本工艺包括退火、正火、淬火、回火和化学热处理等。根据在车间实习和工作情况,我将主要负责车间中频表面淬火工序的工艺编制。所以将重点放在中频表面淬火工序上。

一、感应加热原理及分类

中频加热是感应表面加热的一种。感应表面加热是利用导体(零件)在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用(磁滞损耗)引起导体自身发热而进行加热的。根据设备的频率不同分为:①高频加热,频率为100~500千赫。淬硬层深度为0.3~3㎜,加工工件最小直径为Φ28㎜;②中频加热,一般采用8000赫兹和2500赫兹二种,淬硬层深度:8000赫兹 1.3-5.5㎜,加工工件最小直径为Φ16㎜;2500赫兹 2.4-10㎜,加工工件最小直径为Φ28㎜;③工频加热,频率为50赫兹,淬硬层深度为17-70㎜,加工工件最小直径为Φ200㎜。目前,我车间使用的设备是中频立式淬火机床,频率为8000赫兹。而多年不用的高频淬火机床在车间搬、拆迁过程中已经拆除了。

二、感应加热表面淬火工艺及选择

感应加热工艺参数包括着热处理参数和电参数。热处理参数包括加热温度、加热时间、加热速度以及淬火层深度。电参数包括设备的频率、零件单位面积功率等。

感应加热淬火工艺中几个主要问题:

1、确定零件的技术要求

表面淬火零件的技术要求包括:表面硬度、淬火层深度及淬硬区分布、淬火层组织等。

⑴.表面硬度:感应淬火后零件的表面硬度要求与材料的化学成分和使用的条件有关。

⑵.淬火层深度:淬火层深度主要是根据零件的机械性能确定的。

⑶.淬硬区分布:按零件的几何形状与工作条件的不同,各种表面淬火零件的硬化区部分和尺寸有不同的要求。

⑷.金相组织:按零件的材料及工作条件,规定各格的等级范围。按评级标准进行金相评级。

2、加热温度的选择

感应加热速度快,与一般加热相比,必须选用较高的加热速度,适宜的加热温度是与钢材的化学成分、原始组织状态及加热速度等因素有关。我车间由于设备的限制,只能采取目测加热温度的方法。

3、设备频率的选择

频率的选择主要是根据淬火层深度和零件的尺寸大小来确定。当设备给定或选定以后,设备的频率就是一个不可调的参数。我车间的设备只有立式淬火机床一台,故工艺选择中不再考虑设备频率。

4、感应加热方法及工艺操作

感应加热方法基本分为两种:

⑴.同时加热法,这种加热法是被加热的表面同时共热升温,零件需要加热的整个部分都被感应器包围着。在大批量生产时,为充分发挥设备潜力,提高生产效率,只要设备输出功率足够的条件下,尽可能采用同时加热。

⑵.连续加热法,零件表面的加热和冷却时连续不断进行的。连续加热生产率较低,但加

热面积减小,设备的功率可以降低,因而扩大了设备的应用范围。

5、感应加热后的冷却方式

冷却方法有喷射冷却、浸液冷却、埋油淬火等。

⑴.喷射冷却,是常用的方法。我车间采用的是将冷却液通过感应器上的许多小孔,喷射到加热面上,进行冷却。

⑵.浸液冷却,主要是用于同时加热。零件表面同时加热完毕后,立即将淬火部分浸入淬火槽中,进行冷却。如3B151-2-381锤头,要求Φ60×110处表淬。加热后直接进入水中冷却。

⑶.埋油淬火,当采用连续加热法时,为避免喷油时产生油烟,可将感应器降至油面以下,进行油面以下的连续加热和冷却。我车间就有我厂自行制造的埋油淬火机床。

6、感应淬火后的回火

感应加热淬火后,应力分布不均,组织不稳定。为了降低拉应力,稳定组织,达到所要求的机械性能,有必要进行回火。回火方法有:炉内回火,自回火和感应加热回火。

⑴.炉内回火:

在电炉内回火,回火时间一般为1~2小时,回火温度按图纸技术要求选择。

⑵.自回火

对于形状简单,大量生产的零件可采用自回火。

⑶.感应加热回火

感应加热回火时,为了达到回火要求,回火时的加热层深必须大于淬火层深,且必须采用相当慢的加热速度,故生产效率较低。如我车间承制的天车轨道,原来就采用感应加热回火,但效率太低,影响进度,所以自行设计、制作了专用轨道回火炉,生产效率大大提高了。

感应加热淬火,加热速度快,生产效率高,产品质量好,但是技术含量也相对较高。所以只有将理论知识与生产实践知识良好的结合起来才能够很好的进行以后的工作。

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

中频表面淬火工艺技术报告

关于中频表面淬火工艺的技术报告 热处理是机械制造中热加工工艺的一种。它对保证机械产品的质量,延长使用寿命,有着重大的作用。钢的热处理就是利用钢在加热、保温和冷却作用下,其内部发生组织状态(晶体结构、组织形态)、物理状态(比容、残余内应力等)和化学成分分布的变化,而使工件具有预期的工艺性能、机械性能、物理性能和化学性能,以达到便于冷热加工,提高使用寿命,充分发挥材料潜力的目的。钢的热处理基本工艺包括退火、正火、淬火、回火和化学热处理等。根据在车间实习和工作情况,我将主要负责车间中频表面淬火工序的工艺编制。所以将重点放在中频表面淬火工序上。 一、感应加热原理及分类 中频加热是感应表面加热的一种。感应表面加热是利用导体(零件)在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用(磁滞损耗)引起导体自身发热而进行加热的。根据设备的频率不同分为:①高频加热,频率为100~500千赫。淬硬层深度为0.3~3㎜,加工工件最小直径为Φ28㎜;②中频加热,一般采用8000赫兹和2500赫兹二种,淬硬层深度:8000赫兹 1.3-5.5㎜,加工工件最小直径为Φ16㎜;2500赫兹 2.4-10㎜,加工工件最小直径为Φ28㎜;③工频加热,频率为50赫兹,淬硬层深度为17-70㎜,加工工件最小直径为Φ200㎜。目前,我车间使用的设备是中频立式淬火机床,频率为8000赫兹。而多年不用的高频淬火机床在车间搬、拆迁过程中已经拆除了。 二、感应加热表面淬火工艺及选择 感应加热工艺参数包括着热处理参数和电参数。热处理参数包括加热温度、加热时间、加热速度以及淬火层深度。电参数包括设备的频率、零件单位面积功率等。 感应加热淬火工艺中几个主要问题: 1、确定零件的技术要求 表面淬火零件的技术要求包括:表面硬度、淬火层深度及淬硬区分布、淬火层组织等。 ⑴.表面硬度:感应淬火后零件的表面硬度要求与材料的化学成分和使用的条件有关。 ⑵.淬火层深度:淬火层深度主要是根据零件的机械性能确定的。 ⑶.淬硬区分布:按零件的几何形状与工作条件的不同,各种表面淬火零件的硬化区部分和尺寸有不同的要求。 ⑷.金相组织:按零件的材料及工作条件,规定各格的等级范围。按评级标准进行金相评级。 2、加热温度的选择 感应加热速度快,与一般加热相比,必须选用较高的加热速度,适宜的加热温度是与钢材的化学成分、原始组织状态及加热速度等因素有关。我车间由于设备的限制,只能采取目测加热温度的方法。 3、设备频率的选择 频率的选择主要是根据淬火层深度和零件的尺寸大小来确定。当设备给定或选定以后,设备的频率就是一个不可调的参数。我车间的设备只有立式淬火机床一台,故工艺选择中不再考虑设备频率。 4、感应加热方法及工艺操作 感应加热方法基本分为两种: ⑴.同时加热法,这种加热法是被加热的表面同时共热升温,零件需要加热的整个部分都被感应器包围着。在大批量生产时,为充分发挥设备潜力,提高生产效率,只要设备输出功率足够的条件下,尽可能采用同时加热。 ⑵.连续加热法,零件表面的加热和冷却时连续不断进行的。连续加热生产率较低,但加

表面淬火工艺原理4-2

4.2 表面淬火工艺原理 一、钢在非平衡加热时的相变特点 如前所述,钢在表面淬火时,其基奉条件是有足够的能量密度提供表面加热,使表面有足够快的速度达到相变点以上的温度。因此,表面淬火时,钢处于非平衡加热。 钢在非平衡加热时有如下特点: 1.在一定的加热速度范围内,临界点随加热速度的增加而提高。 在快速加热时均随着加热速度的增加而向高温移动。但当加热速度大到某一范围时,所有亚共析钢的转变温度均相同.加热速度愈快,奥氏体形成温度范围愈宽,但形成速度快;形成时间短.加热速度对奥氏体开始形成温度影响不大,但随着加热速度的提高,显著提高了形成终了温度.原始组织愈不均匀,最终形成温度提得愈高. 2.奥氏体成分不均匀性随着加热速度的增加而增大 如前所述,随着加热速度的增大,转变温度提高,转变温度范围扩大.随着转变温度的升高,与铁素体相平衡的奥氏体碳浓度降低,而与渗碳体相平衡的奥氏体碳浓度增大.因此,与铁素体相毗邻的奥氏体碳浓度将和与渗碳体相毗邻的奥氏体中碳浓度有很大差异。由于加热速度快,加热时间短,碳及合金元素来不及扩散,将造成奥氏体中成分的不均匀,且随着加热速度的提高,奥氏体成分的不均匀性增大。例如0.4%C碳钢,当以130℃/s的加热速度加热至900℃时,奥氏体中存在着1.6%C的碳浓度区.显然,快速加热时,钢种、原始组织对奥氏体成分的均匀性有很大影响.对热传导系数小,碳化物粗大且溶解困难的高合金钢采用快速加热是有困难的. 3.提高加热速度可显著细化奥氏体晶粒. 快速加热时,过热度很大,奥氏体晶核不仅在铁素体一碳化物相界面上形成,而且也可能在铁素体的亚晶界上形成,因此使奥氏体的成核串增大。又由于加热时间极短,奥氏体晶粒来不及长大.当用超快速加热时,可获得超细化晶粒。

激光淬火技术工艺介绍及应用

激光淬火技术是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。 激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm 范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。 激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益,近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用。 一:激光淬火的特点 1.淬火零件不变形、激光淬火的热循环过程快、中碳钢、大型轴类; 2.几乎不破坏表面粗糙度、采用防氧化保护薄涂层、模具钢、各种模具; 3.激光淬火不开裂、精确定量的数控淬火、冷作模具钢、模具、刃具; 4.对局部、沟、槽淬火、定位精确的数控淬火、中碳合金钢、减振器;

5.激光、淬火清洁、高效、不需要水或油等冷却介质、铸铁材料、发动机汽缸; 6.淬火硬度比常规方法高、淬火层组织细密、强韧性好、高碳合金钢、大型轧辊。 二:激光淬火工业应用实例 激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。 南京中科煜宸激光技术有限公司专业从事激光增材制造装备(3D打印、激光修复)、智能激光焊接装备、自动化生产线、核心器件(工艺软件、送粉器、加工头)和金属粉末材料的研发与制造,感兴趣的用户可以咨询了解一下。

高频淬火原理与应用

高频淬火原理及应用 线圈通以高频电流,产生高频磁场,在铁磁性材料中产生感生电流,由于趋肤效应,感生电流聚积于材料的表面产生热,达到相变温度。激冷达到淬火目的。 感应加热与其它加热炉传导、对流或辐射使工件到达加热温度相比,它具有完全不同的加热原理。其基本原理是:把加热材料(即工件)置于通有交流电流的线圈内,由于交变磁场的作用工件内部会产生感应电势,在感生电势的作用下工件内会产生涡流,依靠这些涡流的能量达到加热目的。 通过热高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小

词语解释 感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。 一、高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 二、中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。 三、工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径300mm以上,如轧辊等)的表面淬火。 感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。 式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。 感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。 感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。

激光加热表面淬火简介

激光加热表面淬火简介: (1)定义:利用聚集后的激光束快速加热钢铁材料表面,使其发生相变形成马氏体淬硬层的热处理工改错为激光加热表 面淬火。 (2)特点:与普通热处理相比,它具有如下特点: ①加热速度极快,工件热变形极小。由于激光功率密度高,加 热速度可达1010℃/s,因而热影响区小,工件热变形小,劳动条件好。 ②其冷却速度很高,在工件有足够质量前提下,冷速可达1023℃ /s;不需冷却介质,靠热量由表向里的传导自动淬火。 ③由于激光束扫描(加热)面积很小,可十分精确地对形状复 杂的工件(如有盲孔、小孔、小槽、薄壁零件等)进行处理或局部处理,也可根据需要在同一零件的不同部位进行不同的处理。 ④能精确控制其加工条件,操作简单,可实现在线加工,也易 于与计算机连接,便于实现自动化生产。 ⑤不需要加热介质,有利于环境保护;工件经激光淬火后表面 硬度高(比普通淬火硬度值高15%~~20%)、疲劳强度高(表面具有4000Mpa以上的残余压应力)。 ⑥节省能源,并且工件表面清洁,处理后不需修磨,可作为工 件精机械加工的最后一道工序。 其不足之处在于:只能改变工件表面性能,但不能改善心部

性能;不能用于重负荷工件,也不适用于大型工件。 (3)原理:用于热处理的激光淬火装置主要是CO2气体激光器,它所发生的激光波长为10.6μm,此波长具有很好的大气透过率,很多物质对此波长的辐射线具有一定吸收率;它具有输出功率大(20~~100kW)、效率高(可达20%~~40%)、持续工件时间长等优点。 激光加热金属主要是通过光子同金属材料表面的电子和声子的能量交换,使处理层材料温度升高,在10-7~~10-9s之内就能使作用深度内达到局部热平衡,在金属材料表面形成的这层高温“热层”继而又作为内部金属的加热热源,并以热传导方式进行传热。 激光加热表面淬火就是以高能量激光作为能源以极快速度加热工件并自冷淬火的工艺。其实质就是利用激光产生的热量对工件表面进行处理的过程,它是一种新型的热处理工艺技术。 应当注意事项的是激光加热表面淬火效果与材料表面的反射率、密度和热导率等密切相关,由于所有金属都是10.6μm波长和CO2激光的良好反射体,反射率可高达70%~80%,对于反射率高的材料,激光能量不能被充分,所以激光淬火前要对金属表面施加吸光涂层(黑化处理)以增加吸收率。常用的黑化方法,主要有磷化、氧化等,或在金属表面涂覆一层可大师吸收激光的涂料(如碳素墨汁、胶体石墨、粉状金属氧化物、黑色丙烯酸、氨基屏光漆等)。 (3)工艺参数及应用:钢铁材料进行激光淬火的主要工艺参数

中频退火工艺原则

中频退火工艺原则 1、目的 为保证中频退火质量、明确中频退火检查方法,特制定本原则。 2、适用范围 本原则适用于20CrMnTi制件渗碳淬火后尾部螺纹的退火,包括螺伞类主动锥齿轮尾部螺纹的退火及轴类零件尾部螺纹的退火。 凡符合本条的原涂料件均可采用本办法退火及检查。 3、工艺过程 3.1 准备工作 3.1.1 检查所有设备外观有无异常现象,机械、电器、冷却系统是否正常。有任何一处不正常均不得生产。 3.1.2 工件表面及内部质量符合工艺要求或图纸要求,零件表面应清洁无油污、毛刺、烧伤、裂纹等表面缺陷。 3.1.3 选择适当的感应器。一般感应器内侧与工件螺纹顶径距离为5~10mm。 3.1.4 选择适当的工装,便于零件的取放操作。 3.1.5 根据实际情况,调整好退火工装的位置。 3.2 工艺规范 3.2.1 电源为360~410V,不在此范围不得生产。 3.2.2 将工件置于退火工装上试机。先打开冷却系统,保证各部位冷却水畅通,再调整压比、频率、电流。一般压比为20:1~22:1,频率为3400Hz,电流在100~200A范围内调整,加热温度一般为820±10℃。 3.2.3 工件加热时间根据工件特点通过工艺调试来确定。 3.2.4 工件加热后空冷。 4.退火质量的检查 4.1 螺纹部位退火质量检查采用金相法,每月可根据需要解剖实物来检查退火后金相组织。4.2 日常退火质量可检查与螺纹部位相接的花键或外圆端部距垂直端面3至5mm处,此处硬度小于是HRC40即可。抽查比例为每批3到5件。 5.操作过程注意事项 5.1 操作中要随时注意设备运行状况,发现问题及时处理,不得带病操作。 5.2 操作中应根据电压波动调整工艺参数,保证退火质量。 5.3 生产时首检合格方可生产。过程中要注意抽查。 5.4 生产中要轻拿轻放,不能碰伤工件,并保持工件表面清洁。 编制:李加荣审核:批准: 2007年5月

高频淬火和中频淬火的区别

高频淬火和中频淬火的区别 1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr); 2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨铸铁)。 感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄 因此,可通过调节电流频率来获得不同的淬硬层深度。常用感应加热种类及应用见表5-3 感应加热速度极快,只需几秒或十几秒。淬火层马氏体组织细小,机械性能好。工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控

制,质量稳定,操作简单,特别适合大批量生产 常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40MnB等。也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难 表5-3 感应加热种类及应用范围 感应加热类型常用频率一般淬硬层深度/m m 应用范围 高频感应加热 200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件 中频感应加热 2500~8000Hz 2~10 较大尺寸的轴和大中模数齿轮 工频感应加热火 50Hz 10~20 较大直径零件穿透加热,大直径 零件如轧辊、火车车轮的表面淬超音频感应加热 30~36kHz 淬硬层能沿工件轮廓分中小模数齿轮 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火), 或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。

激光表面淬火的应用领域

激光表面淬火的应用领域 激光表面淬火技术原理 激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。 技术特点 1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。 2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。 3.无需回火,淬火表面得到压应力,不易产生裂纹。 4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。 5可根据需要调整硬化层深浅。 6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。 7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。 8.加工过程自动化控制,工期短,质量稳定。 9.低碳环保,无需冷却介质,无废气废水排放。 技术参数 适合材质:各类中高碳钢、铸铁 淬火硬度:一般可比感应淬火高1-5HRC 淬火深度:0.1-1.2mm 应用领域 激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。适合各类型零件的热处理: 1.难以进入热处理炉的大型工件。 2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。 3.常规热处理工艺难以处理到的部位。 4.对热处理变形量要求高的精密零件。 5.铸铁工件表面的热处理。 6.常规热处理工艺易产生裂纹的零件。 7.常规热处理工艺达不到硬度要求的零件。 模具钢激光淬火技术及应用 模具钢激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。模具钢激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹

感应淬火常见问题及解决措施

中频炉感应淬火件常见淬火缺陷,主要有硬度不够、软块、变形超差与淬火裂纹,还有局部烧熔等。 1、表面淬火后硬度不够: 表面淬火后硬度不够是罪常见的问题,其原因亦是多方面的。 1)材料因素 ①火花鉴别法:这是最简单的方法,检查工件在砂轮上磨出的火花,可大致知道工件的含碳量是否有变化,含碳量越高,火花越多。 ②直读光谱仪鉴别钢材的成分,现代化的直读光谱仪能在极短的时间内,将工件材料的各种元素及其含量进行检验并打印出来,可确定钢材是否符合图样要求。 ③排除工件表面贫碳或脱碳因素,较常见的冷拔钢材,材料表面有一层贫碳或脱碳层,此时表面硬度低,使用砂轮或锉刀去掉0.5mm后,再测定硬度,如果发现该处硬度比外面为高,并达到要求,这表面工件表面有贫碳或脱碳层。为进一步验证此问题,可用金相显微镜观察,表面贫碳层得组织与次层得显微组织明显不同,表面只有少量托氏体及大量铁素体,而次层则为马氏体,如果将此样品在保护气体下正火后在检验, 表层只有少量珠光体,而次层则有该钢号应有的珠光体面积,如45 钢,珠光体面积接近50%。 2)淬火加热温度不够或预冷时间长 淬火加热温度不够或预冷时间太长,致使淬火时温度太低。以中碳钢为例,前者淬火组织中含有大量未溶铁素体,后者其组织为托氏体或索氏体。 3)冷却不足 ①特别在扫描淬火时,由于喷液区域太短,工件淬火后,经过喷液区后,心部热量又使表面自回火(阶梯轴大台阶在上位时最易产生),此时表面自回火温度过高,常能从表面颜色及温度感测到。 ②一次加热法时,冷却时间太短,自回火温度过高,或由于喷液孔因水垢减少了喷液孔截面积,导致自回火温度过高(带喷液孔的齿轮淬火感应器,最易产生次弊病)。 ③淬火液温度过高,流量减少,浓度变化,淬火液中混有油污等。 ④喷液孔局部堵塞,其特点是局部硬度不足,软块区常与喷液孔堵塞位置相对应。 感应加热设备之表面热处理表面淬火常见缺陷及对策 信息编辑:郑州高氏发布时间:2012-06-21 用交流电流流向被卷曲成环状的导体(通常为铜管),由此产生磁束,将金属放置其中,磁束就会贯通金属体,在与磁束自缴的方向产生窝电流(旋转电流)这感应电流在窝电流的影响下产生发热用这样的加热方式就是感应加

演示文档感应加热表面淬火基本原理.doc

感应加热表面淬火基本原理 感应加热表面淬火的应用及基本原理分析。 一、应用 承受扭转、弯曲等交变负荷作用的工件,要求表面层承受比心部更高的应力或耐磨性,需对工件表面提出强化要求,适于含碳量We=0.40~0.50%钢材。 二、工艺方法 快速加热与立即淬火冷却相结合。 通过快速加热使待加工钢件表面达到淬火温度,不等热量传到中心即迅速冷却,仅使表层淬硬为马氏体,中心仍为未淬火的原来塑性、韧性较好的退火(或正火及调质)组织。 三、主要方法 感应加热表面淬火(高频、中频、工频),火焰加热表面淬火,电接触加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火。 四、感应加热表面淬火 (一)基本原理: 将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。(如下图所示) (二)加热频率的选用 室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为 频率升高,电流透入深度降低,淬透层降低。 常用的电流频率有: 1、高频加热:100~500KHZ,常用200~300KHZ,为电子管式高频加热,淬硬层深为0.5~2. 5mm,适于中小型零件。 2、中频加热:电流频率为500~10000HZ,常用2500~8000HZ,电源设备为机械式中频加热装置或可控硅中频发生器。淬硬层深度~10 mm。适于较大直径的轴类、中大齿轮等。 3、工频加热:电流频率为50HZ。采用机械式工频加热电源设备,淬硬层深可达10~20mm,适于大直径工件的表面淬火。

表面淬火与化学热处理工艺异同点

表面淬火与化学热处理工艺异同点 摘要:介绍表面淬火与化学热处理的工艺的不同以及各自的分类、加工方法。 关键词:表面淬火化学热处理异同点 表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些台金钢。 化学热处理是将工件表面渗进了某些化学元素的原子,改变了表层的化学成份,使表面能得到高硬度或某些特殊的物理、化学性能。而心部组织成份不变,仍保留原来的高塑性。高韧性的性能,这样在工件截面上就有截然不同的化学成份与组织性能。化学热处理生产周期长,不便于实现机械化、自动化生产,工艺复杂,质量不够稳定,辅助材料消耗多、费用大、成本高,许多情况下还需要贵重的合金钢。化学热处理只在获得表面层的更高硬度与某些特殊性能及心部的高韧性等方面优于表面淬火。 表面淬火: 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。三维网技术论坛3 N: A0 ? E/ p$ X+ i1 W! _1 K$ z 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。

热处理--表面淬火技术

我所关注的表面工程领域——表面淬火技术 一、表面淬火技术的原理和分类 采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。 对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。 根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。 二、感应加热表面淬火 感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。 根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

表面淬火材料的硬度及淬火深度检测方法

上海中研仪器制造厂 https://www.wendangku.net/doc/0d18402961.html,/ 钢铁零件表面淬火硬度及淬火深度检测方法 A、首先熟悉以下两个名词: 1、有效硬化层深度(DS):是指从零件表面到维氏硬度等于极限硬度那一层之间的距离。 2、极限硬度:是指零件表面所要求的最低硬度乘以系数,通常HV1试验力系数可以选用 0.8,也可以选用0.9或者更高(如零件表面硬度320HV,那么极限硬度 =320X0.8=256HV)。 B、试验力的选择 通常选用显微维氏硬度计,试验力通常选用HV1(9.807N),也可选用4.9N-49N范围内。 C、检测 1、检测应在规定试样表面的一个或者多个区域内进行,并在图纸上注明。 2、检测试样的制备: 应在垂直淬硬面切取试样,切断面作为检测面。检测面应做好磨抛处理,使其达到光洁如镜。在切割、磨抛过程中要注意避免工件过热、变形、出现倒角等。详见上海中研仪器制造厂技术文章栏目内的《金相试样制备流程》,这里不做过多阐述。 3、硬度检测: 硬度压痕应当打在垂直于表面的一条或多条平行线上,而且宽度为1.5mm区域内,最靠近表面的压痕中心与表面的距离为0.15mm,从表面到各逐次压痕中心的距离应每次增加0.1mm。当表面硬化层深度大时,各压痕中心的距离可以大一些,但在接近极限硬度区域附近,仍应保持压痕中心之间的距离为0.1mm。 4、测量结果: 用垂直表面横截面上的硬度变化曲线来确定有效硬化层深度。由绘制的硬度变化曲线,确定从零件表面到硬度值等于极限硬度的距离,这个距离就是感应淬火或火焰淬火后有效硬化层深度。 备注:一个区域内有多条硬度变化曲线时,应取各曲线测得的硬化层深度平均值,作为有效硬化层深度。有效硬化层深度用字母DS表示,深度单位为mm,例如硬化层深度0.5mm 可以写成DS0.5。 技术支持邮箱:zhongyanyiqi@https://www.wendangku.net/doc/0d18402961.html,

热处理工艺——表面淬火、退火工艺、正火工艺

热处理工艺——表面淬火、退火工艺、正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

中频感应加热设备常见故障与维修技巧

中频感应加热设备常见故障与维修技巧 【摘要】中频感应加热设备在透热、熔炼、淬火、焊接等领域都有广泛的应用,然而由于设备的功率很大,电子元件很容易由于过热而产生故障。 【关键词】中频感应加热设备;故障;维修技巧 中频电源广范应用于熔炼透热淬火焊接等领域,不同的应用领域对中频电源有不同的要求,因此中频电源的控制电路和主电路有不同的结构形式,只有在熟练掌握这些电路的基本工作原理和功率器件的基本特性的基础上,才能快速准确地分析判断故障原因采取有效的措施排除故障。在此对常见故障及其维修技巧进行探讨。 1.常见故障分析 1.1开机设备不能正常起动 (1)故障现象起动时直流电流大、直流电压和中频电压低、设备声音沉闷过流保护。 分析处理逆变桥有一桥臂的晶闸管可能短路或开路造成逆变桥三臂桥运行。用示波器分别观察逆变桥的四个桥臂上的晶闸管,管压降波形若有一桥臂上的晶闸管的管压,降波形为一线,该晶闸管已穿通;若为正弦波,该晶闸管未导通,更换已穿晶闸管,并查找晶闸管未导通的原因。 (2)故障现象起动时直流电流大、直流电压低、中频电压不能正常建立。 分析处理补偿电容短路断开电容用万用表查找短路电容更换短路电容。 1.2 设备能起动但工作状态不对 (1)故障现象设备空载能起动但直流电压达不到额定值、直流平波电抗器有冲击声并伴随抖动。 分析处理关掉逆变控制电源,在整流桥输出端上接上假负载,用示波器观察整流桥的输出波形,可看到整流桥输出缺相波形缺相的原因可能是:流触发脉冲丢失;触发脉冲的幅值不够宽度太窄,导致触发功率不够造成晶闸管时通时不通;双脉冲触发电路的脉冲时序不对或补脉冲丢失;晶闸管的控制极开路短路或接触不良。 (2)故障现象设备能正常顺利起动,当功率升到某一值时过压或过流保护。 分析处理分两步查找故障原因:先将设备空载运行,观察电压能否升到额定

热处理淬火工艺【详解】

热处理淬火工艺 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. ◆表面淬火 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高; 2.工件因不是整体加热,变形小; 3.工件加热时间短,表面氧化脱碳量少; 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命; 5.设备紧凑,使用方便,劳动条件好; 6.便于机械化和自动化; 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 感应表面淬火后的性能 1. 表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。 2. 耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。

高频淬火和中频淬火的区别

高频淬火和中频淬火的 区别 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高频淬火和中频淬火的区别 1、高频淬火淬硬层浅(~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为、); 2、淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为、、和球墨铸铁) 高频的淬火,可以短时间的表层淬硬!晶体组织很细!结构变形小! 中频表面应力比高频的要小 50HZ叫工频,加热深度5~10 1000-10000HZ叫中频 10000HZ以上叫高频 “高频淬火”与“”在原理上是一样的。利用高频率(或中频率、工频)的,使钢件表面迅速加热,随后立即冷却的一种方法。其原理是:当在一个导体线圈中通过一定频率的交流电时,线圈内外将会产生一个频率相同的交流磁场,如果把工件放在线圈内,工件就会感应出交变电流,并使工件加热。在工件中的分布是不均匀的,电流密度在表面最大,这种现象

成为“表面效应”。透入工件表面的深度主要取决于(周/秒),频率愈高,电流透入深度愈浅,则淬硬层愈薄,所以,可选用不同的频率来达到不同深度的淬硬层。 根据所用不同,感应加热可分为:高频感应加热(20000~1000000周/秒)、中频感应加热 (5000~10000周/秒)和工频感应加热(50周/秒)。 感应加热,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄

感应表面淬火.

感应加热表面淬火 感应加热表面淬火是利用电磁感应加热原理,使零件在交变磁场中切割力线,在表面产生感应电流,又根据交流电集肤效应,以涡流形式将零件表面快速加热,而后急冷的淬火方法。它在热处理领域中占有重要地位,这一技术已经在我国被广泛应用。 感应加热表面淬火的使用频率不同,可以分为超高频(27MHz)、高频(200~250KHz)、中频(2500~8000HZ)和工频(50HZ)。由于电流频率不同,加热时感应电流透入深度不同。使用高频时,感应电流透入深度很小(约0.5mm),主要用于小模数齿轮和小轴类零件的表面淬火;使用中频时,感应电流透入深度(约5~10mm),主要用于中、小模数的齿轮、凸轮轴、曲轴的表面淬火;使用超高频时,感应电源透入深度极小,主要用于锯齿、刀刃、薄件的表面淬火;使用工频时,电流透入深度较大(超过10mm),主要用于冷轧辊表面淬火。 感应加热表面淬火是表淬火方法中比较好的一种,因此,受到普遍的重视和广泛应用。与传统热处理相比,它有以下的优点。 (1)感应加热属于内热源直接加热,热损失小,因此加热速度快,热效率高。 (2)加热过程中,由于加热时间短,零件表面氧化脱碳少,与其他的热处理相比,零件废品率根低。 (3)感应加热淬火后零件表面的硬度高,心部保持较好的塑性和韧性,呈现低的缺口敏感性,故冲击韧性、疲劳强度和耐磨性等有很大的提 高。 (4)感应加热设备紧凑,占地面积小,使用简便(即操作方便)。 (5)生产过程清洁,无高温,劳动条件好。 (6)能进行选择性加热。 (7)感应加热表面淬火的机械零件脆性小,同时还能提高零件的力学性能(如屈服点、抗拉强度、疲劳强度),同样经过感应加热表面淬火 的钢制零件的淬火硬度也高于普通加热炉的淬火硬度。

中频感应淬火设备的应用与说明

中频感应淬火设备的应用与说明 中频淬火,就是将金属放在一个通有交流电而产生交变磁场的感应线圈内,使金属件内感应出交流电,由于趋肤效应,电流主要集中在金属表面,所以表面的温度最高,在感应线圈下面紧跟着喷水冷却或其他冷却,由于感应加热及冷却主要集中在金属件表面,所以表面改性很明显,而内部改性基本没有,可以有很特殊的热处理效果。 中频感应淬火设备说明 中频感应淬火设备是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺。是将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬。 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率越高,集肤效应越强,感应电流集中的表层就越薄,这样加热层深度与淬硬深度也就越薄。淬硬度根据客户的要求,可通过调节电流频率来获得不同的淬硬层深度。 中频感应淬火特点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 感应淬火机床设备 中频感应淬火设备主要由中频电源、淬火控制设备(包括感应器)和淬火机床三部分组成。感应淬火方法是现代机器制造工业中的一种主要的表面淬火方法,具有质量好、速度快、氧化少、成本低、劳动条件好和易于实现机械化、自动化等一系列优点。根据工件的大小和淬硬层的深浅来确定合适的电源功率和频率(可以是工频、中频和高频)。感应器的形状和尺寸主要取决于工件外形和淬火工艺的要求。淬火机床也随工件的大小、形状和淬火工艺要求而有多种多样。对成批生产的零件,特别是在自动化生产线上,多采用专用机床。一般中、小工厂,由于工件批量多,数量少,多使用通用淬火机床。 设备特点 1、采用IGBT器件、元器件全球采购。 2、采用高效率组合谐振技术。 3、采用低电感电路安排。 4、采用大规模数字电路。 5、采用更全面、成熟的保护技术 中频感应淬火设备的应用,具体如下: 1.各种五金工具、手工具。如钳子、扳手、锤子、斧头、旋具、剪刀(园艺剪)等的淬火; 2.各种汽车、摩托车配件。如曲轴、连杆、活塞销、链轮、铝轮、气门、摇臂轴、传动半轴、小轴、拔插等的淬火; 3.各种电动工具。如齿轮、轴心; 4.机床行业类。如机床床面、机床导轨等的淬火; 5.各种五金金属零件、机械加工零件。如轴类、齿轮、链轮、凸轮、夹头、夹具等的淬火; 6.五金模具行业。如小型模具、磨具附件、模具内孔等的淬火;

相关文档