文档库 最新最全的文档下载
当前位置:文档库 › 关于有效利用水库库容确定水厂年供水量

关于有效利用水库库容确定水厂年供水量

关于有效利用水库库容确定水厂年供水量
关于有效利用水库库容确定水厂年供水量

关于有效利用水库库容确定水厂年供水量的探讨摘要:通过对水库库容、水库年入库径流量、水厂用水量的特点分析,合理调配水厂供水,充分利用了水库优质水源的同时降低了咸潮对中山城区供水的影响。

关键词:水库库容咸潮期取水量年入库径流量蒸发渗漏量

中山城区共有三大水厂分别为全禄水厂、大丰水厂、长江水厂。其中全禄水厂设计规模40万m3/d,最大供水能力为50万m3/d;大丰水厂设计规模40万m3/d,最大供水能力为50万m3/d;长江水厂设计规模为10万m3/d。大丰水厂与全禄、长江水厂形成犄角之势,正常时期主要以全禄水厂及大丰水厂供水为主,长江水厂供水为辅。

全禄水厂源水取自西江水道,经常受咸潮影响;大丰水厂源水取自内河水,受咸潮影响较小;长江水厂源水取自长江水库,源水水质好,但水库库容有限。特别是在咸潮期间的气候属于旱季,水库基本无雨水补充。为了能够充分发挥水库的蓄水能力合理分配水库水源,既保证长江水厂在正常供水时期充分利用长江水库优质水源,又能在咸潮期有足够源水可取,特此对长江水库库容与长江水厂供水能力进行如下分析论证:

一、长江水库特点

长江水库位于中山城区,总库容5040万m3,其中兴利库容为3132万m3,死库容为700万m3,集水面积为36.4km2,全年 5月~9月降雨量丰沛,入库径流量大;10月~4月咸潮期间降雨量少,

水库库容曲线

编号 等高线(m)库容(万m3)面积(万m2) 1645.8945.8927152.26106.3838294.01140.64堰顶 49468.91174.90510685.91217.00611940.46254.557 121225.360.00 换算值 1.51 下游溢洪道出口水位8. 编号 等高线(m)库容(万m3)面积(万m2)对应库容685.91万方 1 4.494 5.8945.892 5.49152.2610 6.38 3 6.49294.01 140.64堰顶 47.49468.91174.9058.49685.91217.006 9.49940.46254.55 换算新-库容曲线,堰顶8.0m 编号等高线(m)库容(万m3) 面积(万m2)1 4.4945.89 45.89 2 4.5046.9546.49 3 5.00100.14 76.74 4 5.49152.26 106.38 5 5.50153.68106.72 6 6.00224.55 123.85 7 6.49294.01 140.64 8 6.50295.76157.9497.00383.21 158.11 107.49468.91 174.90 117.50471.08175.32128.00579.58 196.37 138.49685.91 217.00 148.50688.46217.38159.00815.73 236.15 169.49 940.46254.55 编号等高线(m)库容(万m3)面积(万m2)1 4.546.9546.492 5.0100.1476.743 5.5153.68106.724 6.0224.55123.855 6.5295.76157.9467.0383.21158.1177.5471.08175.3288.0579.58196.37 原设计库容曲线,堰顶8.0m 换算新-库容曲线,堰顶8.0m 4 4.55 5.56 6.57 7.58 8.59 9.5水位(m )

水库库容与淤积量的精密测量及计算

水库库容与淤积量的精密测量及计算 刘国强 (广东省水利电力勘测设计研究院,广东广州510170) 摘要:针对传统的水库库容、淤积量的测量及计算方法的缺陷,采用现代高精度(GNSS)全球定位技术、回声测深技术及三角形的构网方法,对水库库容和淤积进行测量研究,经实际运用取得令人满意的效果。 关键词:水库库容;淤积监测 水库,是在山沟或河流的狭口处建造拦河坝等水利工程建筑物而形成的人工湖泊,在人类的生活中它发挥着重要的作用,如蓄水发电、航运、水产、灌溉以及防洪调度等,是人类不可或缺的一下重要措施,并且其在人类生活中的作用也越来越大,为人类带来了巨大的社会效益和经济效益。但是我国目前有很多水库是在上世纪五、六十年代建成的,运行至今已有五、六十年,水库淤积严重及库容受损,产生的社会效益和经济效益越来越少。 水库调度的参数有很多,但其中水库库容和淤积量的精度可以对水库的防洪安全与徐水兴利产生影响,所以传统库区容量及淤积量测量精度难以保障,但随着现代测控技术的迅速成长,依靠高精度(GNSS)全球定位技术和回声测深技术,测量精度得到了很大提高和保障。我们对高州水库、公平水库、雁田水库及长龙水库进行了水下地形测量,准确测量出了水库的库容和淤积量,其测量的方法是三角形构网,主要利用了“三角柱”的水珠体积和淤积体积进而测量出水库的库容和淤积量,在实际应用中取得了比较满意的效果。 1 常规库容及淤积量的确定 以前,人们对常规的库容和淤积量的计算方法主要是断面法。计算库容的模型是: 式中:Vi、Li为第i个断面到第i+1个断面间的库容和距离;n为分段个数;Si、m、d、hi 分别为第i个断面的面积、测点个数、点间距和每个测点的深度测量值。 断面法的操作方式很简单,但其会受到前提假设的约束,所以很难保证测量结果的精度。而淤积量的获得是依据前后两次库容的较差,所以导致库容的精度不准确,进而导致无法测量淤积量的精度。 2 高精度水下地形测量技术 2.1 水下地形测量: 水下地形测量是利用了测量仪器来对水底点的三维坐标确定的一个过程。近年来GNSS 全球定位技术在不断的发展,对水下地形测量的方法的发展有很大的推进作用。现如今,水下地形测量技术的基本模式都是利用GNSS来获得平面坐标,测深仪获取深度数据。并专门为水下地形测量设计了具备两路数据输入(出)接口的测量软件,同时将GNSS定位数据、水深数据输入到电脑中,经软件处理后显示在屏幕上,并具备设置测量行走路线和显示测量船的移动轨迹及导航信息等功能。作业时测量船按照设计好的路线行走,软件就会自动

水库的分类标准

水库的分类标准 大型水库:总库容在1亿立方米以上; 中型水库:总库容在1000万立方米以上; 小(一)型水库:总库容在100万立方米以上; 小(二)型水库:总库容在10万立方米以上。 大中小型水库划分标准是什么? 根据水库所在地区;的地貌、库床及水面的形态,可将水库分为四类: (1)平原湖泊型水库 在平原、高原台地或低洼区修建的水库。形状与生态环境都类似于浅水湖泊。 形态特征水面开阔,岸线较平直,库湾少,底部平坦,岸线斜缓,水深一般在10米以内,通常无温跃层。渔业性能优良。如山东省的峡山水库、河南省的宿鸭湖水库。 (2)山谷河流水库 建造在山谷河流间的水库。 形态特征库岸陡峭,水面呈狭长形,水体较深但不同部位差异极大,一般水深20-30米,最大水深可达30-90米,上下游落差大,夏季常出现温跃层。如重庆市的长寿湖水库、浙江省的新安江水库等。 (3)丘陵湖泊型水库 在丘陵地区河流上建造的水库。 形态特征介于以上两种水库之间,库岸线较复杂,水面分支很多,库弯多。库床较复杂,渔业性能良好。如浙江省的青山水库、陕西省的南沙河水库等。 (4)山塘型水库 在小溪或洼地上建造的微型水库,主要用于农田灌溉,水位变动很大。江苏省溧阳市山区塘马水库、宋前水库、句容的白马水库、安徽广德县和郎溪县这种类型的水库较多,用于灌溉农田。 根据水质的肥度同样可将水库分为贫营养型、中营养型和富营养型三类。 水库大小的划分标准: 1998年第九期"中国钓鱼"湖北钓友的文章。他专们说明了我国水库大小的划分标准: 1:容量大于1亿立方米的为大型水库。 2:容量1000万至1亿立方米的为中型水库。 3:容量在10万至1000万立方米的称为小型水库。其中100万至1000万立方米的称 为小(一)型水库。10万至100万立方米的称为小(二)型水库。

水库兴利调节计算

第十一章 水库兴利调节 第一节 水库及其特性 一、水库特性曲线 水库就是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水得人工湖泊。水库得作用 就是拦蓄洪水,调节河川天然径流与集中落差。一般地说,坝筑得越高,水库得容积(简称库容)就越 大。但在不同得河流上,即使坝高相同,其库容相差也很大,这主要就是因为库区内得地形不同 造成得。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流得坡降对库容大小 也有影响,坡降小得库容较大,坡降大得库容较小。根据库区河谷形状,水库有河道型与湖泊型两 种。 一般把用来反映水库地形特征得曲线称为水库特性曲线。它包括水库水位~面积关系曲线与 水库水位~容积关系曲线,简称为水库面积曲线与水库容积曲线,就是最主要得水库特性资料。 (一)水库面积曲线 水库面积曲线就是指水库蓄水位与相应水面面积得关系曲线。水库得水面面积随水位得 变化而变化。库区形状与河道坡度不同,水库水位与水面面积得关系也不尽相同。面积曲线反映 了水库地形得特性。 绘制水库面积曲线时,一般可根据 l/10 000~ l/50 00比例尺得库区地形图,用求积仪(或 按比例尺数方格)计算不同等高线与坝轴线所围成得水库得面积(高程得间隔可用 l,2或5 m), 然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示。 图2-1 水库面积特性曲线绘法示意 (二)水库容积曲线 水库容积曲线也称为水库库容曲线。它就是水库面积曲线得积分曲线,即库水位与累积容积 得关系曲线。其绘制方法就是:首先将水库面积曲线中得水位分层,其次,自河底向上逐层计算各 相邻高程之间得容积。 Z (m )

水库特征水位与相应库容名词解释

水库特征水位与相应库容名词解释 死水位与死库容: 水库正常运行情况下,允许消落的最低水位称为死水位。死水位以下的库容称为死库容或垫底库容。死库容除遇特殊干旱年份外,一般是不能动用的。 正常蓄水位和兴利库容: 水库正常运行情况下,为满足设计兴利要求在供水期开始时应蓄到的水位,称为正常蓄水位。它与死水位之间的库容称为兴利库容。它与死水位之间的深度称为消落深度。当水库溢洪道无闸门控制时,溢洪道堰顶高程即为正常蓄水位;当水库溢洪道有闸门控制时,理论上,闸门关闭时的门顶高程即为正常蓄水位,但实际上,门顶略高于正常蓄水位。

防洪限制水位:简称汛限水位。它是汛期洪水来临之前允许兴利蓄水的上限水位。该水位以上的库容,只有在发生洪水时,才允许作为滞蓄洪水使用。在整个汛期当中,一旦入库的洪水消退,水库就应尽快泄流,使库水位再回到汛限水位。汛限水位比正常蓄水位低,汛限水位与正常蓄水位之间的库容,可兼作兴利与防洪之用,称为结合库容。 防洪高水位:是指在水库下游有防洪要求时,水库遇到相应于下游防护对象的设计洪水,按下游安全泄量控制进行洪水调节,坝前达到的最高水位。它与汛限水位之间的库容称为防洪库容。 设计洪水位:是指当水库遇到枢纽的设计洪水位时,水库自汛限水位对该洪水进行调节,正常泄洪设施全部打开,坝前达到的最高水位。它与汛限水位之间的库容,是为调蓄枢纽设计洪水用的,一般称为调洪库容。 校核洪水位:是指当水库遇到枢纽的校核洪水时,水库自汛限水位对该洪水进行调节,正常泄洪设施与非常设施先后投入运用,在泄流规模有限的情况下,库水位超过设计洪水位,所达到的坝前最高水位。它与汛限水位之间的库容,是为调蓄枢纽校核洪水用的,一般也称为调洪库容。

水库基本知识

水库基本知识 一般的解释为"拦洪蓄水和调节水流的水利工程建筑物,可以利用来灌溉、发电、防洪和养鱼。"它是指在山沟或河流的狭口处建造拦河坝形成的人工湖泊。 水库建成后,可起防洪、蓄水灌溉、供水、发电、养鱼等作用。有时天然湖泊也称为水库(天然水库)。水库规模通常按库容大小划分,分为小型、中型、大型等。 水库水文特征指标 ?防洪标准 对河流上修建的任何一项水利工程,设计时都要考虑水工建筑物所能防御洪水的能力,一般根据所在河段未来可能发生洪水的特性,并结合工程的规模和要求,选出一个比较合适的洪水作为防洪安全设计的依据。水库的防洪标准即是水库水工建筑物的防洪标准,表示水库防洪能力的大小。发生标准的洪水,水库的水工建筑必须保证安全和正常工作。水库设计和运用中主要采用的洪水标准有设计洪水标准、校核洪水标准和为下游防洪设定的洪水标准等。 ?库容与特征水位 水库的蓄水容积称为库容。水库水位与库容的关系是由库区地形图上量算点绘出来的。有了水库水位~库容关系曲线,就可以根据观

测的水库水位,从曲线上查得相应的蓄水量。水库在校核洪水位以下的库容称为总库容。 水库为完成不同任务,在不同时期和各种水文情况下需控制达到或允许消落的各种库水位称为水库特征水位。相应于水库特征水位以下或两特征水位之间的水库容积称为水库特征库容。 ?正常蓄水位与兴利库容 在正常运用情况下,水库为满足兴利要求,应在开始供水时蓄到的高水位,也称正常高水位、兴利水位或设计蓄水位。它是确定水库的规模、效益和调节方式,是保证水库兴利的允许最高洪水位。 泄洪建筑物不设闸门的,正常高水位即是泄洪建筑物(溢洪道)的底高程;泄洪建筑物设闸门的,正常高水位就是闸门关闭时长期维持的最高水位。正常蓄水位至死水位之间的库容称兴利库容(调节库容)。 ?防洪限制水位 水库根据汛期和枯水期的径流条件及水库泄洪建筑物的条件确定的汛期起始调洪的水位称汛前限制水位,汛前水库必须把蓄水位降

水库的特征水位及库容

水库的特征水位及库容 1.死水位和死库容。死水位是指水库在正常运用情况下,允许消落的最低水位,又称设计低水位。死库容是指死水位以下的水库容积,又称垫底库容。一般用于容纳淤沙、抬高坝前水位和库区水深。在正常运用中不调节径流,也不放空。只有因特殊原因,如排沙、检修和战备等,才考虑泄放这部分容积。 2.正常蓄水位和兴利库容。正常蓄水位是水库在正常运用情况下,为满足兴利要求应在开始供水时蓄到的高水位,又称正常高水位,兴利水位。兴利库容,即调节库容,正常蓄水位至死水位之间的水库容积,用以调节径流、提供水库的供水量。 3.汛期限制水位和结合库容。汛期限制水位系指水库在汛期允许兴利蓄水的上限水位,在常规防洪调度中是设计调洪计算的起始水位。防洪限制水位与正常蓄水位之间的库容称结合库容,此库容在汛末要蓄满为兴利所用。 4.防洪高水位和防洪库容。防洪高水位是水库遇到下游防护对象的设计标准洪水时,在坝前达到的最高水位。防洪库容是防洪高水位至防洪限制水位之间的水库容积,用以控制洪水,满足下游防护对象的防洪标准。 5.设计洪水位和拦洪库容。设计洪水位是当水库遇到大坝的设计洪水时,在坝前达到的最高水位。它是水库在正常运用情况下允许达到的最高水位。设计洪水位至防洪限制水位之间的水库容积称拦洪库容。

6.校核洪水位和调洪库容。校核洪水位是水库遇到大坝的校核洪水时,在坝前达到的最高水位,它是水库在非常运用情况下,允许临时达到的最高洪水位,是确定大坝顶高及进行大坝安全校核的主要依据。校核洪水位至防洪限制水位之间的水库容积称调洪库容,用以拦蓄洪水,在满足水库下游防洪要求的前提下保证大坝安全。 7.总库容。校核洪水位以下的全部静库容。它是一项表示水库工程规模的代表性指标,可作为划分水库等级、确定工程安全标准的重要依据。

利用DEM计算水库库容曲线的实例分析

文章编号:1006 2610(2019)05 0013 05利用DEM 计算水库库容曲线的实例分析 董 闯,刘蕊蕊,李运龙 (中国电建集团西北勘测设计研究院有限公司,西安 710065) 摘 要:水库的库容曲线是水利水电工程计算的重要基础数据,库容曲线获取的常用方法断面法二等高线法虽然简单实用,但是通过库区的概化二存在精度损失,在无实测地形图资料时存在失灵现象三通过分析利用DEM 计算水库库容曲线的原理,分别以有实测地形图和无实测地形图2种情况,完成了基于DEM 的水库库容曲线计算的实例分析三结果表明:通过实测地形图构建库区DEM 计算的水库库容曲线可以应用于工程设计,在无实测地形图的情况下,可利用DEM 计算库容曲线为项目前期设计或评估提供参考依据三 关键词:数字高程模型;地形图;库容曲线 中图分类号:TV62;TP79 文献标志码:A DOI :10.3969/j.issn.1006-2610.2019.05.004 Case analysis of calculating reservoir storage capacity curve with DEM DONG Chuang ,LIU Ruirui ,LI Yunlong (PowerChina Northwest Engineering Corporation Limited ,Xi'an 710065,China ) Abstract :The reservoir storage capacity curve is an important basic data in calculation of water conservancy and hydropower projects.The traditional method such as method of section and contouring method for calculating the reservoir capacity curve is simple and practi?cal ,but through the generalization of the reservoir area ,there is the loss of precision and the curve may not be obtained without measured topographic map.By analyzing the principle of using DEM to calculate the reservoir storage capacity curve ,the case analysis of reservoir storage capacity curve calculation based on DEM is carried out in two cases :with and without measured topographic map.The results show that the reservoir storage capacity curve calculated by the DEM with measured topographic map can be applied to the engineering de?sign.In the absence of the measured topographic map ,the storage capacity curve calculated by the DEM can be used as a reference for the preliminary design or evaluation of the project.Key words :digital elevation model ;topographic map ;storage capacity curve 收稿日期:2019-04-26 作者简介:董闯(1985-),男,安徽省萧县人,工程师,主要从事水电和新能源发电设计工作.0 前 言 水利水电工程设计中经常会用到水库的水位~ 库容~面积曲线(以下简称库容曲线),库容曲线通 常基于实测地形图通过断面法或等高线法计算获 得[1-3],断面法计算库容是将水库沿水流流程从库尾到坝址分割成多个梯形体或椎体,等高线法计算 库容是将水库按不同等高线从下到上分割成多个梯 形体或椎体,通过各梯形体或椎体体积求和得到水 库库容三断面法二等高线法虽然简单实用,但精度与分割的断面个数或等高线间距密切相关,是一种库区的概化,同时,在无实测地形图资料时存在失灵的现象三随着地理信息系统(GIS)技术的不断发展,利用数字高程模型(Digital Elevation Model,DEM)计算水库库容得到应用[4-7]三本文选取有实测地形图和无实测地形图2种情况,进行基于DEM 的水库库容曲线计算的实例分析三1 利用DEM 计算水库库容曲线原理及流程 1.1 DEM 简介DEM 是描述地形起伏特征信息的有序数值阵列,自从1956年美国麻省理工学院Miller [8]教授提31西北水电四2019年四第5期===============================================

水库库容测量及计算的技术研究

水库库容测量及计算的技术研究- 水文&水资源 [关键词]水库库容;测量;计算;技术研究 近年来,我国各大中城市都面临饮用水资源缺乏的问题。水库作为人类蓄水发电、灌溉和防洪调度等的重要设施,发挥着越来越大的作用,并取得了巨大的效益和经济效益。水库库容是水库调度的重要参数,其精度直接到水库的防洪安全与蓄水兴利。但由于兴建水库时的库容测量方法和计算方法都较落后,并且随着时间的推移大量的淤泥沉淀和水库本身引起的局部地形变化。老的库容数据在精度和现时性上都无法满足城市建设的需要。本文在传统水库库容测量基础上,依靠高精度GPS(Global Positioning System,简称GPS)定位和直接测深技术相结合,对七台河库区水下地形进行了测量,并提出了根据三角形构网方法,利用“三角柱”的水柱体积获得库容的新见解,经实际运用,取得了满意效果。 一、常规库容确定 1.断面法。其库区容量的计算模型为: 式中:Vi、Li为第i个断面到第i+1个断面间的库容和距离;n为分段个数;Si、m、d、hi分别为第i个断面的面积、测点个数、点间距和每个测点的深度测量值。采用断面法虽然操作简单,但受前提假设的制约,精度难以保证。

2.等高线法。先求每条等高线与坝轴线所围成的面积,然后计算每两条相邻等高线的体积,其总和即是库容。A1,A2,…,An+1依次为各条等高线所围成的面积,h为等高距;设第一条等高线与第二条等高线间的高差为h′,第n条等高线(最低一条等高线)与库底最低点间的高差为h″,则各层体积为: 这种方法只适用于水下地貌较规整的水库,或者精度不高的库容概算,对于水下微地貌较多并未经修整的大型水库,这种计算方法就不能满足要求了。 二、高精度水下地形测量技术 1.水下地形测量所谓水下地形测量,就是利用测量仪器来确定水底点的三维坐标的过程。随着GPS技术的迅速发展,水下地形测量方法取得了很大的进展。水下地形测量技术已定型于采用GPS获取平面坐标,测深仪获取深度数据的基本模式。 2.GPS载波相位差分定位技术和回声测深技术随着GPS技术的发展,GPS日益广泛应用于水利电力工程的各个方面。为了提高定位精度,一般均采用差分技术。在众多的差分技术中,伪距差分和载波相位差分是最为常用的两种测量模式,后者的定位精度较高(厘米级),通常用于高精度的测量工程和研究中。 回声测深仪是一种单波束测深设备,深度的测量是根据最小声程决定。按照使用频率个数的不同,又可分为单频和双频。双频测深仪

冶溪镇 东方红水库库容水位关系曲线图

水库下泄流量—溢洪道过洪水深关系表达式:y=34.583*X1.6321 X值12345678过洪水深(m)0.51 1.52 2.53 3.54 下泄流量Q(m3/s)34.33107.18209.54334.83480.55644.43824.71019.89

水库下泄流量—下游河道过洪水深关系表达式:y=34.583*X1.6321 X值12345678 下泄流量 34.33107.18209.54334.83480.55644.43824.71019.89 Q(m3/s) 过洪水深(m)0.76 1.537 2.354 3.194 4.06 4.95 5.866 6.81

X值 1.00 2.00 3.00 4.00 5.00 6.007.008.009.0010.00水库水位(m)197.00200.00201.00202.00203.00204.00205.00206.00207.00208.00库容(万m3)0.000.100.300.70 1.60 3.20 6.508.6016.5017.60 X值11.0012.0013.0014.0015.0016.0017.0018.0019.0020.00水库水位(m)209.00210.00211.00212.00213.00214.00215.00216.00217.00218.00库容(万m3)23.1029.4036.7045.1054.2063.8074.1085.3097.20109.90 X值21.0022.0022.5023.0023.5024.0024.5025.0025.50 水库水位(m)219.00220.00220.50221.00221.50222.00222.50223.00223.50 库容(万m3)123.50137.60145.43152.50161.16168.80177.75189.70195.21 调洪库容(万m3)87.3780.3071.6464.0055.0543.1037.59 X值26.0026.5027.0027.5028.0029.0030.0031.0032.00 水库水位(m)224.00224.50225.00225.50226.00227.00228.00229.00230.00 过洪水深(m)203.90213.56223.10232.80242.75264.30286.40309.10328.50 调洪库容(万m3)28.9019.249.700.00

《工程水文及水利计算》11第十一章 水库兴利调节计算(1)

第十一章水库兴利调节 第一节水库及其特性 一、水库特性曲线 水库是指在河道、山谷等处修建水坝等挡水建筑物形成蓄集水的人工湖泊。水库的作用是拦蓄洪水,调节河川天然径流和集中落差。一般地说,坝筑得越高,水库的容积(简称库容)就越大。但在不同的河流上,即使坝高相同,其库容相差也很大,这主要是因为库区内的地形不同造成的。如库区内地形开阔,则库容较大;如为一峡谷,则库容较小。此外,河流的坡降对库容大小也有影响,坡降小的库容较大,坡降大的库容较小。根据库区河谷形状,水库有河道型和湖泊型两种。 一般把用来反映水库地形特征的曲线称为水库特性曲线。它包括水库水位~面积关系曲线和水库水位~容积关系曲线,简称为水库面积曲线和水库容积曲线,是最主要的水库特性资料。(一)水库面积曲线 水库面积曲线是指水库蓄水位与相应水面面积的关系曲线。水库的水面面积随水位的变化而变化。库区形状与河道坡度不同,水库水位与水面面积的关系也不尽相同。面积曲线反映了水库地形的特性。 绘制水库面积曲线时,一般可根据l/10 000~l/50 00比例尺的库区地形图,用求积仪(或按比例尺数方格)计算不同等高线与坝轴线所围成的水库的面积(高程的间隔可用l,2或5 m),然后以水位为纵座标,以水库面积为横坐标,点绘出水位~面积关系曲线,如图2-1所示。 图2-1水库面积特性曲线绘法示意 (二)水库容积曲线 水库容积曲线也称为水库库容曲线。它是水库面积曲线的积分曲线,即库水位Z与累积容积V的关系曲线。其绘制方法是:首先将水库面积曲线中的水位分层,其次,自河底向上逐层计算各相邻高程之间的容积。

0 i F 1+i F 水面面积库F (106 m 2) 水库容积V (106 m 3) 图 2-2 水库容积特性和面积特性 1-水库面积特性; 2-水库容积特性 假设水库形状为梯形台,则各分层间容积计算公式为: ()2/1Z F F V i i ?+=?+ (2-1) 式中:V ?——相邻高程间库容(m 3); i F 、1+i F ——相邻两高程的水库水面面积(m 2); Z ?——高程间距(m )。 或用较精确公式: 3/(11Z F F F F V i i i i ?++=?++) (2-2) 然后自下而上按 ∑=?=n i i V V 1 (2-3) 依次叠加,即可求出各水库水位对应的库容,从而绘出水库库容曲线。 水库总库容V 的大小是水库最主要指标。通常按此值的大小,把水库划分为下列五级: 大Ⅰ型——大于 l0亿 m 3; 大Ⅱ型—— l ~10亿 m 3; 中 型——0.1~l 亿 m 3; 小Ⅰ型——0.01~0.1亿 m 3; 小Ⅱ型——小于0.01亿 m 3。 水库容积的计量单位除了用m 3表示外,在生产中为了能与来水的流量单位直接对应,便于调节计算,水库容积的计量单位常采用 (m 3/s)·Δt 表示。Δt 是单位时段,可取月、旬、日、时。如1月?s m 3表示 l s m 3的流量在一个月(每月天数计为30.4天)的累积总水量,即 l 月?s m 3 =30.4×24×3600=2.63×106 m 3 前面所讨论的水库特性曲线,均建立在假定入库流量为零时,水库水面是水平的基础上绘 库 水位Z (m )

中国水利统计年鉴2017_2-2历年已建成水库数量、库容和耕地灌溉面积

River Regulation 30 2-2 历年已建成水库数量、库容和耕地灌溉面积 Number, Storage Capacity and Effective Irrigated Area of Completed Reservoirs by Year 年份Year 已建成水库大型水库中型水库小型水库Completed Reservoirs Large Reservoir Medium Reservoir Small Reservoir 座数总库容耕地灌溉座数总库容耕地灌溉座数总库容耕地灌溉座数总库容耕地灌溉/座/亿立方米面积/座/亿立方米面积/座/亿立方米面积/座/亿立方米面积/千公顷/千公顷/千公顷/千公顷Number Total Effective Number Total Effective Number Total Effective Number Total Effective /unit Storage Irrigated /unit Storage Irrigated/unit Storage Irrigated/unit Storage Irrigated Capacity Area Capacity Area Capacity Area Capacity Area /108m3/103ha /108m3/103ha /108m3/103ha /108m3/103ha 1978 84585401216418 3112896707522055854058 820695315285 1979 86132408116806 3192945715922525934164 835615435483 1980 86822413015989 3262975625522986054213 841985505522 1981 86881416915806 3282989608023336224253 842205585473 1982 86900418815943 3312994621723536324318 842165625408 1983 86567420815671 3353007608123676404251 838655615339 1984 84998429215833 3383068628023876584232 822735665321 1985 83219430115760 3403076640724016614206 804785645147 1986 82716443215749 3503199640821156664189 799515675153 1987 82870447515902 3533233644924286724257 800895705196 1988 82937450415801 3553252639924626814201 801205715201 1989 82848461715826 3583357640924806884254 800105725163 1990 83387466015809 3663397643124996904205 805225735173 1991 83799467836734002524698 80908579 1992 84130468836934072538700 81223580 1993 84614471737434252562707 81678583 1994 84558475138134562572713 81605582 1995 84775479738734932593719 81795585 1996 84905457139432602618724 81893587 1997 84837458339732672634729 81806587 1998 84944493040335952653736 81888598 1999 85119449940031642681743 82039593 2000 83260518342038432704746 80136593 2001 83542528043339272736758 80373595 2002 83960559444542302781768 80734596 2003 84091565745342792827783 80811596 2004 84363554146041472869796 81034598 2005 84577562347041972934826 81173601 2006 85249584148243793000852 81767610 2007 85412634549348363110883 81809625 2008 86353692452953863181910 82643628 2009 87151706454455063259921 83348636 2010 87873716255255943269930 84052638 2011 8860572015675602334695484692645 2012 97543 82556836493 3758 1064 93102698 2013 977218298687652937741070 93260700 2014 97735 83946976617 37991075 93239702 201597988858170768123844106893437701 2016 98460896772071663890109693850705

水库等级的划分基本知识

我国水库等级的划分 按库容大小划分: 大(一)型水库:≥10 亿 m3 大(二)型水库:≥1亿m3<10亿 m3 中型水库:≥1000万m3,<1亿 m3 小(一)型水库:≥100万m3,< 1000万m3 小(二)型水库:≥10 万m3,<100万m3 1水库的定义 一般在河道、山谷峡口、低洼地等处用土、砂、石或混凝土等材料修筑挡水坝,堵住山溪或河道的水流,把坝上游集水面积内的雨水拦蓄起来,以调节天然径流,为防洪、灌溉、供水和发电等服务,这样的工程称之为水库。 2水库的等级划分 根据原水利电力部1978年颁发的《水利水电枢纽工程等级划分及设计标准》(山丘、丘陵区部分)(SDJ12-78)的试行规定,水利水电枢纽根据其工程规模、效益和在国民经济中的重要性,划分为五等,如表1。 表1 水利水电枢纽工程的分等指标

工程等别 水库防洪 治 涝 灌溉 供 水 水电站 工 程 规 模 总库容 (108m3) 城 镇 及 工 矿 企 业 的 重 要 性 保护 农田 (万 亩) 治 涝 面 积 (万 亩) 灌溉面 积(万 亩) 城 镇 及 工 矿 企 业 的 重 要 性 装机容 量 (104kw) Ⅰ 大 (1) 型 ≥10 特 别 重 要 ≥ 500 ≥ 200 ≥150 特 别 重 要 ≥120 Ⅱ 大 (2) 型 10~1.0 重 要 500 ~ 100 200 ~ 60 150~ 50 重 要 120~30 Ⅲ 中 型1.0~ 0.1 中 等 100 ~30 60 ~ 50~5 中 等 30~5

15 Ⅳ 小 (1) 型 0.10~ 0.01 一 般 30~ 5 15 ~3 5~0.5 一 般 5~1 Ⅴ 小 (2) 型 0.01~ 0.001 ≤5 ≤3 ≤0.5 ≤1 枢纽中的水工建筑物,根据所属工程等别及其在工程的作用和重要性划分为五级,如表2。 表2 水工建筑物级别的划分 工程等别 永久性水工建筑级别临时性水工建 筑物级别 主要建筑物次要建筑物 Ⅰ 1 3 4 Ⅱ 2 3 4 Ⅲ 3 4 5 Ⅳ 4 5 5 Ⅴ 5 5 对于坝高较大、地质条件特别复杂,或设计与施工实践经验较少的新坝型、新结构等,可提高建筑物的级别。对于低水

水位及库容关系

什么是水库的特征水位及库容? 2010-08-09 水库死水位(Z死)及死库容(V死)。水库在正常运用情况下,允许消落的最低水位,又称设计低水位。日调节水库在枯水季节水位变化较大,每24小时内将有一次消落到死水位。年调节水库一般在设计枯水年供水期末才消落到死水位。多年调节水库只在多年的枯水段末才消落到死水位。水库正常蓄水位与死水位之间的变幅称水库消落深度。 死库容是指死水位以下的水库容积,又称垫底库容。一般用于容纳淤沙、抬高坝前水位和库区水深。在正常运用中不调节径流,也不放空。只有因特殊原因,如排沙、检修和战备等,才考虑泄放这部分容积。 水库正常蓄水位(Z正)及兴利库容(V兴)。水库的正常蓄水位是水库在正常运用情况下,为满足兴利要求应在开始供水时蓄到的高水位,又称正常高水位,兴利水位。它决定水库的效益和调节方式,也在很大程度上决定水工建筑物的尺寸、型式和水库的淹没损失,是水库最重要的一项特征。当采用无闸门控制的泄洪建筑物时,它与泄洪堰顶高程相同;当采用有闸门控制的泄洪建筑物时,它是闸门关闭时允许长期维持的最高蓄水位,也是挡水建筑物稳定计算的主要依据。 兴利库容,即调节库容。正常蓄水位至死水位之间的水库容积。用以调节径流,

提供水库的供水量或水电站的出力。 汛期限制水位(Z限)和结合库容(V结)。系指水库在汛期允许兴利蓄水的上限水位,是预留防洪库容的下限水位,在常规防洪调度中是设计调洪计算的起始水位。汛期限制水位是根据水库综合效益、洪水特性、防洪要求和调度原则,在保证工程安全的前提下经分析计算确定的。一般在水库工程的正常运用情况下,即采用原设计提出的运用指标。防洪限制水位与正常蓄水位之间的库容称结合库容(V 结),此库容在汛末要蓄满为兴利所用。在汛期洪水到来后,此库容可作滞洪用,洪水消退时,水库尽快泄洪,使水库水位迅速回降到防洪限制水位。 水库防洪高水位(Z防)和防洪库容(V防)。水库的防洪高水位是水库遇到下游防护对象的设计标准洪水时,在坝前达到的最高水位。只有当水库承担下游防洪任务时,才需确定这一水位。此水位可采用相应下游防洪标准的各种典型洪水,按拟定的防洪调度方式,自防洪限制水位开始进行水库调洪计算求得。 防洪库容是防洪高水位至防洪限制水位之间的水库容积,用以控制洪水,满足下游防护对象的防洪标准。当汛期各时段分别拟定不同的防洪限制水位时,这一库容指其中最低的防洪限制水位至防洪高水位之间的水库库容。 允许最高洪水位(Z允)。系指在汛期防洪调度中,为保障水库工程安全而允许充蓄的最高洪水位。一般情况下,如工程能按设计要求安全运行,则原设计确定的校核洪水位即可作为水库在汛期的最高控制水位,在实时调度中除在发生超设计标准洪水时不应突破。 水库的设计洪水位(Z设)。水库的设计洪水位是,当水库遇到大坝的设计洪水时,在坝前达到的最高水位。它是水库在正常运用情况下允许达到的最高水位。也是挡水建筑物稳定计算的主要依据。可采用相应大坝设计标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。 水库校核洪水位(Z校)及调洪库容(V调)。水库的校核洪水位是水库遇到大坝的校核洪水时,在坝前达到的最高水位,它是水库在非常运用情况下,允许临时达到的最高洪水位,是确定大坝顶高及进行大坝安全校核的主要依据。此水位可采用相应大坝校核标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。

什么是水库的特征水位及库容

什么是水库的特征水位及库容? 水库死水位(Z 死)及死库容(V 死 )。水库在正常运用情况下,允许消落的最低水位, 又称设计低水位。日调节水库在枯水季节水位变化较大,每24小时内将有一次消落到死水位。年调节水库一般在设计枯水年供水期末才消落到死水位。多年调节水库只在多年的枯水段末才消落到死水位。水库正常蓄水位与死水位之间的变幅称水库消落深度。 死库容是指死水位以下的水库容积,又称垫底库容。一般用于容纳淤沙、抬高坝前水位和库区水深。在正常运用中不调节径流,也不放空。只有因特殊原因,如排沙、检修和战备等,才考虑泄放这部分容积。 水库正常蓄水位(Z 正)及兴利库容(V 兴 )。水库的正常蓄水位是水库在正常运用 情况下,为满足兴利要求应在开始供水时蓄到的高水位,又称正常高水位,兴利水位。它决定水库的效益和调节方式,也在很大程度上决定水工建筑物的尺寸、型式和水库的淹没损失,是水库最重要的一项特征。当采用无闸门控制的泄洪建筑物时,它与泄洪堰顶高程相同;当采用有闸门控制的泄洪建筑物时,它是闸门关闭时允许长期维持的最高蓄水位,也是挡水建筑物稳定计算的主要依据。 兴利库容,即调节库容。正常蓄水位至死水位之间的水库容积。用以调节径流,提供水库的供水量或水电站的出力。

汛期限制水位(Z 限)和结合库容(V 结 )。系指水库在汛期允许兴利蓄水的上限水 位,是预留防洪库容的下限水位,在常规防洪调度中是设计调洪计算的起始水位。汛期限制水位是根据水库综合效益、洪水特性、防洪要求和调度原则,在保证工程安全的前提下经分析计算确定的。一般在水库工程的正常运用情况下,即采用原设计提出的运用指标。防洪限制水位与正常蓄水位之间的库容称结合库容(V结),此库容在汛末要蓄满为兴利所用。在汛期洪水到来后,此库容可作滞洪用,洪水消退时,水库尽快泄洪,使水库水位迅速回降到防洪限制水位。 水库防洪高水位(Z 防)和防洪库容(V 防 )。水库的防洪高水位是水库遇到下游防 护对象的设计标准洪水时,在坝前达到的最高水位。只有当水库承担下游防洪任务时,才需确定这一水位。此水位可采用相应下游防洪标准的各种典型洪水,按拟定的防洪调度方式,自防洪限制水位开始进行水库调洪计算求得。 防洪库容是防洪高水位至防洪限制水位之间的水库容积,用以控制洪水,满足下游防护对象的防洪标准。当汛期各时段分别拟定不同的防洪限制水位时,这一库容指其中最低的防洪限制水位至防洪高水位之间的水库库容。 允许最高洪水位(Z 允 )。系指在汛期防洪调度中,为保障水库工程安全而允许充蓄的最高洪水位。一般情况下,如工程能按设计要求安全运行,则原设计确定的校核洪水位即可作为水库在汛期的最高控制水位,在实时调度中除在发生超设计标准洪水时不应突破。 水库的设计洪水位(Z 设 )。水库的设计洪水位是,当水库遇到大坝的设计洪水时,在坝前达到的最高水位。它是水库在正常运用情况下允许达到的最高水位。也是挡水建筑物稳定计算的主要依据。可采用相应大坝设计标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。 水库校核洪水位(Z 校)及调洪库容(V 调 )。水库的校核洪水位是水库遇到大坝的 校核洪水时,在坝前达到的最高水位,它是水库在非常运用情况下,允许临时达到的最高洪水位,是确定大坝顶高及进行大坝安全校核的主要依据。此水位可采用相应大坝校核标准的各种典型洪水,按拟定的调洪方式,自防洪限制水位开始进行调洪计算求得。 水库设计最大泄洪流量(Q 设 )。当水库遭遇设计洪水时,按正常运用条件进行调洪计算所求得的泄洪流量过程中的最大值。水库设计最大泄洪流量由泄洪设备和其他过水

断面法水库库容计算的算法细节

断面法水库库容计算的算法细节 刘炜 (黄河水利委员会水文局,河南郑州450004) 摘要:本文论述了断面法水库库容计算的基本算法模型及间距采用、底部锥体和回水末端处理等细节问题。 关键词:断面法库容计算算法 断面法是水库库容及冲淤量测算的常规方法之一,断面法分为加密断面法和基本断面法。前者是通过在水库水系各干支流上布设足够密集的测量断面(称为加密断面),实现对水库库容接近于地形法测图精度的精确测算。通过减少参与计算的断面数量,经过反复对比计算,并依照水库河道测量的有关规范要求,从加密断面中选取出一定数量和足够代表性的断面,固定下来进行历年的常规测量和库容计算,就构成了基本断面法,基本断面法又称为固定断面法,“断面法”在一般情况下所指的也就是基本断面法。基本断面是在对比计算基础上确定的,数量少且对于库区地形变动的代表性强。因此,基本断面法可以在相当长的时期(基本断面代表期)内,以较低的成本和较短的测量周期实现对水库库容的准确测算。直到水库经过多年运行,河床形态和冲淤规律发生了显著变迁时,基本断面需要从新确定。 在基本断面代表期内,影响库容及冲淤量成果准确性的主要因素有两方面,一是外业测量的质量控制,二是数据处理与计算方法。本文就后者的若干细节问题进行讨论。 1.基本算法模型及公式 水库断面法计算通常采用截锥体概化,即假设将上下两个断面间

的河道按概化间距拉直后,其容积立体构成一个截锥体:上下断面分别对应该截锥的两个底面,概化间距对应截锥的高。在截锥体假设的情况下,计算区段内的任意河道横断面在宽和深两个方向上都被认为是沿河长线性变化的。因而其面积在上下断面间以2次关系变化。 b b+a A 2 A 1 图1断面间容积立体的截锥体假设 如图1所示,断间容积立体按照截锥体假设,其体积为两个锥体体积之差: (1) 1 23 1 )(31aA A b a V -+=根据锥体的性质,有比例关系: 解出 2 1 22)(A A b a a = +1 22 11A A A A b bA a -?+= 代入(1)式简化后得到: (2) ) (3 1 2211A A A A b V +?+=上式即为水库库容计算的基本公式,一般称为截锥(体体积)公式。给定一个高程,计算出水库所有基本断面的断面面积,对相邻断面采用(2)式计算断间库容,加起来即可实现该高程下水库库容的粗略计算。 2.体积的分层计算 截锥体概化假设计算区段上下断面形状是概化相似的,在河道原

相关文档