文档库 最新最全的文档下载
当前位置:文档库 › 铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试
铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试

一.实验目的

1.学会如何用示波器变相地测量非电压量的方法

2.了解用示波法测铁磁物质动态磁滞回线的基本原理

3.了解磁性材料的特性

二.实验原理

1.铁磁质和磁滞

在磁场的作用下,能发变化并能反过来影响磁场的媒质叫做磁介质,磁介质按其磁特性可分为铁磁质和非铁磁质(包括顺磁质和抗磁质)。工艺技术上广泛应用的磁性材料主要是铁磁性材料,铁,钴,镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。磁化性能(或磁化规律)是指M 与B 之间的依从关系。由于

M U B H -=0

也可以说磁化性能是指M 与H 的关系或B与H的关系。实验易于测量B和H,所以我们用实验来研究B与H的关系。(图8-1)是一个典型的磁化曲线,表示磁化过程中磁化强度与磁场的变化关系。

OS表示对于未磁化的样品施加磁场H,随H增加磁化强度不断增加,当H增加到HS(称为饱和磁场强度)时磁化强度达到饱和强度M S,曲线OS称为起始磁化曲线。这条曲线的显著特点是它的非线性。达到饱和以后,再减小磁场,磁化强度并不是可逆地沿原始的磁化曲线下降,而是沿着图中SR变化,与起始磁化曲线并不重合在R点磁场已减为零,但磁化强度并没有消失。比较曲线OS段与SR段可知,虽然H减少时B也随时减少,但是B的减少“跟不上”H的减少,这种现象叫做磁滞(磁性滞后),B R称为剩磁。当磁场沿相反方向增加-H C到时,磁化才变为零,H C称为矫顽力。继续增加反向磁场到-H S可以使磁化强度将完成如图所示的回线SRCS’R’C’S,称为磁滞回线,上面的磁滞回线是令H从饱和磁化强度H S出发得到的,实际上,从起始磁化曲线上的任一点M(H M

当铁磁材料处在周期性交变磁场中,铁磁质周期地磁化,相应的磁滞回线称为交流磁滞回线,它最能反映在交变磁场作用下样品内部的磁状态变化过程。磁滞回线所包围的面积表示在铁磁材料通过一磁化循环中所消耗的能量。叫做磁滞损耗。(磁滞损耗与铁磁质中由于

涡流而出现的涡流损耗有所不同的起因,合起来叫做铁心损耗简称铁损。)铁损不但造成能量浪费,而且使铁习温度升高,导致变压器及电机中绝缘材料的老化,所以应该尽量减小。可以证明,磁滞损耗与磁滞回线所围面积成正比,因此要减少磁滞损耗就应选用磁滞回线细窄的铁磁质。工程上把铁磁质分为软磁材料(软铁)和硬磁材料(硬铁)两大类。软磁材料磁滞回线细窄,矫顽力很小;硬磁材料恰恰相反(图8-3)。软磁材料适于制造变压器和电机,硬磁材料适于制造永磁铁。

2.磁滞回线的测量,定标

示波器只可采集电压信号,测量动态磁滞回线时,必须将非电压量H 和B 转换成电压量才能显示出来。测定铁磁材料的磁滞回线常用的方法如下:先把待测样品制成环形,利用取样电阻和线圈的互感分别取得正比于H 和B 的电压信号,再分别送到示波器的X 轴和Y 轴,便可观察到磁滞回线。具体方法如下:

(1)磁场强度的获取

示波器X 轴输入电压为11R I U X ,所以电子束在X 轴上的偏转跟

磁化电流1I 成正比,根据安培环路定律:

HL N I =11

得 H N LR U X 1

1= (8-1) 式中1N 为待测样品初级线圈匝数,L为铁芯的平均磁路。

式(8-1)表明,在交变磁场下,任一时刻t,电子束在X 轴偏转这正比于磁场强度H 。

(2)磁感应强度的获取

铁磁质中的B由电磁感应原理测量如(图8-4)所示,由法拉第电磁感应定律可知,在副线圈中将产生感应电动势

dt dB S N dt d N D 22

-=Φ-=ε (8-2) 则 dt S

N B ?-=ε21 (8-3) 式中2N 为样品次级线圈的匝数;S 为样品铁芯截面积。

由式(8-3)可知,只有对ε积分才能得到B 值,为此我们采 用RC 积分器处理后送入轴代表B.

所以有 B U U C y ∝= (8-4)

即电子束在Y 轴偏转正比于磁场强度B。

(3)对示波器X.Y 轴分别进行定标H.B

为了从荧光屏上记下磁滞回线的值,求得他们的实际值,必须对示波器的X.Y 轴分别按定标H.B 。

对x 轴由式可得

1

1LR U N H X = (8-5) 对Y 轴,用标准互感器M 取代被测样品。保持R 1,R 1和C 不变,

调节调压器,使示波器的垂直线段等于(图8-4)中+B S 和-B S 到的高度。互感器副边的感应电动势为

dt

di M -='ε (8-6) 积分得 Mi di M dt ==??'ε (8-7) 将式(8-7)代入得

S

N t Mi t B 2)()(=

对B S 则有

S N MI S N MI B m S 2'121'2== (8-9) 对回线的任一点的B 的标定也是同样的道理。

三.实验仪器和用具

交流磁滞回线测试仪、可调隔离变压器、示波器、标准互感器、交流电流表

四.实验内容

1.显示和观察交流磁滞回线,交流退磁。

调好示波器,使光点调至荧光屏中心,调节示波器两通道的Y 衰减的微调至校准位置,逐渐增大磁化电流,使磁滞回线上的B 值能达到饱和。然后逐渐减少电流至零,这样实现交流退磁

2.测定饱和磁滞回线。

(1)测定若干B 、H 的值,并列表记录。

(2)对X 、Y 轴定标

对X 轴定标:根据X 轴坐标轴分度值S X,直接计算H 轴的分度值

S H,即将S X 代入,即得1

1LR S N S X H 对Y 轴定标:用标准互感器M 取代被测样品。记录下此时对应的初级线圈回路的电流I ’,在调节调压器,测得几组,根据公式计算每组对应的B ’值,从而求得S B,再取几组平均得B 轴度值。

2.测绘交流基本磁化曲线

列表测量大小不同的各个磁滞回线的顶点,然后作图连成光滑的曲线。

五.实验数据

根据实验测得数据如下:

根据数据得出的图象:

F=92.2Hz CH 1=20mv CH 2=10V R 1=10Ω R 2=30K Ω C=1uF

序号

1 2 3 4 5 6 7 8 9 10 11 X/格

0.00 0.20 0.40 0.60 0.80 1.20 1.4 0.70 0.90 1.30 1.10 Y/格 0.00 0.60 1.40 1.62 1.78

1.83

2.0 1.65 1.71 1.90 1.81

(1)根据实验测得数据如下: X/格

Y/格

1.4

2 2 1.3

1.95 1.98 1.2

0.9 0.7 0.6

1.61 1.60 0.4

1.45 1.20 0.3

1.4 1.0 0.2

1.4 -1.0 0.1

1.3 -1.2 0

-1.4 -0.4 -0.2

-1.4 -1 -0.3

-1.31 -1.33 -0.4

-1.31 -1.33 -0.6 -1.79 -1.8

根据测得的数据画出图形为

X/格

0 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 4 5 H 0 0.24 0.48 0.72 0.96 1.21 1.79 2.41 2.98 3.57 4.76 5.95

Y 格 0 0.02 0.04 0.07 0.12 0.2

0.6 0.9 1.2 1.4 1.6 1.8 B 0 0.38 0.75 1.32 1.91 3.77 0.14 16.95 22.58 26.36 30.12 33.82

(3)根据公式 X LR S N H X 11= Y S

N CS R B Y 22= 计算得相关数据 六、总结: 1. 由于读数上的误差画出来的图形和实际的图形存在着较大的误差,图形的吻合度不高。

2.实验的时候要注意示波器的状态,图形的合成的操作需要留意。

3.实验过程图形的出现需要耐心,并且在读数的时候,需要细心的读数。

铁磁质动态磁滞回线的测试

铁磁质动态磁滞回线的测试 一.实验目的 1.学会如何用示波器变相地测量非电压量的方法 2.了解用示波法测铁磁物质动态磁滞回线的基本原理 3.了解磁性材料的特性 二.实验原理 1.铁磁质和磁滞 在磁场的作用下,能发变化并能反过来影响磁场的媒质叫做磁介质,磁介质按其磁特性可分为铁磁质和非铁磁质(包括顺磁质和抗磁质)。工艺技术上广泛应用的磁性材料主要是铁磁性材料,铁,钴,镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。磁化性能(或磁化规律)是指M 与B 之间的依从关系。由于 M U B H -=0 也可以说磁化性能是指M 与H 的关系或B与H的关系。实验易于测量B和H,所以我们用实验来研究B与H的关系。(图8-1)是一个典型的磁化曲线,表示磁化过程中磁化强度与磁场的变化关系。

OS表示对于未磁化的样品施加磁场H,随H增加磁化强度不断增加,当H增加到HS(称为饱和磁场强度)时磁化强度达到饱和强度M S,曲线OS称为起始磁化曲线。这条曲线的显著特点是它的非线性。达到饱和以后,再减小磁场,磁化强度并不是可逆地沿原始的磁化曲线下降,而是沿着图中SR变化,与起始磁化曲线并不重合在R点磁场已减为零,但磁化强度并没有消失。比较曲线OS段与SR段可知,虽然H减少时B也随时减少,但是B的减少“跟不上”H的减少,这种现象叫做磁滞(磁性滞后),B R称为剩磁。当磁场沿相反方向增加-H C到时,磁化才变为零,H C称为矫顽力。继续增加反向磁场到-H S可以使磁化强度将完成如图所示的回线SRCS’R’C’S,称为磁滞回线,上面的磁滞回线是令H从饱和磁化强度H S出发得到的,实际上,从起始磁化曲线上的任一点M(H M

材料动态测试的标准

材料动态测试的标准 ---材料测试的一站式解决方案 BOSE ElectroForce TM 系列设备基于BOSE专利的动磁技术,以绝对的技术优势替代传统的DMA/DMTA测试系统,弥补了传统设备无法克服的种种应用缺陷。不仅可以完成传统系统无法完成的大样本、高精度试验,同时还具备其他多种动/静态材料力学性能测试功能,真正一机多用,从而大幅降低投资及维护成本,是测试工程师的理想设备和完美组合。 技术优势: 大样本及成品(零件)的动态粘弹性分析 突破传统DMA/DMTA对测试力值及样本尺寸的限 制,市场上唯一的大力值,超大测试舱的动态粘 弹性分析仪,除满足标准的DMA/DMTA等测试外, 使大样本及成品甚至零件进行动态粘弹性测试成 为可能。 极高的控制及测量精度 毫克级应力加载控制和纳米级的应变测量,确保 高精度的测量结果。另外,可以完成拉、压、 弯、剪等多种物料加载模式下进行试验,还可以 精确进行过程控制,包括频率,振幅,温度,预 循环等参数,这是对传统“黑匣子”设计的一次 革命性改进。 一机多用 除应用于通用粘弹性材料(高分子材料/复合材料)的动态粘弹谱分析(DMA/DMTS)以外,此系统还可作为通用材料试验机进行疲劳测试、动态力学性能分析,真正做到从静态到动态的一站式材料测试完整解决方案。 超长的使用寿命 整个系统无轴承等任何摩擦部件,不需润滑,传统设备尚需大型空压机及气源为空气轴承提供动力,不仅降低使用寿命,而且增加维护成本,而经多年实践表明,博士系统运行达万亿亿周期不需要任何维护费用,寿命提高5倍以上。

美国BOSE公司材料动态粘弹性测试仪(DMA/DMTA) BOSE ElectroForce TM是一种革命性的材料动态力学性能分析测试系统,其集成了BOSE专利动磁线性电机 以及专利无摩擦悬挂系统,同时在一台机器上实现的高性能、高频率、高精度以及无与伦比的耐用性. BOSE ElectroForce TM应用了专利技术的Bose电磁线形电机: ▓ 高应用频率范围 – 从0.00001赫兹直至400赫兹,可输出具有优异负荷及频率特性的线性力。 ▓ 宽范围动态应力加载 – ELF3200型动态应力加载范围从数毫克至450牛顿 ▓ 高精度应力输出控制/应变响应测量 – 高电机输出力与低磁铁质量获得高加速度(200Gs)、高频率(超过400Hz)、高速度(超过3米/秒),无摩擦阻力悬挂系统提供无比的高精度及耐用性(控制精度可达2.5毫克、6纳米)。 ▓ 高性能夹具及环境试验舱 – 提供完备的各种钛合金夹具以及精确控制的环境试验舱(冷/热、盐水、生物培养舱等)。 ▓ 高度耐用性 – 运行数亿亿个周期无需任何维护! ▓ 使用环境洁净环保 – 无任何液压、气动系统;无任何轴承等机械摩擦部件;完全无油、无输送管道、无噪音、彻底免维护。 ▓ 安全节能 – 可直接连接普通实验室220伏电源,低能耗,极低噪音。

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

2016磁滞回线的测量(实验报告材料)

实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs 、剩磁Br 和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1. 双踪示波器 2. DH4516C 型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成!

3、基本磁化曲线 对于同一铁磁材料,设开始时呈去磁状态,依次选取磁化电流I1、I2、….I n,则相应的磁场强度为H1、H2、….H3,在每一磁化电流下反复交换电流方向(称为磁锻炼),即在每一个选定的磁场值下,使其方向反复发生几次变化(如H1→- H1→H1→- H1….),这样操作的结果,是在每一个电流下都将得到一条磁滞回线,最后,可得一组逐渐增大的磁滞回线。我们把原点O和各个磁滞回线的顶点a1、a2、….所连成的曲线称为铁磁材料的基本磁化曲线,如图3所示。 图3基本磁化曲线 (二)利用示波器观测铁磁材料动态磁滞回线测量原理 1、示波器显示B—H曲线原理线路 由上述磁滞现象可知,要观测磁介质磁滞现象及相应的物理量,需要根据磁化过程测定材料部的磁场强度和磁感应强度。因此,测量装置必须具备三个功能: ①提供使样品磁化的可调强度的磁场(磁化场) ②可跟踪测量与磁化场有一一对应关系的样品的磁感应强度 ③可定量显示样品的磁化过程 图4 磁滞回线的测量原理图 图4是利用示波器观测铁磁材料动态磁滞回线测量装置原理图:首先将待测的铁磁物质制成一个环形样品,在样品上绕有原线圈即励磁线圈N1匝,由它提供磁化场;在样品上再绕副线圈即测量线圈N2匝,由它来跟踪测量与磁化场有一一对应关系的样品的磁感应强度;由示波器

示波器观测动态磁滞回线

示波器观测动态磁滞回线 一、用示波器观测动态磁滞回线简介: 1. 实验原理。 参照《新编基础物理实验》实验四十三《磁滞回线的测量》的实验原理。 2. 测量电路。 3. 相关公式 1R 1 1N H R u =l 2C 2R C B N S u = l ,铁磁样品的磁路长度;S ,铁磁样品磁路的横截面积;N 1,N 2,初级、次级绕组匝数。 对样品1(铁氧体):l = 0.130m ,S = 1.24×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 对样品2(硅钢片):l = 0.075m ,S = 1.20×10-4 m 2 ,N 1 = N 2 = N 3 = 150匝。 4. 名词术语: 1) 磁中性状态:磁化场H 为零时磁感应强度B 也为零的状态,称为磁中性状态。 对铁磁样品加一个振幅足够大的交变磁场,并逐渐将振幅减小到零,铁磁样品即可被磁中性化。 2) 磁滞回线:磁化场H 循环变化时(-H 0H + )B 的变化轨迹称为磁滞回

线。它是相对于原点对称的闭合曲线。(样品测量前需要先磁中性化) 3) 饱和磁滞回线:磁化场H 在循环变化过程中可以达到足够大,使铁磁材料的磁化强度0B M H μ=?随H 的增大不再增大,由这样的循环变化磁化场得到的 磁滞回线称为饱和磁滞回线。 饱和磁滞回线上磁感应强度最大的值称为饱和磁感强度,用B S 表示。 饱和磁滞回线上B=0所对应的磁化场称为矫顽力,用H C 表示。 饱和磁滞回线上H=0所对应的磁感应强度称为剩余磁感应强度,用B r 表示。 4) 基本磁化曲线:将振幅不同的循环变化磁化场下所得到的磁滞回线的顶点连接 起来的曲线。(样品测量前需要先磁中性化) 5) 起始磁导率i μ:磁导率μ定义为0B H μμ=,通常铁磁材料的μ是温度T 、磁化场H 、频率f 的函数。在很低的磁化场下,磁化是可逆的,H 和B 之间呈线性关系,没有滞后现象,在此区域中,磁导率为常数,该磁导率称为起始磁导率,即i H 00 B lim H μμ→=。 6) 可逆磁导率r μ:当一个直流磁场H 和一个很弱的交变磁场h 同时作用在铁磁材料上时,直流磁场H (也称为直流偏磁场)使铁磁材料偏离磁中性化状态,h 引起磁感应强度B 的交流变化b 。当h 0→ 时,由h 产生的退化磁滞回线(即一条斜线)的斜率与0μ的比值称为可逆磁导率r μ,即00 lim r h b h μμΔ→Δ=Δ,其中h Δ和b Δ分别是h 和b 的变化范围。r μ是H 的函数,一般H 越大,r μ越小。 二、实验内容: 1. 观测样品1(铁氧体)的饱和磁滞回线。 1) 取1R 2.0=Ω,2R =50k Ω,C 10.0F μ=,100Hz f =,调节励磁电流大小 及示波器的垂直、水平位移旋钮,在示波器显示屏上调出一个相对于坐标原点对称的饱和磁滞回线。在回线的上半支上,从-B S 到B S 选取9个以上测量点(其中必须包括S B ,B 0=,H 0=三个点),测量各点的H 和B 。根据测量的数据在坐标纸上画出饱和磁滞回线。给出S B ,r B ,C H 的测量值。 2) 保持1R ,R 2C 不变,测量并比较f =50Hz 和150Hz 时的r B 和C H 。

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

物理实验报告2_用示波器测动态磁滞回线

实验名称:用示波器测动态磁滞回线 实验目的: a .研究铁磁材料的动态磁滞回线 b .了解采用示波器测动态磁滞回线的原理; c .利用作图法测定磁性材料的饱和磁感应强度s B 、剩磁r B 、矫顽力c H 的值。 实验仪器: V252双踪示波器、自耦变压器、隔离变压器、互感器毫安表、电容等。 实验原理和方法: 铁磁材料除了具有高的导磁率外,另一重要的特点就是磁滞。当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且与以前的磁化状态有关。 如右图所示,曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 增加,称为磁化曲线。当H 增加到某一值S H 时,B 的增加速度将极其缓慢。和前段曲线相比,可看成B 不再增加,即达到磁饱和。当磁性材料磁化后,如H 减小,B 将不沿原路返回,而是沿另外一条曲线r A 下降。如果H 从S H 变到-S H ,再从-S H 变回S H ,B 将随H 变化而形成一条磁滞回线。其中当H = 0时,r B B =。r B 称为剩余磁感应强度。要使磁感应 强度为零,就必须加一反向磁场-c H ,c H 称为矫顽力。按一般分类,矫顽力小的称为软磁材料,大的称为硬磁材料。必须注意的是:反复磁化(S S S H H H →-→)的开始几个循环内,每次循环的回路才相同,形成一个稳定的磁滞回线。只有经过“磁锻炼”后所形成的磁滞回线,才能代表该材料的磁滞性质。 由以上可知,要测定材料的磁滞回线,需要根据磁化过程测定材料内部的磁场强度H 及其相应的磁感应强度B 。 磁性材料的磁滞回线能较全面地反应该材料的磁特性,譬如剩磁r B 、矫顽力c H 等。因此,实用上常常借助磁滞回线来粗略了解材料的磁特性。测量磁滞回线的基本线路图如下图所示:

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

实验38 磁性材料磁滞回线测定

大学物理实验教案 实验名称:磁性材料磁滞回线测定 1 实验目的 1)了解用示波器测量动态磁滞回线的原理和方法; 2)了解磁性材料的基本磁化特性; 3)掌握磁化曲线和磁滞回线的测量方法; 4)进一步熟悉数字示波器的使用。 2 实验仪器 DM-1型磁滞回线测试仪 数字示波器 微型计算机 3 实验原理 磁性材料在工程、电力、信息、交通等领域有着广泛的应用,测定磁滞回线是电磁学中的一个重要内容,是研究和应用磁性材料最有效的方法之一。 铁磁物质具有保持原先磁化状态的性质,铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。这是铁磁物质的一个重要特征。 铁磁材料被磁化后,磁场强度H 减小时,磁感应强度B 的不沿原曲线变化,当磁场强度H 减少到零时,磁感应强度B 仍保留一定的数值,这称之为剩磁r B 。继续减小磁场强度H ,当H 达到某一负值时,磁感应强度B 变为零,此时的磁场强度H 称为矫顽力C H 。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示。当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线(如图38-1所示),它表示铁磁材料的一个基本特征。它的形状、大小,均有一定的实用意义。比如材料的磁滞损耗就与回线面积成正比磁滞回线所包围的面积表示在铁磁物质通过一个磁化循环过程中所消耗的能量,叫做磁滞损耗。 当从初始状态H =0、B =0开始改变磁场强度H ,在磁场强度H 从小到大的单调增加过程中,不同磁化电流所对应的磁滞回线正顶点的连线叫基本磁化曲线。 退磁方法,从理论上分析,要消除剩磁r B ,只要通一反向电流,使外加磁场刚好等于铁磁材料的矫顽力C H 就可以了,但是通常不知道矫顽力C H 的大小,所以无法确定所通反向电流的大小。我们可以从磁滞回线中得到启示,如果是铁磁材料磁化达到饱和,然后不断改变磁化电流的方向,与此同时逐渐减小磁化电流,一直减小到零,这样就可以达到退磁的目的。 图 38 –1磁滞回线 利用示波器测动态磁滞回线的原理电路如图38-2所示。将样品制成闭合的环形,其上均匀地绕以磁化线圈1N 及副线圈2N 。交流电压1u 加在磁化线圈上,线路中串联了一取样电阻1R 。将1R 两端地电压1u 加到示波器的X 输入端上。副线圈2N 与电阻2R

8+《测磁滞回线》——用示波器观测动态磁滞回线讲义(教705)

8+《测磁滞回线》——用示波器观测动态磁滞回线讲义(教705)

用示波器观测动态磁滞回线 【实验简介】 磁性材料应用广泛,从常用的永久磁铁、变压器的铁芯到录音、录像、计算机存储用的磁带、磁盘等都采用磁性材料。铁磁材料是最常见和最常用的磁性材料。它分为硬磁和软磁两大类,其根本区别在于矫顽力的大小不同。硬磁材料的剩磁和矫顽力大,因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。软磁材料的矫顽力小,但磁导率和饱和磁感应强度大,容易磁化和去磁,故广泛用于电机、变压器、电器和仪表制造等工业部门。磁滞回线和磁化曲线反映了铁磁材料的主要特征。本实验将采用动态法测量磁滞回线。 【实验目的】 1. 掌握利用示波器测量铁磁材料动态磁滞回线的方法; 2. 了解铁磁性材料的动态磁化特性; 1

1) 1

1 2) 信号源的频率在20~200 Hz 间可调; 可调标准电阻1R 、2R 均为无感交流电阻,1 R 的调节范围为0.1~11 Ω;2 R 的调节范围为1~110 kΩ。标准电容有0.1 μF ~11 μF 可选。 【实验原理】 1.铁磁材料的磁化特性 把物体放在外磁场H 中,物体就会被磁化。其内部产生磁场。设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表示物质被磁化的难易程度: H M m = χ H B r 0μμ= 其中,0μ是真空磁导率(270/104A N -?=πμ)。由于 )(0H M B +=μ,因此m r χμ+=1。物质的磁性按磁化率可 以分为抗磁性、顺磁性和铁磁性三种。抗磁性物质的磁化率为负值,通常在6510~10 --的量级,且

21聚合物材料的动态力学性能测试

实验15 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 1. 实验目的 (1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。 (2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。 2. 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。 如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ] 式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o 的相位角,如图2-61(c)所示。对于复数切变模量 E*=E′+i E″(2-60) 式中 E′=∣E*∣cosδ E″=∣E*∣sinδ 显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。它与复数模量的直接关系为

动态磁滞回线测量

清华大学试验报告纸 系别 机械工程系 班级 机械51班 姓名 陈璞做实验日期 2007年3 月30日 教师评定 用示波器测动态磁滞回线 [实验目的] (1) 了解用示波器测量动态磁滞回线的原理和方法; (2) 根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽 力Hc的数值; (3) 进一步学习示波器显示利萨如图形的方法。 [实验原理] 利用示波器测动态磁滞回线的原理电路图如图所示。 将样品制成闭合的环形,其上均匀的绕有磁化线圈N1以及副线圈 N2。交流电压u加载磁化线圈上,线路上串联了一取样电阻R1。将R1两端的电压u1加到示波器的X输入端上。副线圈N2与电阻R2和电容R串联成一回路。电容C两端的电压u c加到示波器的Y输入端上。 1、u1与磁场强度H成正比 设环状样品的平均周长为l,磁化线圈的匝数为N1,磁化电流为i1(注意这是交流电的瞬时值),根据安培环路定律有Hl= N1 i1,即i1= Hl/ N1。而u1= R1 i1,所以可得 式中R1,l和N1皆为常数,可见u1与H成正比。它表明示波器荧光屏上的电子束偏转的大小与样品中的磁场强度成正比。 2、u c(Y输入)在一定条件下与磁感应强度B成正比 设样品的截面积为S,根据电磁感应定律,在匝数为的N2的副线圈中的

感应电动势应为 若副边回路中的电流为i2且电容C上的电量为q,则应有 在上式中已考虑到副线圈匝数N2较小,因而自感电动势可忽略不计。在选定线路参数时,有意将R2与C都选成足够大,使电容C上的电压降u c =q/C比起电阻上的电压降小到可以忽略不计。于是,公式可以近似为将关系式代入得到 不考虑其负号时,两式比较得到 将等式两边对时间积分,由于B和u c都是交变的,积分常数为0。整理后得到 式中、S、和C皆为常数,可见与成正比,也就是说示波器荧光屏上的电子竖直方向偏转的大小与磁感强度成正比。 至此,可以看出,在磁化电流变化的一周期内,示波器的光点将描绘出一条完整的磁滞回线。以后每个周期都重复此工程,结果在示波器的荧光屏上看到一稳定的辞职回线图形。 实际测量中的电路为了使R1上的电压降u1与流过的电流i1二者的瞬时值成正比(相位相同),R1必须是无感或电感很小的电阻。其次为了操作安全和调节方便,在线路中采用了一个隔离降压变压器T,以避免后面的电路元件与220V市电直接相连。调压变压器用来调节输入电压以控制磁化电流i1的大小。在本实验中样品MS是一用冷轧硅钢片制成的C 形铁芯。 前面已说明了示波器荧光屏上可以显示出待测材料动态磁滞回线的原理。但在实验中,还需确定示波器荧光屏上X轴的每一小格代表多少安/米,Y轴的每一小格实际代表多少特斯拉。这就是所谓的标定问题。 3、X轴的标定 R0 T ~220V 200 Y X R1 标定H的线路图 由于只要用实验发放测出光点沿X轴的偏转大小与电压u1的关系,进

用示波器测动态磁滞回线、磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线 (动态磁滞回线实验) 磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。磁特性测量分为直流磁特性测量和交流磁特性测量。本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。 一.实验目的 1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。 2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。 3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。 4. 用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。 二. 实验原理 (一)铁磁物质的磁滞现象 铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。 如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B 图中则相当于坐标原点O 。随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。如果再使H 逐步退到零,则与此同时B 也逐渐减小。然而,其轨迹并不沿原曲线AO ,而是

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

相关文档
相关文档 最新文档