文档库 最新最全的文档下载
当前位置:文档库 › 第二十讲 容斥原理讲解学习

第二十讲 容斥原理讲解学习

第二十讲 容斥原理讲解学习
第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2)

[知识提要]

前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。

在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

如果被计数的事物有A、B两类,那么,具体公式为:

A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。

如果被计数的事物有A、B、C三类,那么,具体公式为:

A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。

[经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人?

[分析]我们可以画一个图帮助思考,画两个相交的圆圈:

其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:

30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。

[解答]解:(30+25)-42=13(人)

答:两队都参加的有13人。

[评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。

[举一反三]

1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

2、六年级共有96人,两种刊物每人至少订其中一种,有2

3

的人订《少年

报》,有1

2

的人订《数学报》,两种刊物都订的有多少人?

3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。”

听了上面的故事,请你说说狐狸军师这样统计对吗?为什么,正确的答案应该是多少种呢?

[思路拓展]

[例2]在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

方法二:664311210

++---?=(人)

答:共有10个小朋友去了冷饮店。

[评注]这道题目变成了三种事件,我们仍然可以用图形来简单的描述。只要同学们能够明白每一种人的数量应该填在哪个空位里,题目就变得非常容易了。同学们还要注意的一点是,最外圈的6,6,4三个数,并不是指的数字所在范围里的人数,而是指的整个圆里(即买了某种冷饮而并非只买这种冷饮)的人数。另外,方法二里,为什么要减去1×2,同学们能明白吗?

[举一反三]

1,三年级一班的同学们报名参加趣味体育运动会,比赛内容共三项,分别是跳绳、拍球跑和踢毽子,每个人至少报了一项。报跳绳的有15人,报拍球跑的有18人,报踢毽子的有20人,同时包跳绳和拍球跑的有8人,同时报跳绳和踢毽子的有5人,没有报了拍球跑和踢毽子,但是没报跳绳的同学。三样都报的有2人。那么三年级一班有多少名同学呢?

2,班里组织了一次语数外三科的小测验,每名同学都至少有一门得满分,但是没有人拿到三个满分。语文得满分的有10人,数学得满分的有20人,外语得满分的有25人,语文数学都得满分的有6人,数学外语都得满分的有12人,语文外语都得满分的有2人。那么全班一共有多少人?

3,一次中、美、俄三方的学术交流会上,有28人会说中文,有25人会说英文,有20人会说俄文,有13人会说中文和英文,有10人会说中文和俄文,有6人会说英文和俄文,仅有大会组织者一人三种语言全会。那么这次交流会一共有多少人参与?

[例3] 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。问这个班最多多少人?最少多少人?

39+x 表示全班人数,当x 取最大值时,全班人数就最多,当x 取最小值时,全班人数就最少。x 是数学、语文、英语三科都得满分的同学,因而x 中的人数一定不超过两科得满分的人数,即x x ≤≤78,且x ≤9,由此我们得到x ≤7。另一方面x 最小可能是0,即没有三科都得满分的。

当x 取最大值7时,全班有39746+=人,当x 取最小值0时,全班有

390+=39人。

答:这个班最多有46人,最少有39人。

[评注]这道题目里,我们不知道三科都得满分者的人数,也就无法直接用容斥原理来计算班里的总人数。但是我们可以假设出三科都得满分的人数,再利用包含原则,即三科都得满分的人数不能小于0,也不能超过某两科得满分

的人数,从而确定了三科都满分的人数的一个范围,再代入全班人数的计算式子,便可得出最多的人数与最少的人数。遇到这种需要假设的题目,同学们一定要注意设,并且要知道设哪个。如果这道题目假设了语文、数学得满分但英语没得满分的人数,虽然也能计算,但是会麻烦很多。

[举一反三]

1,在四年级二班里,有25名男生,有30名少先队员,有13名三好学生。男少先队员有12人,男三好学生有6人,少先队员里的三好学生有5人,有3名女生既不是少先队员又不是三好学生。那么四年级二班最少有多少人,最多有多少人?

2,某公司的员工为地震灾区捐款、献血和游行鼓励,每位员工至少参加了一项。捐款的有40人,献血的有35人,游行的有25人,捐款、献血但是没有游行的有8人,捐款、游行但是没有献血的有12人,同时献血和游行的有10人。那么这个公司最少有多少名员工,最多又有多少名呢?

3,小玉在黑板上写下了一些数,其中每个数都至少能被2、3、5之一整除。被2整除的数有10个,被3整除的数有9个,被5整除的数有6个。被

2、3整除但是不被5整除的有4个,被2、5整除但是不被3整除的有3个、被

3、5整除但是不被2整除的有2个。那么小玉最少写下了几个数?最多又写下了几个呢?

[例4]有28人参加田径运动会,每人至少参加跑、跳、投中的两种比赛。已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。问:只参加跑和投掷两项的有多少人?

[分析]“每人至少参加两项比赛”说明没有不参加的,也没有参加一项比赛的,

后,题目就变得很清楚了。当然,这道题目也可以这么想:只参加跑和投掷的,就是没有参加跳的项目的人数。而参加了跳类项目的人数,又可以分为参加了跑的和没参加跑的,后者就是只参加了跳和投掷的人数,前者就是参加了跑和跳的人数。这样也能计算出结果,但是毕竟不如我们画图来得清晰与直接。

[举一反三]

1,有28人参加田径运动会,没有人同时参加跑、跳、投三种比赛。已知有20人参加了跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是10人,只参加跳项目的有5人。问:只参加跑和投掷两项的有多少人?

2, 56名小朋友,每名小朋友胸前都戴着红、白、蓝三种颜色的花,每人每种花至多戴一朵。有30名小朋友戴了红花,有15名小朋友戴了白花和蓝花,只戴一种花的有21人,他们中戴每个颜色的花的人数都相同。那么有多少名小朋友三种花都戴了呢?

3,一次聚会,对参与聚会的人规定,如果穿了西服,打了领带,则必须穿黑皮鞋。来的50人里穿西服、打领带、穿黑皮鞋的各有20人,穿西服和黑皮鞋的有12人,穿黑皮鞋打领带但是没有穿西服的有6人。那么有多少人没穿西服,没打领带,并且没穿黑皮鞋?

[例5]某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人。老师告诉同学既参加数学小组又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。

整理后得:x y

+=9

由于x、y均为质数,因而这两个质数中必有一个偶质数2,另一个质数为7。

答:既参加英语又参加数学小组的为2人或7人。

[评注]所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?另外,这道题目也帮助我们复习了质数与合数的概念和性质。

[举一反三]

1,某校五年级三班有51人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有20人。老师告诉同学既参加数学小组又参加语文小组的有8人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。

2, 27块立方体,每个都用红、黄、蓝三种颜料中的一种或几种涂上了色。已知涂了红色的有21块,涂了黄色和蓝色的立方体个数都各自是一个整数的平方。同时涂了红、黄两色的有10块,同时涂了黄、蓝两色的有3块,同时涂了红、蓝两色的有2块。仅有一块立方体三种颜色都涂了。那么有多少块涂了黄色呢?

3,有20名同学,爱唱歌的有8人,爱跳舞的有9人,爱演奏乐器的有10人,爱唱歌跳舞的有5人,爱唱歌和演奏乐器的有4人,爱跳舞和演奏乐器的有5人。三种都爱的和三种都不爱的同学的个数都是一个质数,那么有多少名同学至少有一个爱好?

[例6]有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。只有两次达到优秀的有多少人?

第31讲容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但: 30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

完整版容斥原理习题加答案

1. 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( ) 【答案】B 【解析】直接代入公式为:50=31+40+4- A H B 得A H B=25,所以答案为B。 2. 某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的, 75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?() A 、15 B 、 25 C 、35 D40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A H B,本题设小号和蓝色分别为两个事件A和B,小号占50%蓝色占75%直接代入公式

为:100=50+75+10- A H B,得:A H B=35 3. 某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,

【解析】本题画图按中路突破原则,先填充三集合公共部分数字 24,再推 其他部分数字: 根据每个区域含义应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 =63+89+47— {(x+24)+(z+24)+(y+24)}+24+15 =199— { (x+z+y ) +24+24+24}+24+15 根据上述含义分析得到:x+z+y 只属于两集合数之和,也就是该题所讲的只 选择两种考试都参加的人数,所以 x+z+y 的值为46人;得本题答案为120. 4. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。 其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜 欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有 12人,则只喜欢看电影的有多少人( ) A.22 人 B.28 人 C.30 人 D.36 人 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字 12,再推 其他部分数字: 根据各区域含义及应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 100= 58+38+52- {18+16+ (12+ x ) }+12+0,因为该题中,没有三种都不喜 欢的 人,所以三集合之外数为 0,解方程得到:x = 14。52= x+12+4+Y = 14+12+4+Y 得到Y = 22人。 不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )

初一数学竞赛系列讲座容斥原理

初一数学竞赛系列讲座 容斥原理 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛系列讲座(15) 容斥原理 一、 知识要点 1、容斥原理 在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -B A 容斥原理可以用一个直观的图形来解释。 如图, 左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A 容斥原理又被称作包含排除原理或逐步淘汰原则。 二、 例题精讲 例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个 分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。 解:在1到200的整数中,能被2整除的整数个数为:2?1,2?2,…,2?100,共100个; 在1到200的整数中,能被3整除的整数个数为:3?1,3?2,…,3?66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6?1, 6?2,…,6?33,共33个; 所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:

升第八讲容斥原理之重叠问题

第八讲:容斥原理之重叠问题 导入 文氏图■■■■■■■■■■■■■■■ 文氏图,也叫维恩图”是由英国著名数学家Venn发明的. 维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列 ? 简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原 理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维 恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机, 当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱 喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2 次,计算人数的时候要把这一部分减去才行. 比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.

第十讲 容斥原理小学五年级奥数

點算的奧秘:容斥原理基本公式 「容斥原理」(Principle of Inclusion and Exclusion)(亦作「排容原理」)是「點算組合學」中的一條重要原理。但凡略為複雜、包含多種限制條件的點算問題,都要用到這條原理。現在首先從一個點算問題說起。 例題1:設某班每名學生都要選修至少一種外語,其中選修英語的學生人數為25,選修法語的學生人數為18,選修德語的學生人數為20,同時選修英語和法語的學生人數為8,同時選修英語和德語的學生人數為13 ,同時選修法語和德語的學生人數為6,而同時選修上述三種外語的學生人數則為3,問該班共有多少名學生? 答1:我們可以把上述問題表達為下圖: 其中紅色、綠色和藍色圓圈分別代表選修英語、法語和德語的學生。根據三個圓圈之間的交叉關係,可把上圖分為七個區域,分別標以A至G七個字母。如果我們用這七個字母分別代表各字母所在區域的學生人數,那麼根據題意,我們有以下七條等式:(1) A+D+E+G = 25;(2) B+D+F+G = 18;(3) C+E+F+G = 20;(4) D+G = 8; (5) E+G = 13;(6) F+G = 6;(7) G = 3。現在我們要求的是A+B+C+D+E+F+G。如何利用以上資料求得答案? 把頭三條等式加起來,我們得到A+B+C+2D+2E+2F+3G = 63。可是這結果包含了多餘的D、E、F和G,必須設法把多餘的部分減去。由於等式(4)-(6)各有一個D、E和F,若從上述結果減去這三條等式,便可以把多餘的D、E和 F減去,得A+B+C+D+E+F = 36。可是這麼一來,本來重覆重現的G卻變被完全減去了,所以最後還得把等式(7)加上去,得最終結果為A+B+C+D+E+F+G = 39,即該班共有39名學生。□ 在以上例題中,給定的資料是三個集合的元素個數以及這些集合之間的交集的元素個數。在該題的解答中,我們交替加上及減去這些給定的資料。如果我們用 S 1、S 2 和S 3 分別代表選修英語、法語和德語學生的集合,那麼我們要求的答案就 是|S 1∪ S 2 ∪ S 3 |,而該題的解答則可以重新表達為

4升5-8第八讲:容斥原理之重叠问题

第八讲:容斥原理之重叠问题 一、导入 文氏图 文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的. 维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少, 比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行. 比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 ? 3 = 14 人.

第二十讲容斥基本知识

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A 类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题] [例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈:

其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人? 2、六年级共有96人,两种刊物每人至少订其中一种,有2 3的人订《少年报》,有1 2 的 人订《数学报》,两种刊物都订的有多少人? 3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。”

容斥原理问题

容斥原理问题——基础学习 一、解答题

2、两个集合容斥原理例1:四年级一班有54人,定阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人每人至少订阅一种读物,订阅《数学大世界》的有多少人?() A.13 B.22 C.33 D.41 【答案】B 【解题关键点】设A={定阅《小学生优秀作文》的人},B={订阅《数学大世界》的人},那么A∩B={同时订阅两本读物的人},A∪B={至少订阅一样的人},由容斥原则,B= A∪B+A∩B-A=54+13-45=22人。 【结束】 3、两个集合容斥原理例2:五年级有122名同学参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人?() A. 30 B.35 C.57 D.65 【答案】A

【解题关键点】此题是典型的两个集合的容斥问题,因此,可以直接有两个集合的容斥原理得到,语文和数学都优秀的学生有65+87-122=30人。 【结束】 4、两个集合容斥原理例3:学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。这个文艺组共有多少人?()A.25 B.32 C.33 D.41 【答案】C 【解题关键点】设A={会拉手提琴的},B={会弹电子琴的},因此A∪B ={文艺组的人},A∩B={两样都会的},由两个集合的容斥原理可得:A∪B=A+B- A∩B=24+17-8=33。 【结束】 5、两个集合容斥原理例4:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人,问多少个同学两道题都没有答对?()A.1 B.2 C.3 D.4 【答案】C 【解题关键点】有两个集合的容斥原理得到,至少答对一道题的同学有25+23-15=33人,因此两道题都没有答对的同学有36-33=3人。 【结束】

第6讲 容斥原理

第六讲 容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A |表示有限集A 的元素的个数。在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成 |A ∪B |=|A |+|B |–|A ∩B |。 我们称这一公式为包含与排除原理,简称为容斥原理。 包含与排除原理|告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素个数,可以分一下两步进行: 第一步:分别计算集合A 、B 的元素个数,然后加起来。即先求|A |+|B |(意思是把A 、B 的一切元素都“包含”进来,加在一起); 第二步“从上面的和中减去交集的元素的个数,即减去|A ∩B |(意思是“排除”了重复计算的元素的个数)。 例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少? 解:设I ={1、2、3、…、19、20},A ={I 中2的倍数},B ={I 中3的倍数}。 显然题目中要求计算并集A ∪B 的元素个数,即求|A ∪B |。 我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。 A ∩ B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3, 根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。 此题可以直观地用图表示如下: 例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人? 解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生}, 由题意知|A |=25,|B |=21。 A ∪ B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。 A ∩B ={数学、语文都在90分以上的学生}, 由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |, 所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。 答:两科都在90分以上的有8人。 画图分析一下: 15 9320 18 16141210 8 642B A

容斥原理讲解

容斥原理 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重 复,这种计数的方法称为容斥原理。 例、一次期末考试,某班有15人数学得满分,有12人 语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人? 结论:(公式一) 如果被计数的事物有A、B两类,那么: (A类和B类)事物个数= A个数+ B个数—既是A类又是B类的事物个数。 A∪B=A+B-A∩B 例题1、某班学生每人家里至少有空调和 电脑两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都有 的有27人,这个班有学生多少人? 例题2、一个班有45名学生,订阅《小学生数学报》 的有15人,订阅《今日少年报》的有10人, 两种报纸都订阅的有6人。 (1)订阅报纸的总人数是多少? (2)两种报纸都没订阅的有多少人? 例题3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 例、某校5(1)班,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人, 参加游泳队的有34人,足球、排球都参加的有12人, 足球、游泳都参加的有18人,排球、游泳都参加 的有14人,三项都参加的有8人,这个班有多少人?

那么根据题意,我们有以下七条等式: (1)A+D+E+G =25; (2) B+D+F+G =34; (3) C+E+F+G = 22; (4) D+G =18; (5) E+G =12; (6) F+G =14; (7) G = 8。 现在我们要求的是A+B+C+D+E+F+G=? 把头三条等式加起来,我们得到: A+B+C+2D+2E+2F+3G = 81 结果包含了多余的D、E、F和G,必须设法把多余的部分减去。 由于等式(4) (5) (6)各有一个D、E和F, 减去这三条等式,便可以把多余的D、E和 F减去, 得A+B+C+D+E+F = 37。可是这么一来, 本来重复重现的G却变被完全减去了,所以最后还得把等式(7)加上去, 得最终结果为A+B+C+D+E+F+G = 45,即该班共有45名学生。 结论(公式二) 如果被计数的事物有A、B、C三类,那么,A类和B类和C类事物个数= A类事物个数+ B类事物个数+C类事物个数—既是A类又是B类的事物个数—既是A类又是C类的事物个数—既是B类又是C类的事物个数+既是A类又是B类而且是C类的事物个数。 A∪B∪C=A+B+C-A∩B-A∩C-B∩C+ A∩ B∩C 例题4、设某班每名学生都要选修至少一种外语,其中选修英语的学生人数为25,选修法语的学生人数为18,选修德语的学生人数为20,同时选修英语和法语的学生人数为8,同时选修英语和德语的学生人数为13 ,同时选修法语和德语的学生人数为6,而同时选修上述三种外语的学生人数则为3,问该班共有多少名学生? 例题5、在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水, 4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

容斥原理公式及运用

容斥原理公式及运用 在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩

B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B ∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩ A=45-25-22-24+12+9+8=3人。

容斥原理公式及运用完整版

容斥原理公式及运用 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 一、容斥原理1:两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如下图所示。 【示例1】??一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 二、容斥原理2:三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如下图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 【示例2】??某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人? 参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

第八讲容斥原理

第八讲容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集A的元素个数。在并集的讨论中,已经知道,求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成 |A∪B|=|A|+|B|-|A∩B| 我们称这一公式为包含与排除原理,简称容斥原理。 包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行: 第一步分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起); 第二步从上面的和中减去交集的元素个数,即减去|A∩B|(意思是“排除”了重复计算的元素个数)。 例1 求不超过20的正整数中是2的数倍或3的倍数的数共有多少个。分析与解:设I={1,2,3,…,19,20},A={I中2的倍数},B={I 中3的倍数}。 显然,题目要求计算并集|A∪B|的元素个数,即求|A∪B|。 易知, A={2,4,6,…,18,20}, 共有10个元素,即|A|=10, B={3,6,9,12,15,18}, 共有6个元素,即|B|=6。 A∩B={I中既是2的倍数又是3的倍数} ={6,12,18} 共有3个元素,即|A∩B|=3,所以 |A∪B|=|A|+|B|-|A∩B| =10+6-3=13 答:所求的数共有13个。 此题可直观地图示如下: 图8-1中,A表示不超过20的正整数中2的倍数的集合。B表示不超过20的正整数中3的倍数的集合。在不超过20的正整数中既是2的倍数又是3的倍数的数有6,12,18,即A∩B中的数。 例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上有38人。问两科都在90分以上的有多少人?(1985年初一迎春杯数学竞赛试题) 解:设A={数学成绩90分以上的学生), B={语文成绩90分以上的学生}。

5年级-14-容斥原理-难版

第14讲 容斥问题 知识梳理 森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有80种鸟类。狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有60种兽类。最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类140种。”这个统计正确吗? 同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是139种。”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。 容斥原理1 如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。 即A∪B = A+B - A∩B 容斥原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A 类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A

类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 即A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C 典型例题 容斥原理1 【例1】★一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 15+12-4=23 【小试牛刀】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 【解析】100-(62+34-11)=15 【例2】★一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人? 【解析】两项比赛都参加的学生人数,就是参加跑步人数、参加跳高人数重复的部分,排除掉重复部分,所得的就是全体参赛人数,也就是全班学生人数。 40-(48-37)=29人。 【小试牛刀】五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。两种报纸都订的有多少人? 【解析】用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分

容斥原理之三者容斥问题

容斥原理之三者容斥问题 浙江行测答题技巧:容斥原理之三者容斥问题 中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。容斥原理是指在计数时,必须注意无一重复,且无遗漏。这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人? 中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。 三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。 三者容斥问题有一个基本公式:A,B,C代表三个集合,则有 A∪BUC=A+B+C-A∩B-A∩C-B∩C+ A∩B∩C 这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即A∩B∩C)这部分被减没了。而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个A∩B∩C。 例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。篮球和排球都喜欢的多少人?

第11讲容斥原理

第11讲容斥原理 知识要点: 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个 数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的 元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号 “” 读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且” 的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分, B表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影 面积. A B 、的并集A B的元素的个数,可分以下两 步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数, 即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A类、B 类与C类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既 是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个 数+同时是A类、B类、C类的元素个数.用符号表示为: A B C A B C A B B C A C =++---+.图示如下: 模块一、两量重叠问题 1.实验小学四年级二班,参加语文兴趣小组的有28 人,参加数学 兴趣小组的有29人,有12人两个小组都参加.这个班有多少人 参加了语文或数学兴趣小组? 2.芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢 琴和只学画画的分别有多少人? 3.某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都 参加了.这个班既没参加美术小组也没参加音乐小组的有多少人? 4.四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两 项比赛都参加了.一班有多少人两项比赛都没有参加? 5.实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都 能表演的有7人.这个表演队共有多少人能登台表演歌舞? 6.某次英语考试由两部分组成,结果全班有12人得满分,第 一部分有25人做对,第二部分有19人有错,问两部分都有 错的有多少人? 7.对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人, 两项都不会的有9人.这个班一共有多少人? 1.先包含——A B + 重叠部分A B计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B减去. 图中小圆表示A的元素的个数,中圆表示B的元素的个数, 大圆表示C的元素的个数. 1.先包含:A B C ++ 重叠部分A B、B C、C A重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+. 两部 分全 对的 两部分都有错的 只做 对第 二部 分的 只做 对第 一部 分的 会 打 篮 球 的 会 游 泳 的 两 项 都 会 的 两项都不会的 B A

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

相关文档
相关文档 最新文档