文档库 最新最全的文档下载
当前位置:文档库 › 《常微分方程》第三版答案

《常微分方程》第三版答案

《常微分方程》第三版答案
《常微分方程》第三版答案

《常微分方程》第三版答案

习题1.2 1.

dx

dy

=2xy,并满足初始条件:x=0,y=1的特解。解:

y

dy

=2xdx 两边积分有:ln|y|=x 2+c y=e

2

x +e c =cex 2

另外y=0也是原方程的解,c=0时,y=0

原方程的通解为y= cex 2,x=0 y=1时c=1 特解为y= e 2

x .

2. y 2

dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。解:y 2dx=-(x+1)dy 2

y dy dy=-1

1+x dx 两边积分: -

y

1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c

另外y=0,x=-1也是原方程的解x=0,y=1时c=e 特解:y=

|

)1(|ln 1

+x c

3.dx dy =y

x xy y 321++

解:原方程为:dx

dy =y y 21+31

x x +

y y 21+dy=31

x

x +dx 两边积分:x(1+x 2

)(1+y 2

)=cx 2

4. (1+x)ydx+(1-y)xdy=0 解:原方程为:

y y -1dy=-x

x 1

+dx

两边积分:ln|xy|+x-y=c

另外x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =-y

x y x +-

x

y

=u 则dx dy =u+x dx du 代入有:

-1

12++u u du=x 1dx

ln(u 2+1)x 2=c-2arctgu 即ln(y 2+x 2)=c-2arctg 2

x y

. 6. x

dx

dy

-y+22y x -=0 解:原方程为:

dx dy =x y +x

x |

|-2)(1x y -

则令

x

y

=u dx dy =u+ x dx du

2

11u - du=sgnx

x

1

dx arcsin

x

y

=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx

dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=

x c cos 1=x

c

cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8

dx dy +y

e x

y 32+=0

解:原方程为:dx dy =y

e y 2

e x 3

2 e

x

3-3e

2

y -=c.

9.x(lnx-lny)dy-ydx=0 解:原方程为:

dx dy =x y ln x y 令x

y

=u ,则dx dy =u+ x dx du

u+ x

dx du

=ulnu ln(lnu-1)=-ln|cx| 1+ln

x

y

=cy. 10.

dx

dy =e y

x - 解:原方程为:

dx

dy =e x e y

- e y =ce x

11

dx

dy

=(x+y)2 解:令x+y=u,则

dx dy =dx

du -1 dx du -1=u 2

2

11

u

+du=dx arctgu=x+c

arctg(x+y)=x+c

12.

dx dy =2)

(1y x + 解:令x+y=u,则dx dy =dx

du -1

dx du -1=21u

u-arctgu=x+c y-arctg(x+y)=c. 13.

dx dy =1

212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2

-y)-dx 2

+x=c xy-y 2

+y-x 2-x=c

14:

dx dy =2

5--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d( 21y 2+2y)-d(2

1x 2

+5x)=0

y 2+4y+x 2+10x-2xy=c.

15: dx

dy

=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dx

dy

=(x+4y )2+3

令x+4y=u 则dx dy =41dx du -4

1

41dx du -41=u 2

+3 dx du

=4 u 2+13 u=2

3

tg(6x+c)-1 tg(6x+c)=3

2

(x+4y+1).

16:证明方程

y x dx

dy

=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1)y(1+x 2 y 2

)dx=xdy

2)y x dx dy =2

222x -2 y x 2y +

证明:令xy=u,则x dx dy +y=dx

du 则dx dy =x 1dx du -2x u

,有:

u x dx

du

=f(u)+1

)1)((1+u f u du=x

1

dx

所以原方程可化为变量分离方程。

1)令xy=u 则

dx dy =x 1dx du -2

x u

(1) 原方程可化为:dx dy =x

y [1+(xy )2

] (2)

将1代入2式有:x 1dx du -2x u =x

u (1+u 2

)

u=22+u +cx

17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。

解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y ’(x- x )+ y 则与x 轴,y 轴交点分别为:

x= x 0 -

'

y y y= y 0 - x 0 y’ 则x=2 x 0 = x 0 -

'

y y 所以xy=c 18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中α = 4

π

。解:由题意得:y ’=

x

y

y 1dy=x 1 dx

ln|y|=ln|xc| y=cx. α =

4

π

则y=tg αx 所以c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。证明:设(x,y)为所求曲线上的任意一点,则y ’=kx 则:y=kx 2

+c 即为所求。

常微分方程习题2.1 1.

xy dx

dy

2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得

故它的特解为代入得

把即两边同时积分得:e e x

x y c y x x c y c y xdx dy y

2

2

,11,0,ln ,21

2

=====+==

,0)1(.22

=++dy x dx y 并求满足初始条件:x=0,y=1的特解.

解:对原式进行变量分离得:

故特解是

时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x

y c y x y x c y c y x y dy dx x y

++=====++=+=+≠=+-

1ln 11

,11,001ln 1

,11ln 0,1112

3

y

xy dx dy x y 32

1++

=

解:原式可化为:

x x y x

x y x y

x y

y

x

y

c c c c x dx x dy y y

x y

dx

dy 2

2

2

2

2

2

2

2

3

22

3

2

)1(1)1)(1(),0(ln 1ln 21ln 1ln 2

1

1

1,0111=++

=++

≠++-=+

+=+≠+

?

+

=+)

故原方程的解为(即两边积分得故分离变量得显然10ln 1ln ln 1ln 1,0

ln 0

)ln (ln :931:8.

cos ln sin ln 0

7ln sgn arcsin

ln sgn arcsin 1

sgn 11,)1(,,,6ln )1ln(2

11

11,11,,,0

)()(:5332

2

22

2

22

2

22

2

c dx dy dx dy x

y

cy u

d u

u dx x x y u dx x

y

dy x y ydx dy y x x c dy y

y y

y

dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x

y

c x x u dx

x x du x

dx

du dx

du

x u dx dy ux y u x y y dx dy x

c x arctgu dx

x du u u u dx du x u dx

du x

u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e

e x y u

u x

y x u u x y

x

y

y x x

x

+===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++

=++-++=++===+-==-++-+--

两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:

解:令:。两边积分得:变量分离,得:则令解:

.0;0;ln ,ln ,ln ln 0

110000

)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

c

x y x arctg c

x arctgt dx dt dx dt dx dt dx dy t y x dx

dy c

dx dy dx

dy t

t y x e e e e e x y

x

y

y

x +=++==++=+==+=+===+-)(,1

11

1

1,.112

22)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,

12.2)

(1y x dx dy += 解

c x y x arctg y x c x arctgt t dx dt t t t

dx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1

11122

2,代回变量,两边积分变量分离,原方程可变为,则

变量分离

,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X Y

X dX dY Y y X x y x y x y x y x y x dx dy U 21222'

22,31,313

1

,31;012,0121

212.

132

-+-=

=--=+=-==

-==+-=--+---=

.

7)5(721

772

17)7(,71,1,52

5,

14)5(22

c x y x c

x t dx dt t t t

dx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=

+-代回变量两边积分变量分离原方程化为:则

解:令

15.1

8)14()1(22+++++=xy y x dx dy

原方程的解。

,是

,两边积分得分离变量,

,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dx

dy

+=++=++==+=+++++=+++++++=6)38

3232(9

414

9

4141412

)14(1818161222222

16.2

252

622y

x xy x y dx dy +-= 解:,则原方程化为,,令u y x

xy x y dx dy x xy y x y dx dy =+-==+-=32

322332322232]2)[(32(2)( 126326322

2

22+-=+-=x

u x u x

xu x u dx du ,这是齐次方程,令

c

x x y x y c x y x y c x x y x y c x z z dx x dz d

z z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372 233222)2()3(023)2()3,)2()31

12062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。或)方程的解。即是(或,得当,,,,所以,则

17. y

y y x x xy x dx dy -+++=

3232332 解:原方程化为1

231

32;;;;;)123()132(2

2

22222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(1

231

32;;;;;;;;;;;;,2

2

-+++===u v u v dv du v x u y 则

方程组,,,);令,的解为(111101230

132+=-=-??

?=-+=++u Y v Z u v u v

则有???

???

?

++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程(令)2.( (232223322) ,,,,,所以,,则有

t

t dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== 当

是原方程的解

或的解。得,是方程时,,即222222)2(1022x y x y t t -=-=±==-当

c x y x y dz z dt t

t t 522222

2)2(12223022+-=+=-+≠-两边积分的时,,分离变量得另外

c x y x y x y x y 522222222)2(2+-=+-=-=原方程的解为,包含在其通解中,故,或

,这也就是方程的解。

,两边积分得分离变量得,则原方程化为令解)(并由此求解下列方程可化为变量分离方程,经变换证明方程

c y x x y dx x du u u u u

x u u u u x y x y x dx dy y x xdy dx y x y u xy xy f dx

dy y x +==--=

+-+====+==+=+=++==+=≠==+=+=+==--==+=-+=

=+===4

ln 142241)22(1dx du u xy (2) 0.

x ,c

2

故原方程的解为原

也包含在此通解中。0y ,c 2

即,c 2两边同时积分得:dx x 12u du 变量分离得:),(2u x 1dx du 则方程化为u,xy 令1dx dy y x 时,方程化为0s xy 是原方程的解,当0y 或0x 当:(1)解程。

故此方程为此方程为变u)

(uf(u)x 11)(f(u)x u 1)y(f(u)dx du f(u),1dx du y 1得:y dx

du dx dy x 所以,dx dy dx dy x y 求导导得x 关于u,xy 证明:因为22).2()1(.1)(18.2

222

222

2

2

2

2

222

4

22

3

3

222

22222x

y x y x y x y

x u u u

u y

x

19. 已知f(x)

?≠=x

x f x dt x f 0

)(,0,1)(的一般表达式试求函数.

解:设f(x)=y, 则原方程化为?=x

y dt x f 0

1

)( 两边求导得'1

2y y

y -= c

x y y c x dy y dx dx dy y +±==+-==

-21

;;;;;121;;;;;;;;;;;;1;;;;;;;;;;233所以两边积分得代入把c

x y +±

=21?

=

x

y

dt x f 0

1

)( x

y c c x c c x c x dt c

t x

21,02)2(;;;;;;;;;;2210

±

==+±=-+±+±=+±?

所以得

20.求具有性质x(t+s)=

)

()(1)

()(s x t x s x t x -+的函数x(t),已知x’(0)存在。

解:令t=s=0 x(0)=

)0(1)0()0(x x x -+=)

0()0(1)

0(2x x x - 若x(0)≠0 得x 2=-1矛盾。

所以x(0)=0. x’(t)=)(1)(0(')

()(1[))

(1)((lim )()(lim

22t x x t x t x t t x t x t t x t t x +=?-?+?=?-?+) ))(1)(0(')

(2t x x dt

t dx +=

dt x t x t dx )0(')(1)(2=+ 两边积分得arctg x(t)=x’(0)t+c 所以x(t)=tg[x’(0)t+c] 当t=0时x(0)=0 故c=0 所以

x(t)=tg[x’(0)t]

习题2.2

求下列方程的解1.

dx

dy

=x y sin + 解:y=e ?

dx

(?

x sin e ?-dx

c dx +)

=e x

[-21e x

-(x x cos sin +)+c] =c e x

-2

1 (x x cos sin +)是原方程的解。

2.

dt

dx +3x=e t

2 解:原方程可化为:

dt

dx =-3x+e t

2 所以:x=e ?-dt

3 (

?

e t 2 e -?-dt 3c dt +)

=e

t

3- (

51e t

5+c) =c e t 3-+51e t

2 是原方程的解。

3.dt

=-s t cos +21t 2sin

解:s=e ?-tdt cos (t 2sin 2

1

?e dt dt ?3c + )

=e

t

sin -(?

+c dt te t t

sin cos sin )

= e

t

sin -(c e te

t t

+-sin sin sin )

=1sin sin -+-t ce

t

是原方程的解。

4.

dx dy n x x e y n

x

=- ,n 为常数. 解:原方程可化为:dx dy n x x e y n x

+=

)(c dx e

x e e

y dx

x n

n x dx

x n

+??=?-

)(c e x x

n

+= 是原方程的解.

5.

dx dy +1212

--y x x =0 解:原方程可化为:dx dy =-1212

+-y x

x

?

=-dx

x x e

y 2

12(c dx e

x x +?

-2

21)

)

2

1

(ln 2+=x e

)(1

ln 2?+-

-c dx e

x

x

=)1(12

x

ce x + 是原方程的解.

6.dx dy 2

3

4xy x x += 解:dx dy 2

3

4xy

x x += =23y

x +x y

x

y

u = 则ux y = dx dy =u dx du x +

因此:dx du x u +=2u x

21

u

dx du =

dx du u =2

c x u +=3

3

1

c x x u +=-33 (*)将

x

y

u =带入(*)中得:3433cx x y =-是原方程的解.

33

3

2

()2

1

27.

(1)12(1)1

2

(),()(1)1(1)(())

1(1)dx P x dx x P x dx

dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++??==+?

?++??

P(x)dx

2

3

2

解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23

2

2

1

(1)()

2

11

,()(())

dy

y x c dy y dx x y dx x y dy y y

Q y y y e

y

Q y dy c -+++==+=??

==?

?+??2

243P(y)dy

P(y)dy

P(y)dy 1)dx+c)

=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。8. =x+y 解:则P(y)= e 方程的通解为:x=e e 23

3

1

*)

2

2

y dy c y

y cy

y ++?=y( =即x= +cy是方程的通解,且y=0也是方程的解。

()()()19.

,1

),()(())01a dx P x dx a

x P x dx P x dx a a dy ay x a dx x x

a x P x Q x x x e e x e e Q x dx c a a -+=++==

??==??+==?为常数解:(方程的通解为:y=1x+1 =x (dx+c) x x 当时,方程的通解为y=x+ln/x/+c 当时,方程01a a a

≠a 的通解为

y=cx+xln/x/-1 当,时,方程的通解为

x 1

y=cx +- 1-

33

31()()()310.11(),()1(())

(*)dx P x dx x P x dx P x dx

dy

x

y x dx dy y x dx x P x Q x x x e e x

e e Q x dx c x x dx c c

x

c

x

--+==-+=-=??==??++++

??33解:方程的通解为:y=1 =x

x =4x 方程的通解为:y=4 ()

()

()

2

2

3333

23

3232332311.

2()2()()2,()2(())

((2)p x xdx

x

p x p x x dy

xy x y dx xy x y dx

xy x y dx

xy x dx

y z

dz

xz x dx

P x x Q x x e dx e e e dx e dxQ x dx c e x -----+==-+=-+=--+==--+==-?

?

==?

?+-??2

3-2

x dy

解:两边除以y dy dy 令方程的通解为:z= =e 2

2

2)1

1)1,0x x dx c ce y ce y +++++==22 =x 故方程的通解为:(x 且也是方程的解。2221

211

1()()222ln 1

12.(ln 2)424

ln 2ln 2ln 22ln 2ln (),()(())

ln 1(())(P x dx

P x dx dx dx x

x c x y x ydx xdy x dy x y y dx x x y dy x y y dx x x dy x y dx x x y z dz x z dx x x

x P x Q x x x

z e e Q x dx c x z e e dx c x x -------=++

=-

=-=-==-==-

?

?=+??=-+=??解:两边除以令方程的通解为:222ln ())

ln 1424

ln 1

:()1,424

x dx c x x c x x c x y x -+=++++=?方程的通解为且y=0也是解。

13

222(2)2122xydy y x dx dy y x y dx xy x y

=--==-

这是n=-1时的伯努利方程。两边同除以

1

y

,212

dy y y dx x =- 令2

y z =

2dz dy y dx dx

= 22211dz y z

dx x x

=-=- P(x)=

2

x

Q(x)=-1 由一阶线性方程的求解公式

22

()dx dx

x x z e e dx c -??=-+?

=2

x x c +

22y x x c =+

14 23y dy e x dx x

+= 两边同乘以y

e 22

()3y y

y

dy e xe e dx x += 令y

e z =

y

dz dy

e dx dx

= 22

2233dz z xz z z dx x x x

+==+ 这是n=2时的伯努利方程。两边同除以2 z

22

131dz z dx xz x =+ 令1

T z

= 21dT dz dx z dx =- 231

dT T dx x x

-=+

P (x )=3x - Q(x)=21

x

-

由一阶线性方程的求解公式

3321()dx dx x x

T e e dx c x

--??=+?

=3

2

1()2

x x c --+ =1

312x cx ---

+ 131

()12z x cx ---+=

131

()12y e x cx ---+=

231

2y y x e ce x -+= 2

312

y x x e c -+= 15

331dy dx xy x y =+

33dx

yx y x dy

=+

这是n=3时的伯努利方程。两边同除以3

x

3

32

1dx y y x dy x

=+ 令2

x

z -=

32dz dx x dy dy

-=-

3222dz y

y dy x

=--=322yz y -- P(y)=-2y Q(y)=32y - 由一阶线性方程的求解公式223(2)ydy ydy

z e y e dy c ---?

?=-+?

=2

2

3(2)y y e

y e dy c --+?

=2

21y y ce --++

2

22(1)1y x y ce --++= 2

2

2

22

(1)y y y x e y ce

e --++=

2

2222(1)y e x x y cx -+=

16 y=x

e +

()x

y t dt ?

()x dy

e y x dx =+ x dy

y e dx

=+ P(x)=1 Q(x)=x

e 由一阶线性方程的求解公式

11()dx dx

x y e e e dx c -??=+?

=()x x x e e e dx c -+?

=()x

e x c +

()()x

x x x e x c e e x c dx +=++?

c=1 y=()x

e x c +

17 设函数?(t)于-∞

?(0)存在且满足关系式?(t+s)=?(t)?(s)

试求此函数。

令t=s=0 得?(0+0)=?(0)?(0) 即?(0)=2

(0)?故(0)0?=或(0)1?= (1)当(0)0?=时()(0)()(0)t t t ????=+= 即()0t ?=

(t ?∈-∞,+∞)

(2) 当(0)1?=时'

()()

()lim

t t t t t t

????→+?-=

?=

()()()

lim

t t t t t

????→?-?

=

0()(()1)

lim

t t t t

???→?-?=

(0)(0)

()lim

t t t t

????→?+-?

='

(0)()t ??

于是

'(0)()d t dt

?

??= 变量分离得'(0)d dt ???= 积分'(0)t ce ??= 由于(0)1?=,即t=0时1?= 1=0

ce ?c=1 故'

(0)()t t e ??=

20.试证:

(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程(2.3)之解;

(2)若()y y x =是(2.3)的非零解,而()y y x =是(2.28)的解,则方程(2.28)的通解可表为()()y cy x y x =+,其中c 为任意常数.

(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解. 证明:()()dy

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 3 B . 33 C . 23 D . 13 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的 右焦点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。 (A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分 dt t t ? ∞ ∞ --+)21()2(δ等于 。 (A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。 (A ) 1-z z (B )-1-z z (C )11-z (D )1 1--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。 (A ) )2(41t y (B ))2(21t y (C ))4(41t y (D ))4(2 1 t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系 统的零状态响应y f (t)等于 (A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、 连续周期信号的频谱具有 (A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 7、 周期序列2)455.1(0 +k COS π的 周期N 等于 (A ) 1(B )2(C )3(D )4 8、序列和 ()∑∞ -∞ =-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()s e s s s F 22 12-+= 的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于 ()A ()()()232372+++-s e s s ()() 2 23+-s e B s

信号与系统试题附答案

信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100) 2(50sin )(--= t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1) 18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()

19。信号)2(4 sin 3)2(4 cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51 )(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号 23. 积分 ?∞ ∞ -dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ 24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f

解析几何专题含答案

椭圆专题练习 1.【2017,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 B . 3 C . 2 D . 13 3.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段 PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的右焦 点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题 参考答案 信号与系统综合复习资料 考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。 一、简答题: 1.dt t df t f x e t y t ) ()()0()(+=-其中x(0)是初始状态, 为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性] 2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的, 是时变的还是非时变的?[答案:线性时变的] 3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样, 求最小取样频率s f =?[答案:400s f Hz =] 4.简述无失真传输的理想条件。[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线] 5.求[]?∞ ∞ --+dt t t e t )()('2δδ的值。[答案:3] 6.已知)()(ωj F t f ?,求信号)52(-t f 的傅立叶变换。 [答案:521(25)()22 j f t e F j ωω --?]

7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。 [答案: ] 8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为 )()22()(4t e e t y t t ε--+=,求系统的频率响应。[答案: ()) 4)(2(52)3(++++ωωωωj j j j ] 9.求象函数2 ) 1(3 2)(++= s s s F ,的初值)0(+f 和终值)(∞f 。 [答案:)0(+f =2,0)(=∞f ] 10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。 其中:)()2 1 ()(k k g k ε=。 [答案:1111 ()()(1)()()()(1)()()(1)222 k k k h k g k g k k k k k εεδε-=--=--=--] 11.已知()1 1 , 0,1,20 , k f k else ==??? ,()2 1 , 0,1,2,3 0 , k k f k else -==??? 设()()()12f k f k f k =*,求()3?f =。[答案:3] 12.描述某离散系统的差分方程为()()()122()y k y k y k f k +---=

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

(完整)期末信号与系统试题及答案,推荐文档

湖南理工学院成教期末考试试卷 课 程 名 称《信号与系统》 2010年度第 I 学期 题号 一 二 三 四 五 六 七 八 九 十 总 分 得分 1. 已知 f (t )的傅里叶变换为F (j ω), 则f (2t -3)的傅里叶变换为 。 2、 ()dt t e t 12-?+∞ ∞ --δ 。 3 =-?∞ ∞ -dt t t )()5cos 2(δ= 。 4. 已知 651 )(2+++=s s s s F ,则=+)0(f ; =∞)(f 。 5. 已知 ω ωπδεj t FT 1 )()]([+=,则=)]([t t FT ε 。 6. 已知周期信号 )4sin()2cos()(t t t f +=,其基波频率为 rad/s ; 周期为 s 。 7. 已知 )5(2)2(3)(-+-=n n k f δδ,其Z 变换 =)(Z F ;收敛域为 。 8. 已知连续系统函数1 342 3)(23+--+=s s s s s H ,试判断系统的稳定 性: 。 9.已知离散系统函数1 .07.02 )(2 +-+=z z z z H ,试判断系统的稳定性: 。 10.如图所示是离散系统的Z 域框图,该系统的系统函数H(z)= 。 二.(15分)如下方程和非零起始条件表示的连续时间因果LTI 系统, ?????==+=++-- 5 )0(',2)0()(52)(452 2y y t f dt df t y dt dy dt y d 已知输入 )()(2t e t f t ε-=时,试用拉普拉斯变换的方法求系统的零状态响应 )(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t 。 班级: 学生学号: 学生姓名: 适用专业年级:2007 物理 出题教师: 试卷类别:A (√) 、B ()、C ( ) 考试形式:开卷( √)、闭卷( ) 印题份数:

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

常微分方程王高雄第三版答案

习题2.2 求下列方程的解 1. dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 21 e x -(x x cos sin +)+c] =c e x -2 1 (x x cos sin +)是原方程的解。 2. dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ? -dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1 e t 5+c) =c e t 3-+5 1 e t 2 是原方程的解。 3. dt ds =-s t cos + 21t 2sin 解:s=e ? -tdt cos (t 2sin 2 1 ?e dt dt ? 3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为: dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy + 1212 --y x x =0 解:原方程可化为: dx dy =-1212 +-y x x ? =-dx x x e y 2 1 2(c dx e dx x x +? -2 21) ) 2 1(ln 2 + =x e )(1ln 2 ?+- -c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 2 3 4xy x x += 解: dx dy 2 3 4 xy x x += =2 3y x + x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u += 2 u x 2 1u dx du = dx du u =2 c x u +=3 31 c x x u +=-33 (*) 将 x y u =带入 (*)中 得:3 4 3 3cx x y =-是原方程的解.

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

信号与系统期末试卷-含答案全

一.填空题(本大题共10空,每空2分,共20分。) 1.()*(2)k k εδ-= . 2. sin()()2 t d π τδττ-∞ + =? . 3. 已知信号的拉普拉斯变换为 1 s a -,若实数a ,则信号的傅里叶变换不存在. 4. ()()()t h t f t y *=,则()=t y 2 . 5. 根据Parseval 能量守恒定律,计算?∞ ∞-=dt t t 2 )sin ( . 6. 若)(t f 最高角频率为m ω,则对 )2()4()(t f t f t y =取样,其频谱不混迭的最大间隔是 . 7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为: )1()()(t t e t y t --+=-εε;则) 2()1()(---=t t t f εε时,输出)(t y f = . 8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则 ∞→t t h )(的值为 . 9. 若)()(ωj F t f ?,已知)2cos()(ωω=j F ,试求信号)(t f 为 . 10.已知某离散信号的单边z 变换为) 3(,)3)(2(2)(2>+-+=z z z z z z F ,试求其反变换 )(k f = . 二.选择题(本大题共5小题,每题4分,共20分。) 1.下列信号的分类方法不正确的是 : A 、数字信号和离散信号 B 、确定信号和随机信号 C 、周期信号和非周期信号 D 、因果信号与反因果信号 2. )]2()()[2()]()2([2)(1--++-+=t t t t t t f εεεε,则)] 1()2 1()[21()(--+-=t t t f t f εε

解析几何F答案

解析几何F答案

《解析几何》试题(F )答案 一、填空题:(每空2分,共30分) 1、 {} 36,45,48--; 2、 )3 ,3,3( 3 21321321z z z y y y x x x ++++++; 3、4 π或43π ,{}2,1,1-或{}2,1,1--; 4、15-; 5、)1,1,2(-; 6、01844-=-=-z y x 或0 1 241-= -=-z y x ; 7、3; 8、14 1arcsin ,)0,2,2(--; 9、 2; 10、双叶双曲面; 11、锥面; 12、椭圆抛物面; 13、旋转椭球面。 二、(本题16分) 解:(1)矢量设A 在矢量B 方向上的射影为 B B A A prj B ?= ,………………………………………… …………………………2 由于b a A 32+=,b a B -=,所以, 2 2 223),(cos 232))(32(b b a b a a b ab a b a b a B A -∠+=-+=-+=?, (2)

而 ) ,(cos 22))((2 2 222 b a b a b a ab b a b a b a B ∠-+=-+=--=, (2) 又由于1=a ,2=b ,3),(π=∠b a , 所 以 9 -=?B A , 3 2 =B ,…………………………………………… ………………..2 解 得 3 3-=A prj B 。………………………………………… ………………………….2 ( 2 ) 因 为 =?B A ),(sin 55)()32(b a b a a b b a b a ∠=?=-?+ (3) =353 sin 10=π。 所以以A 和B 为邻边的平行四边形的面积为 3 5。 (3) 三、(本题8分) 解:由于四面体的四个顶点为)0,0,0(A ,)6,0,6(B , )0,3,4(C 及)3,1,2(-D ,则以点)0,0,0(A 为始点,分别以点) 6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为终点的矢量是 (1) {} 6,0,6=…………………………………………… (1)

常微分方程(第三版)课后答案

常微分方程 2.1 1. xy dx dy 2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 。 故它的特解为代入得 把即两边同时积分得:e e x x y c y x x c y c y xdx dy y 2 2 ,11,0,ln ,21 2 =====+== ,0)1(.22 =++dy x dx y 并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: 。 故特解是 时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x y c y x y x c y c y x y dy dx x y ++=====++=+=+≠=+- 1ln 11 ,11,001ln 1 ,11ln 0,1112 3 y xy dx dy x y 32 1++ = 解:原式可化为: x x y x x y x y x y y x y c c c c x dx x dy y y x y dx dy 2 2 2 2 22 2 2 3 22 3 2 )1(1)1)(1(),0(ln 1ln 21ln 1ln 2 1 1 1,0111=++ =++ ≠++-=+ +=+≠+ ? + =+) 故原方程的解为(即两边积分得故分离变量得显然 .0;0;ln ,ln ,ln ln 0 110000 )1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0 ln 0 )ln (ln :931:8. cos ln sin ln 0 7ln sgn arcsin ln sgn arcsin 1 sgn 11,)1(,,,6ln )1ln(2 11 11,11,,,0 )()(:5332 2 22 2 22 2 22 2 c dx dy dx dy x y cy u d u u dx x x y u dx x y dy x y ydx dy y x x c dy y y y y dx dy c x y tgxdx ctgydy ctgxdy tgydx c x x x y c x x u dx x x du x dx du dx du x u dx dy ux y u x y y dx dy x c x arctgu dx x du u u u dx du x u dx du x u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e e x y u u x y x u u x y x y y x x x +===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++ =++-++=++===+-==-++-+-- 两边积分解:变量分离:。 代回原变量得:则有:令解:方程可变为:解:变量分离,得 两边积分得:解:变量分离,得::也是方程的解。 另外,代回原来变量,得两边积分得:分离变量得:则原方程化为: 解:令:。两边积分得:变量分离,得:则令解:

解析几何大题带答案

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中, M 、N 分别是椭圆 12 42 2=+y x 的顶点,过坐标原点 的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,), 2,0(),0,2(,2,2--= =N M b a 故所以线 段MN 中点的坐标为)2 2 ,1(- -,由于直线PA 平分 线段MN ,故直线PA 过线段MN 的中点,又直 线PA 过坐标 原点,所以 .2 2122 =-- = k

解法二: 设) 0,(),,(,,0,0),,(),,(1112121 2 2 1 1 x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为2 1 ,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 )() (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11 PB PA k k ⊥-=所以 28. (北京理19) 已知椭圆 2 2:1 4 x G y +=.过点(m,0)作圆 221 x y +=的 切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将AB 表示为m 的函数,并求AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a 所以. 322--=b a c 所以椭圆G 的焦点坐标为) 0,3(),0,3(-

(完整版)信号与系统习题答案.docx

《信号与系统》复习题 1.已知 f(t) 如图所示,求f(-3t-2) 。 2.已知 f(t) ,为求 f(t0-at) ,应按下列哪种运算求得正确结果?(t0 和 a 都为正值)

3.已知 f(5-2t) 的波形如图,试画出f(t) 的波形。 解题思路:f(5-2t)乘a 1 / 2展宽 2倍f(5-2 × 2t)= f(5-t)

反转 右移 5 f(5+t) f(5+t-5)= f(t) 4.计算下列函数值。 ( 1) ( 2) ( t ) t 0 )dt t 0 u(t 2 (t t 0)u(t 2t 0 )dt ( 3) (e t t ) (t 2)dt 5.已知离散系统框图,写出差分方程。 解: 2 个延迟单元为二阶系统,设左边延迟单元输入为 x(k) ∑ 0 1 1) → 左○ :x(k)=f(k)-a *x(k-2)- a*x(k- x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) ∑ y(k)= b 2*x(k)- b 0*x(k-2) (2) 右○ : 为消去 x(k) ,将 y(k) 按( 1)式移位。 a 1*y(k-1)= b 2 * a 1*x(k-1)+ b * a 1*x(k-3) (3) a 0*y(k-2)= b 2 * a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2) 、( 3)、( 4)三式相加: y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b *[x(k)+ a 1 *x(k-1)+a *x(k-2)]- b *[x(k-2)+a 1*x(k-3)+a *x(k-4)] 2 0 0 0 ∴ y(k)+ a 1 *y(k-1)+ a *y(k-2)= b 2 *f(k)- b *f(k-2) ═ >差分方程

信号与系统试卷和答案

南湖学院机电系《信号与系统》课程考试试题 2013—2014学年 第 二 学期 N 电信12班级 时量:120分钟 总分:100分 考试形式: 开卷(A) 一、 填空题 (每小题2分,共20分) 1、)2()()(-t t u t f δ=( )。 2、=-*-)()(21t t t t f δ( )。 3、拉普拉斯变换是把时域信号变换到( )。 4、对一个频带限制在0~4KHz 的语音信号进行抽样,则奈奎斯特速率是( )。 5、从信号频谱的连续性和离散性来观察,非周期信号的频谱是( )的。 6、线性时不变连续因果系统是稳定系统的充分必要条件是)(s H 的极点位于( )。 7、信号不失真传输的条件是系统函数=)(ωj H ( )。 8、若自由响应对应系统微分方程的齐次解,则强迫响应对应系统微分方程的( )。 9、零输入线性是指当激励为0时,系统的零输入响应对各( )呈线性。 10、采用( )滤波器即可从已抽样信号中恢复原模拟信号。 二、选择题 (每小题2分,共20分) 1、信号 x (-n +2) 表示( )。 A 、信号x (n )的右移序2 B 、信号x (n )的左移序2 C 、信号x (n )反转再右移序2 D 、信号x (n )反转再左移序2 2、二阶前向差分)(2n x ?的表示式是( )。 A 、)()1(2)2(n x n x n x ++++ B 、)()1(2)2(n x n x n x ++-+ C 、)2()1(2)(-+-+n x n x n x D 、)2()1(2)(-+--n x n x n x 3、在以下关于冲击信号)(t δ的性质表达式中,不正确的是 ( )。 A 、? ∞ ∞ -=')()(t dt t δδ B 、?∞ ∞ -='0)(dt t δ C 、 ? ∞ -=t t u dt t )()(δ D 、)()(t t δδ=- 4、下列4个常用信号的傅立叶变换式中,不正确的是( )。 A 、)(21ωπδ? B 、)(200ωωπδω-?t j e C 、()()[]000cos ωωδωωδπω++-?t D 、()()[]000sin ωωδωωδπω++-?j t 5、系统仿真图如图所示,则系统的单位冲激响应)(t h 满足的方程式是( )。

解析几何第四版吕林根课后习题答案定稿版

解析几何第四版吕林根 课后习题答案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

第三章 平面与空间直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式: 042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

最新常微分方程(第三版)答案

常微分方程(第三版) 答案

常微分方程习题答案 2.1 1.?Skip Record If...?,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得 ?Skip Record If...??Skip Record If...?并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得: ?Skip Record If...?3 ?Skip Record If...? 解:原式可化为: ?Skip Record If...??Skip Record If...??Skip Record If...? ?Skip Record If...? 12.?Skip Record If...? 解?Skip Record If...??Skip Record If...? ?Skip Record If...? 15.?Skip Record If...? ?Skip Record If...?16.?Skip Record If...? 解:?Skip Record If...? ?Skip Record If...?,这是齐次方程,令?Skip Record If...? 17. ?Skip Record If...? 解:原方程化为?Skip Record If...? 令?Skip Record If...? 方程组?Skip Record If...??Skip Record If...? 则有?Skip Record If...? 令?Skip Record If...? 当?Skip Record If...?当?Skip Record If...? 另外 ?Skip Record If...? ?Skip Record If...?

相关文档
相关文档 最新文档