文档库 最新最全的文档下载
当前位置:文档库 › 差分放大电路仿真02605

差分放大电路仿真02605

差分放大电路仿真02605
差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1)

R3 6.8k Q

三、仿真分析

1.静态工作点分析

1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出

节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示

2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位,

结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。

2.测量差模放大倍数

将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示

R4 6.8k Q

R1 ■ 酉

2 ?R6

>510 Q

<3 -------

Q1

R8 12k Q

12 V

双端输入、 100Q Key=A

丄V2 -—

12 V

11

R5 5.1k

10

双端输出的长尾式差分放大电路

8

Q

■ 4

Q2

2N3903

R2 AAAr-| 2k Q

7

50%

Rp1

4.607 V

H-、4 -Q *: LR3

S : : ?6+BkQ :

a ):

>R4

:>G.?kn

............ R& ''''

---------- VA ----------

it::12W5:::

1 F ■!

■ I R1 .,,斗,-

VA-

:7W. . \

■1

2M39G

3

:R2 :

:

2K1:

2N39G3

-”

R6

5100 :

::5C%

:10QQ

::Key=A 丄V2「::二12W

TV ''

图2差分放大器电路调零

10

U1

DC 1e-009 W

12

、R3

■6.8k Q

R8

R4 6.8k Q V1 :—J2 V

Q2

U3

1 DC 1e-009 W 12k

Q

LR6 ■

■■510 Q

4

3

Q1

U2

R1

2k

Q

2N3903

DC 10M

2

50%

6 R2

■ --------- WX T -I 2N3903 2k Q

100Q Key=A

11 Rp1

V2 12 V

R5 5.1k Q

10

图3差分放大器电路静态工作点测量

XFG1

XSC1

Ext Trig

A

B

Q

k

3

8

R &R4 6.8k Q

R1 Wv 2k Q

R8 3

-

12k Q

4

—1-V1 —12 V

R6 510|?

R7吉 510Q

Q1

2N3903

7

2k Q

2N3903

Q2

6

R2 50%

V2 12 V

100Q Key=A

Rp1 11 12 R5 5.1k Q

图4测量差模电压放大倍数

册 Osciiloscope-XSCi.

图5差模输入差分放大电路输入、输出波形图

3.测量共模放大倍数

将函数信号发生器XFG1的“ +”端接放大电路的共同输入端,COM 接地,构成共 模输入方式,如图6所示。在输出负载端用万用表测量输出电压值,打开仿真开 关,测得

R8两端输出电压值为1.038pV ,几乎为0,所以共模双端输出放大倍数 也就近似为0

示波器观察到的差分放大电路输入、输出波形如图 7所示。

XSC1

“ JIT

5

::R1 :

--WV

R3 - I G.BkQ '

RS

V1 12V

R7 510D

Key=A

V2 12V

图6共模输入、双端输出电压放大倍数测量

& Oscilloscope-XSCl

J ?图7共模输入差分放大电路输入、输出波形

5

图8单端输出差分放大电路

集成运算放大器习题集及答案

第二章集成运算放大器 题某集成运放的一个偏置电路如图题所示,设T1、T2管的参数完全相同。问: (1) T1、T2和R组成什么电路 (2) I C2与I REF有什么关系写出I C2的表达式。 图题解:(1) T1、T2和R2组成基本镜像电流源电路 (2) REF BE CC REF C R V V I I - = = 2 题在图题所示的差分放大电路中,已知晶体管的=80,r be=2 k。 (1) 求输入电阻R i和输出电阻R o; (2) 求差模电压放大倍数 vd A 。

图题解:(1) R i =2(r be +R e )=2×(2+= k Ω R o =2R c =10 k Ω (2) 6605 .08125 80)1(-=?+?-=β++β- =e be c vd R r R A 题 在图题所示的差动放大电路中,设T 1、T 2管特性对称, 1 = 2 =100,V BE =,且r bb ′=200,其余参数如图中所示。 (1) 计算T 1、T 2管的静态电流I CQ 和静态电压V CEQ ,若将R c1短路,其它参数不变,则T 1、T 2管的静态电流和电压如何变化 (2) 计算差模输入电阻R id 。当从单端(c 2)输出时的差模电压放 大倍数2 d A =; (3) 当两输入端加入共模信号时,求共模电压放大倍数2 c A 和共模抑制比K CMR ; (4) 当v I1=105 mV ,v I2=95 mV 时,问v C2相对于静态值变化了多少

e 点电位v E 变化了多少 解:(1) 求静态工作点: mA 56.010 2101/107 122)1/(1=?+-=+β+-= e b BE EE CQ R R V V I V 7.07.010100 56 .01-≈-?- =--=BE b BQ E V R I V V 1.77.01056.012=+?-=--=E c CQ CC CEQ V R I V V 若将R c1短路,则 mA 56.021==Q C Q C I I (不变) V 7.127.0121=+=-=E CC Q CE V V V V 1.77.01056.0122=+?-=--=E c CQ CC Q CE V R I V V (不变) (2) 计算差模输入电阻和差模电压放大倍数: Ω=?+=β++=k 9.456 .026 101200) 1('EQ T bb be I V r r Ω=+?=+=k 8.29)9.410(2)(2be b id r R R 5.338 .2910100)(22 =?=+β=be b c d r R R A (3) 求共模电压放大倍数和共模抑制比: 5.0201019.41010 1002)1(2 -=?++?-=β++β-=e be b c c R r R R A 675.05.332 2===c d CMR A A K (即)

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

低频典型例题--部分参考答案

复习题 一、填空: 1.为使BJT发射区发射电子,集电区收集电子,必须具备的条件是(发射极正偏,集电极 反偏)。 2.N型半导体是在纯硅或锗中加入(磷(+5))元素物质后形成的杂质半导体。 3.差分放大电路对(差模)信号有放大作用,对(共模)信号起到抑制作用。 4.在电容滤波和电感滤波中,(电感)滤波适用于大电流负载,(电容)滤波的直流输出电压高。 5.集成运放主要包括输入级、( 中间级)、( 输出级)和 ( 偏置)电路。其中输入级一般采用( 差分放大)电路。 6.为稳定放大器的静态工作点,应在放大电路中引入(直流负)反馈,为稳定放大器 的输出电压应引入(电压负)反馈。 7.甲类功放电路相比,乙类互补对称功率放大电路的优点是(效率高,管耗小),其最高效率可达到( 78.5% ),但容易产生(交越)失真。 8.集成运算放大器是一种采用(直接)耦合方式的多级放大电路,它的输入级常采用差分电路形式,其作用主要是为了克服(零漂、温漂)。 9.若放大器输入信号电压为1mV,输出电压为1V,加入负反馈后,为达到同样输出需要的输入信号为10mV,该电路的反馈深度为( 10 )。 10.产生1Hz~1MHz范围内的低频信号一般采用( RC )振荡器,而产生1MHz以上的高频信号一般采用( LC )振荡器。 11.半导体二极管具有(单向导电)作用,稳压二极管用作稳压元件时工作在(反向击穿)状态。 12.晶体三极管是一种(电流控制电流)控制型器件,当工作在饱和区时应使其发射结(正偏)集电结(反偏),而场效应管是一种( 电压控制电流 ) 控制型器件。 13.集成电路运算放大器是一种高电压增益、高输入电阻、(低)输出电阻的(直接)耦合方式的多级放大电路。 14.差分放大电路有四种输入-输出方式,其差模电压增益大小与输(出)有关而与输(入)方式无关。 15.在放大电路中引入(直流负)反馈可以稳定放大电路的静态工作点,。

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路 实验名称:负反馈放大电路设计 学院:信息工程学院 专业:信息工程班级: 组号:指导教师:田明 报告人:学号: 实验地点 N102 实验时间: 实验报告提交时间: 教务处制

一.实验名称: 负反馈放大电路设计 二.实验目的: 加深对负反馈放大电路原理的理解. 学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法. 三.实验仪器: 双踪示波器一台/组 信号发生器一台/组 直流稳压电源一台/组 万用表一台/组 四.实验容: 设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下: 闭环电压放大倍:30---120 输入信号频率围:1KHZ-------10KHZ. 电压输出幅度≥1.5V 输出电阻≤3KΩ 五.实验步骤: 1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集 成运算负反馈放大电路.

为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。本设计可以采用共发射极-共基极-共集电极放大电路。对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。本设计采用电压并联负反馈形式。 2.设计电路,画出电路图. 下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。 整体原理图如下: 从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给

差分放大电路Multisim仿真

差分放大电路仿真 双端输入双端输出差分放大电路模型: 双端输入双端输出差分放大电路的调零和静态工作点求解: XMM1和XMM2的电压都为6.398V,输出电压为零。双端输入双端输出时静态工作点如下图所示,Ib=4.975uA,Ie=1.13mA,Vcq=6.398V。 双端输入单端输出时的静态工作点: Ib=5.197uA, Ie=1.13mA,Vcq1=6.398V,Vcq2=2.169V。 对比上图的静态工作点可知,XMM2的静态工作点基本不变,但XMM1的静态工作点变化较大,计算公式可参照模电书上的静态工作点计算公式,经计算和实际的仿真结果非常接近。

VCC’=VCC*R6/(R1+R6)=12*5/(10+5)=4V,Rc’=R1//R6=10*5/(10+5)=3.33,Ieq1=(VCC-Ubeq1)/2R11=(12-0.7)/2/10=0.565mA,Vcq1=Vcc’-Ieq1*Rc’=4-0.565*3.33=2.11167V,基本和仿真结果相同。 双端输入双端输出差分放大电路差分放大倍数: 输入电压Ui=7.071mV,输出电压Uo=124.194,Aod=Uo/Ui=17.56 把R3和R4减小为510Ω后,放大倍数如下图所示:放大倍数为26.28。 共模放大倍数: 下图测量的是差分放大电路对共模信号的放大作用,Ui=7.071mV,输出电压为6.935nV,对共模信号有很强的抑制作用

把R11改为一个由三极管组成的恒流源: Uo=55.676pV,相对于加10KΩ的电阻R11,能更好的抑制共模信号,能模电书上的公式和结论吻合。

差分放大器AD813x常见问题解答

差分放大器AD813x常见问题解答 问题:如何计算差分放大器电路的增益,如何分析差分放大器电路? 答案:如图所示,差分放大电路分析的基本原则与普通运算放大器中虚断虚短原则相同,同 时还具有其特有的分析原则: 差分放大器电路分析图 1.同向反向输入端的电流为零,即虚断原则。 2.同向反相输入端的电压相同,即虚短原则。 3.输出的差分信号幅度相同,相位相差180度,以Vocm共模电压为中心对称。 4.依照上述三个原则,差分信号的增益为Gain=R F/R G。 问题:为什么电路的输出不正确? 答案:对于差分放大器的应用来讲,要得到正确的输出,必须要注意以下几点: 1.输出信号的摆幅必须在数据手册指定的范围内。以AD8137为例,在单电源5V的情况下,V out-与V out+都必须在450mV~4.55V之内(见下表) 2.输入端信号的范围必须在数据手册指定的范围之内。以AD8137为例,在单电源5V的情况下,+IN与-IN的电压必须在1~4V之内。(见下表) 数据手册单电源5V供电的芯片指标

在你的电路中,一定要先进行分析计算,检查输出端电压和输入端共模信号的范围是否在数据手册指定范围之内(请注意电源电压的条件)。对于单电源供电的情况,更容易出现问题。 下面我们以AD8137举例说明怎样判断电路是否能够正常工作? AD8137双电源供电放大电路 如图,这是AD8137在+/-5V电源供电情况下的一个放大电路。输入是一个8Vpp的信号。按照虚短、虚断的原则,根据2.1的分析,差分信号增益是1,即,差分输出每一端的摆幅都是+/-2V,但相位相差180度。由于Vocm加入了2.5V的共模电压,因此得到Voutp和Voutn的电压为2.5V+/-2.0 V和2.5V-/+2.0V,即0.5V~4.5V的范围内。这个信号范围符合数据手册+/-5V电源供电情况下的指标(-4.55V~+4.55V)。

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

放大电路练习题及答案..

一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1, 输入电阻高 、 输出电阻低 。 2.三极管的偏置情况为 发射结正向偏置,集电结反向偏置 时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的 输入电阻高 。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的 输出电阻低 。 5.常用的静态工作点稳定的电路为 分压式偏置放大 电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的 静态工作点 。 7.三极管放大电路静态分析就是要计算静态工作点,即计算 I B 、 I C 、 U CE 三个值。 8.共集放大电路(射极输出器)的 集电极 极是输入、输出回路公共端。 9.共集放大电路(射极输出器)是因为信号从 发射极 极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数 电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应 断开 。 12.画放大电路的交流通路时,电路中的电容应 短路 。 13.若静态工作点选得过高,容易产生 饱和 失真。 14.若静态工作点选得过低,容易产生 截止 失真。 15.放大电路有交流信号时的状态称为 动态 。 16.当 输入信号为零 时,放大电路的工作状态称为静态。 17.当 输入信号不为零 时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有 估算法 、 图解法 。 19.放大电路的动态分析方法有 微变等效电路法 、 图解法 。 20.放大电路输出信号的能量来自 直流电源 。 二、选择题 1、在图示电路中,已知U C C =12V ,晶体管的β=100,' b R =100k Ω。当i U =0V 时, 测得U B E =0.7V ,若要基极电流I B =20μA ,则R W 为 k Ω。A A. 465 B. 565 C.400 D.300 2.在图示电路中,已知U C C =12V ,晶体管的β=100,若测得I B =20μA ,U C E =6V ,则R c = k Ω。A A.3 B.4 C.6 D.300

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

集成运算放大器习题集及答案

第二章 题3.2.1 某集成运放的一个偏置电路如图题3.2.1所示,设T 1、T 2管的参数完全相同。问: (1) T 1、T 2和R 组成什么电路? (2) I C2与I REF 有什么关系?写出I C2的表达式。 图题3.2.1 解:(1) T 1、T 2和R 2组成基本镜像电流源电路 (2) REF BE CC REF C R V V I I -==2 题3.2.2 在图题3.2.2所示的差分放大电路中,已知晶体管的β =80,r be =2 k Ω。 (1) 求输入电阻R i 和输出电阻R o ; (2) 求差模电压放大倍数vd A 。 图题3.2.2 解:(1) R i =2(r be +R e )=2×(2+0.05)=4.1 k Ω R o =2R c =10 k Ω (2) 6605 .0812580)1(-=?+?-=β++β-=e be c vd R r R A 题3.2.3 在图题3.2.3所示的差动放大电路中,设T 1、T 2管特性对称,β1=β2=100,V BE =0.7V ,且r bb ′=200Ω,其余参数如图中所示。 (1) 计算T 1、T 2管的静态电流I CQ 和静态电压V CEQ ,若将R c1短路,其它参数不变,则

T 1、T 2管的静态电流和电压如何变化? (2) 计算差模输入电阻R id 。当从单端(c 2)输出时的差模电压放大倍数2 d A =?; (3) 当两输入端加入共模信号时,求共模电压放大倍数2 c A 和共模抑制比K CMR ; (4) 当v I1=105 mV ,v I2=95 mV 时,问v C2相对于静态值变化了多少?e 点电位v E 变化了多少? 解:(1) 求静态工作点: mA 56.010 2101/107122)1/(1=?+-=+β+-=e b BE EE CQ R R V V I V 7.07.010100 56.01-≈-?-=--=BE b BQ E V R I V V 1.77.01056.012=+?-=--=E c CQ CC CEQ V R I V V 若将R c1短路,则 mA 56.021==Q C Q C I I (不变) V 7.127.0121=+=-=E CC Q CE V V V V 1.77.01056.0122=+?-=--=E c CQ CC Q CE V R I V V (不变) (2) 计算差模输入电阻和差模电压放大倍数: Ω=?+=β++=k 9.456 .026101200)1('EQ T bb be I V r r Ω=+?=+=k 8.29)9.410(2)(2be b id r R R 5.338 .2910100)(22=?=+β=be b c d r R R A (3) 求共模电压放大倍数和共模抑制比: 5.020 1019.410101002)1(2-=?++?-=β++β-=e be b c c R r R R A 675.05.332 2===c d CMR A A K (即36.5dB ) (4) 当v I1=105 mV ,v I2=95 mV 时, mV 109510521=-=-=I I Id v v v mV 1002 95105221=+=+=I I Ic v v v mV 285100)5.0(105.33222=?-+?=?+?=?Ic c I d d O v A v A v 所以,V O2相对于静态值增加了285 mV 。 由于E 点在差模等效电路中交流接地,在共模等效电路中V E 随共模输入电压的变化

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

多级放大电路习题参考答案

第四章多级放大电路习题答案3.1学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1u u u =-=。在共模输入 信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即: 式中u ic 为共模信号,u id 为差模信号,分别为: 输出电压为: 3.共模抑制比 共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为A d 与A c 之比的绝对值,即: 或用对数形式表示为:

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

差动放大电路仿真课程设计报告

上海工程技术大学课程设计 上海工程技术大学 课程设计名称:差动放大电路设计 专业班级:自动化、0212103 学生姓名:曹娇娇 学号: 021210331 指导教师:张莉萍李洪芹

差动电路的设计与仿真 一、实验目的 1、加深对差动放大器性能及特点的理解。 2、学习差动放大器主要性能指标的测试方法。 3、熟悉Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常用电路分析法。 4、能够运用Multisim 软件对模拟电路进行设计和性能分析,掌握设计的基本方法和步骤。 5、熟练掌握有关差动放大电路有关知识,并应用相关知识来分析电路,深刻体会使用差动放大电路的作用,做到理论实际相结合,加深对知识的理解。 二、实验要求 1、设计一个带设计恒流源(有三极管构成)的差动放大电路,测试电路每隔三机关的静态工作点值 2、给电路输入直流信号,在信号双输入端状态下分别测试电路的个工作点值。 3、连接好电路对其做出直流分析、交流分析、瞬态分析、傅里叶分析、直流扫描分析、电路传递函数分析,从而研究三极管差放电路的小信号工作特性。 三、差动放大电路实验图设计原理 如下所示:

R1用来调节Q1、Q2管的静态工作点。 差动放大电路是是典型的直流放大电路基本形式,由两个互为发射极耦合的共射电路组成,电路参数完全对称,是运算放大器的前级电路,期中具有恒流源的差动放大电路,应用十分广泛,特别是在模拟电路中,常作为输入级或中间放大级。具有抑制零点漂移作用,是放大直流信号和缓慢变化信号的电路。差动放大电路按输入和输出的方式分为:双端输入双端输出、双端输入单端输出、单端输入双端输出、单端输入单端输出。 差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

3.3自测题及答案

3.3.1填空题 (1)差分放大电路对信号具有放大作用,对信号具有很强的抑制作用。差分放大电路的零漂很。 (2)某差分放大电路的两个输入端电压分别为U I1=30mV,U I2=10mV,则该电路的差模输入电压U Id 为V,共模输入电压U Ic为V。 (3)差模电压放大倍数与共模电压放大倍数之比的绝对值称为。 (4)当差分放大电路输入端加入大小相等、极性相反的信号时,称为输入;当加入大小和极性都相同的信号时,称为输入。 答案:(1)差模共模小(2)20m 20m (3)共模抑制比(4)差模共模 3.3.2单选题 (1)选用差分放大电路的主要原因是()。 A.减小零漂B.提高输入电阻C.稳定放大倍数D.减小失真 (2)把长尾式差分放大电路中的发射极公共电阻改为电流源可以() A.增大差模输入电阻B.提高共模增益 C.提高差模增益D.提高共模抑制比 (3)对恒流源而言,下列说法不正确的为()。 A.可以用作偏置电路B.可以用作有源负载 C.交流电阻很大D.直流电阻很大 (4)差分放大电路由双端输入改为单端输入,则差模电压放大倍数()。 A.不变B.提高一倍C.提高为原来的2倍D.减小为原来的一半 答案:(1)A (2)D (3)D (4)A 3.3.3是非题(对打√;不对打×) (1)空载时,差分放大电路单端输出电压放大倍数为双端输出时的一半。() (2)差分放大电路双端输出时,主要靠发射极公共电阻的负反馈作用来抑制温漂。() (3)单端输出的具有电流源的差分放大电路,主要靠电流源的恒流特性来抑制温漂。()答案:(1)√(2)×(3)√

3.3.4 电路如图3.3.1(a )所示,已知三极管β=100,r bb’ =200?,U BEQ =0.7V ,试:(1)计算V 1、 V 2的静态工作点I CQ1、 U CEQ1和I CQ2、U CEQ2 ;(2)画出差模交流通路;(3)求差模电压放大倍数A ud =u o /u i ;(4)求差模输入电阻R id 和输出电阻R o 。 解: (1)求静态工作点 由于电路结构左右完全对称,故两管静态工作点相同,流过负载的静态电流为零,由图得 V U mA mA I I CEQ EQ CQ 1.7V 7.012465.012465.01027 .010 =+×?==×?=≈)( (2)画差模交流通路如图3.3.1(b)所示 (3)求A ud Ω=Ω×+Ω=k r be 85.5465.026 101200 故 9385.5)10//12( 100 2//(?=ΩΩ ?=?=k k r R R A be L C ud β (3)求R id 、R o R id =2r be =2×5.85 k ?=11.7k ? R o =2R c =24k ? (a ) 图3.3.1 题3.3.4电路 (a )电路 (b )交流通路 (b )

差分放大器仿真

《电子技术计算机绘图基础》 设 计 报 告 题目:差分放大器仿真 学院:通信与信息工程学院 专业班级:电子信息工程 学号: 学生姓名: 指导教师:

差分放大器的仿真 一、设计描述 1、设计目的和任务 1).熟悉差分放大器的工程估算,掌握差分放大器静态工作点的调整与测试方法。 2).能够掌握差分放大器性能指标的测试方法。 3).能够掌握multisim 和protel 的基本用法,做出Multisim 仿真图、Protel 原理图、PCB 板,从而加深理解差分放大器的性能特点。 4).熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。 2、原理分析 (1)基本原理 差分放大器是一种特殊的直接耦合放大器,它能有效的抑制零点漂移;它的基本性能是放大差模信号、抑制共模信号;常用共模抑制比来表征差分放大器对共模信号的抑制能力;稳流电阻的增加可以提高共模抑制比;但稳流电阻不能太大,因此采用恒流源取代稳流电阻,从而进一步的提高共模抑制比。 (2)静态工作点的调整 实验电路通过调节电位器R p 使两个三极管的集电极电压相等来调节电路的对称性,完成电路的调零。 (3)静态工作点的测量 静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流。这样即可以避免更动电路,同时操作也简单。 EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -= (4)电压放大倍数的测量 差分放大器有差模和共模两种工作模式,因此电压放大倍数有差模电压放大倍数和共模电压放大倍数两种。 在差模工作模式下,差模输出端U od1是反相输出端,U od2是同相输出端,则差模电压放大倍数为: ud2 ud1ud A A A += ud2 i od2i od1ud1 A U U U U A -=- == 在共模工作模式下,共模输出端U oc1、U oc2均为反相输出端,则共模电压放大倍数为: uc2 uc1uc A A A -= uc2 i oc2i oc1uc1 A U U U U A == = 电路的共模抑制比K CMR 为:

晶体管放大电路实验报告doc

晶体管放大电路实验报告 篇一:晶体管单级放大器实验报告 晶体管单级放大器 一. 试验目的 (1)掌握Multisium11.0仿真软件分析单级放大器主要性能指标的方法。 (2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输 出波形的影响。 (3)测量放大器的放大倍数,输入电阻和输出电阻。 二. 试验原理及电路 VBQ=RB2VCC/(RB1+RB2) ICQ=IEQ=(VBQ-VBEQ)/RE IBQ=ICQ/β; VCEQ=VCC-ICQ(RC+RE) 晶体管单级放大器 1. 静态工作点的选择和测量 放大器的基本任务是不失真的放大信号。为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。若工作点选的太高会饱和失真;选的太低会截止失真。静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流ICQ和管压降VCEQ。 本试验中,静态工作点的调整就是用示波器观察输出波

形,让信号达到最大限度的不失真。当搭接好电路,在输入端引入正弦信号,用示波器输出。静态工作点具体调整步骤如下: 具有最大动态范围的静态工作点图 根据示波器观察到的 现象,做出不同的调 整,反复进行。当加大输入信号,两种失真同时出现,减小输入信号,两种(本文来自:https://www.wendangku.net/doc/0f2518989.html, 小草范文网:晶体管放大电路实验报告)失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。去点信号源,测量此时的VCQ,就得到了静态工作点。 2. 电压放大倍数的测量 电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi 3、输入电阻和输出电阻的测量 (1)输入电阻。放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图 2.1-3(a)所示。在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为 (a) (b) o VO

相关文档
相关文档 最新文档