文档库 最新最全的文档下载
当前位置:文档库 › 高维数据特征降维研究综述

高维数据特征降维研究综述

高维数据特征降维研究综述
高维数据特征降维研究综述

PCA降维方法(主成分分析降维)

一、简介 PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?对于学习图像处理的人来说,都知道PCA是降维的,但是,很多人不知道具体的原理,为此,我写这篇文章,来详细阐述一下PCA及其具体计算过程: 二、PCA原理 1、原始数据: 为了方便,我们假定数据是二维的,借助网络上的一组数据,如下: x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1,1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2、计算协方差矩阵 什么是协方差矩阵?相信看这篇文章的人都学过数理统计,一些基本的常识都知道,但是,也许你很长时间不看了,都忘差不多了,为了方便大家更好的理解,这里先简单的回顾一下数理统计的相关知识,当然如果你知道协方差矩阵的求法你可以跳过这里。 (1)协方差矩阵: 首先我们给你一个含有n个样本的集合,依次给出数理统计中的一些相关概念: 均值: 标准差:

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

降维和特征选择

1.数据降维和特征选择的区别 数据降维,一般说的是维数约简(Dimensionality reduction)。它的思路是:将原始高维特征空间里的点向一个低维空间投影,新的空间维度低于原特征空间,所以维数减少了。在这个过程中,特征发生了根本性的变化,原始的特征消失了(虽然新的特征也保持了原特征的一些性质)。 特征选择,是从 n 个特征中选择 d (d

高维数据降维方法研究

·博士论坛· 高维数据降维方法研究 余肖生,周 宁 (武汉大学信息资源研究中心,湖北武汉430072) 摘 要:本文介绍了MDS 、Isomap 等三种主要的高维数据降维方法,同时对这些降维方法的作用进 行了探讨。 关键词:高维数据;降维;MDS ;Isomap ;LLE 中图分类号:G354 文献标识码:A 文章编号:1007-7634(2007)08-1248-04 Research on Methods of Dimensionality Reduction in High -dimensional Data YU Xiao -s heng ,ZH OU Ning (Research Center for Information Resourc es of Wuhan University ,W uhan 430072,China ) A bstract :In the paper the authors introduce three ke y methods of dimensionality r eduction in high -dimen -sional dataset ,such as MDS ,Isomap .At the same time the authors discuss applications of those methods .Key words :high -dimensional data ;dimensionality reduction ;MDS ;Isomap ;LLE 收稿日期:2006-12-20 基金项目:国家自科基金资助项目(70473068) 作者简介:余肖生(1973-),男,湖北监利人,博士研究生,从事信息管理与电子商务研究;周 宁(1943-),男, 湖北钟祥人,教授,博士生导师,从事信息组织与检索、信息系统工程、电子商务与电子政务研究. 1 引 言 随着计算机技术、多媒体技术的发展,在实际应用中经常会碰到高维数据,如文档词频数据、交易数据及多媒体数据等。随着数据维数的升高,高维索引结构的性能迅速下降,在低维空间中,我们经常采用Lp 距离(当p =1时,Lp 距离称为Man -hattan 距离;当p =2时,Lp 距离称为Euclidean 距离)作为数据之间的相似性度量,在高维空间中很多情况下这种相似性的概念不复存在,这就给基于高维数据的知识挖掘带来了严峻的考验【1】 。而这些高维数据通常包含许多冗余,其本质维往往比原始的数据维要小得多,因此高维数据的处理问题可以归结为通过相关的降维方法减少一些不太相关的数据而降低它的维数,然后用低维数据的处理办法进行处理 【2-3】 。高维数据成功处理的关键在于降维方 法的选择,因此笔者拟先介绍三种主要降维方法, 接着讨论高维数据降维方法的一些应用。 2 高维数据的主要降维方法 高维数据的降维方法有多种,本文主要讨论有代表性的几种方法。 2.1 MDS (multidimensional scaling )方法 MDS 是数据分析技术的集合,不仅在这个空间上忠实地表达数据之间联系,而且还要降低数据集的维数,以便人们对数据集的观察。这种方法实质是一种加入矩阵转换的统计模式,它将多维信息 通过矩阵运算转换到低维空间中,并保持原始信息之间的相互关系 【4】 。 每个对象或事件在多维空间上都可以通过一个 点表示。在这个空间上点与点之间的距离和对象与对象之间的相似性密切相关。即两个相似的对象通过空间临近的两个点来表示,且两个不相似的对象 第25卷第8期2007年8月 情 报 科 学 Vol .25,No .8 August ,2007

图像运动模糊复原算法综述概要

752b=———=;———#==——====—#==;=————=—=——=====——===——=—#一a以科学发展观促进科技创新(下)21EichmannG,StojancicM.Superresolvingsignalandimagerestorationusingory.Appl.Opt.1987。V01.26:1911~1918linearassociativemem—22collectivecomputationalabilities.HopfieldJJ.NeuralnetworksandphysicalsystemwithemergentProcNatAcadSciUSA。1982,(79):2554~2558ininverseandwienerfilterrestorationsofmotion—blurred2324StenderJ.(ed).ParallelGeneticAlgorithms:TheoryandApplication.10SPress.1993errorsLimH。TanKC,TanBTG.Edgeimagesandtheirwindowingtreatmen

t.CVGIP.1991,53:186。195作者简介刘晶晶,现为北京大学遥感所、中国矿业大学(北京)机电学院计算机硕士。研究方向:图像处理与模式识别。电话:(010)51733380;E—mail:ljj010@126.com。晏磊,现为北京大学地球与空间科学学院教授,博士生导师,北京市空间信息集成与3S工程应用重点实验室主任。何凯,现为北京大学遥感所博士后。研究方向:分形、小波理论及其在遥感影像处理方面的应用。宁书年,现为中国矿业大学(北京)博士生导师,地球探测与信息技术博士点学科带头人。LED显示技术及其发展趋势罗妙宣1王华1’2夏华丽21.北京大学空间信息集成与3S工程应用北京市重点实验室,北京,100871;2.中国矿业大学(北京)机电与信息工程学院,北京,100083摘要本文介绍了LED显示技术的工作原理、简要介绍了它的系统组成;并与CRT技术、LCD技术进行了比较,阐明了该技术的发展趋势及其应用前景。关键词LED显示技术半导体一、引言随着时代步伐的前进,信息已经日益成为人们关注的焦点,信息发布的方式就显得尤为重要,基于LED显示技术的显示屏就这样应运而生了。LED显示屏是由发光二极管组成的平面点阵来显示图像信息的器件。它以其自身的高亮度、低能耗、长寿命、响应快和无辐射的优点在短短的几十年发展成为现代信息发布的重要手段,并被广泛地应用于证券交易、金融、交通、体育、广告等领域。最近几年以GaN为基础的2%族半导体材料和器件方面取得了突破性进展,导致了GaN基蓝光LED进入市场,并被用于全色大屏幕显示器,使LED显示器的发展进入了一个全新阶段。LED材料分无机和有机两种,无机材料激发电压低、设备工艺简单、亮度高;近年来基于有机发光二极管(OLED)的平板显示器,由于其新颖的特性正在成为平板显示器领域的一个新增长点。二、LED显示技术的工作原理LED(LightEmittingDiode)是指通过一定的控制方式,用于显示文字、文本图形图像和行情等各种 图像运动模糊复原算法综述作者:作者单位:刘晶晶,晏磊,何凯,宁书年刘晶晶(北京大学遥感与地理信息系统研究所,北京,100871;中国矿业大学(北京机电与信息工程学院,北京,100083,晏磊,何凯(北京大学遥感与地理信息系统研究所,北京,100871,宁书年(中国矿业大学(北京机电与信息工程学院,北京,100083 本文读

模型降阶方法综述

模型降阶方法综述 大系统模型降阶是一个活跃的研究领域,比较成熟的经典降阶方法主要有:Pade逼近法,时间矩法,连分式法,Routh逼近法及棍合法等。本文综述了这一领域的现有文献,介绍了每种降阶方法的基本思想、优缺点和适用范围,特别指出了一些新的经典模型降阶方法的进展。文中最后提出了模型降阶方法的可能研究方向。 一、Pade逼近法 Pade逼近法是大系统模型简化中最早出现的一种经典降阶方法。到目前为止,人们仍然公认它是一种行之有效的传递函数降阶法。Pade逼近法是泰勒级数展开理论的应用,适用于传递函数可表示成有理多项式分式(或传递函数阵为有理分式阵)的场合。降阶方法简单,易于编制上机程序,低频(稳态)拟合性能好。但是,Pade逼近法的高频(动态)拟合性能较差且不能保证降阶模型的稳定性。因而在模型降阶方法中,很少单独使用Pade逼近法。 为了弥补Pade逼近法的不足,Brown等引入了使降阶模型稳定的补充性能准则,但却提高了降阶模型的阶次;Rossen等把造成降阶模型不稳定的极点隔离开来,并用任意稳定极点取代,可以防止降阶模型不稳定,但加大了计算量;Chuang和Shamash先后提出在0 s=和s=∞附近交替展成Pade近似式,可获得有较好动态拟合性能的降阶模型;Shih等采用线性变换方法将() G s中不稳定的极点映射到另一平面,以扩大Pade展开式的收敛域,并由此选出稳定的降阶模型。

为了克服泰勒级数收敛慢的弱点,Calfe等提出了切比雪夫多项式模型降阶方法,可获得稳定的降阶模型;Bistritz等提出了广义切比雪夫一Pade逼近法,即Darlington多项式展开法。这两种降阶方法均可使降阶模型在预定的区间上既稳定又具有最小相位,但计算量大,仅适用于单变量系统。 二、时间矩法 时间矩法首先由Paynter提出,采用与Pade逼近法类似的方法,把高阶系统和降阶模型都展成多项式,再令时间矩对应项相等,可以求得降阶模型的各系数。因此,时间矩法本质上仍是Pade遏近法,其优缺点也相似。 有的学者从时间矩或马尔可夫参数组成的Hankel阵出发,提出了相应的模型降阶方法,但本质上仍属于时间矩法的范畴。 三、连分式法 连分式是函数论中研究得比较深入的课题。1974年左右,开始应用连分式进行模型降阶,5年后,又推广于多变量系统降阶。连分式降阶法的基本出发点是:将真有理传递函数G(s)在0 s 附近展成连分式,然后截取前面起主要作用的若干项(也称偏系数)构成降阶模型。由于连分式比其他多项式或幂级数展开式收敛快,少量偏系数就能反映原系统的主要信息,所以连分式法是一种很有效的频域模型降阶方法,至今仍被广泛应用。 在降阶过程中,常用的连分式有:Cauer一I型,Cauer一II型,Cauer一III型,修正Cauer型和Jordan型等。在现代频域降阶法中,

降维方法

国内当前流行的文本分类算法有最大熵(MaximumEntropy,ME),K近邻法(KNN),朴素贝叶斯法(NB),支持向量机法(SVM),线性最小平分拟合法(LLSF),神经网络法(Nnet)等,其中KNN、NB和SVM的分类效果相对较好。 文本分类由文本表示,特征降维和分类器训练组成,分类算法只是其中的一个环节,另外两个环节也非常重要。目前普遍采用向量空间模型来表示文本,常见的特征词加权方法有:布尔权重、词频权重、TF—IDF权重等,常见的特征选择方法有文档频率,互信息和统计等。 基于机器学习文本分类的基础技术由文本的表示(representation) 、分类方法及效果(effectiveness)评估3 部分组成。Sebastiani对文本分类发展历程及当时的技术进行了总结,主要内容包括: (1)文本关于项(term)或特征的向量空间表示模型(VSM)及特征选择 (selection)与特征提取(extraction)两种表示空间降维(dimensionality reduction)策略,讨论了χ2,IG,MI,OR 等用于特征过滤的显著性统计量及项聚类和隐含语义索引(LSI)等特征提取方法; (2) 当时较成熟的分类模型方法,即分类器的归纳构造(inductive construction)或模型的挖掘学习过程; (3) 分类效果评估指标,如正确率(precision) 召回率(recall) 均衡点(BEP) F β(常用F1)和精度(accuracy)等,以及之前报道的在Reuters 等基准语料上的效果参考比较。 1、中文评论语料的采集 利用DOM 构建网页结构树,对结构树的分析实现了中文评论的自动采集的方

较大规模数据应用PCA降维的一种方法

计算机工程应用技术 本栏目责任编辑:梁 书 较大规模数据应用PCA 降维的一种方法 赵桂儒 (中国地震台网中心,北京100045) 摘要:PCA 是一种常用的线性降维方法,但在实际应用中,当数据规模比较大时无法将样本数据全部读入内存进行分析计 算。文章提出了一种针对较大规模数据应用PCA 进行降维的方法,该方法在不借助Hadoop 云计算平台的条件下解决了较大规模数据不能直接降维的问题,实际证明该方法具有很好的应用效果。关键词:主成分分析;降维;大数据中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)08-1835-03 A Method of Dimensionality Reduction for Large Scale Data Using PCA ZHAO Gui-ru (China Earthquake Networks Center,Beijing 100045,China) Abstract:PCA is a general method of linear dimensionality reduction.It is unable to read all the sample data into the memory to do analysis when the data scale becomes large.A method of dimensionality reduction for large scale data using PCA without Ha?doop is proposed in this paper.This method solves the problem that it can ’t do dimensionality reduction directly on large scale data.Practice proves that this method has a good application effect.Key words:PCA;dimensionality reduction;large scale data 现实生活中人们往往需要用多变量描述大量的复杂事物和现象,这些变量抽象出来就是高维数据。高维数据提供了有关客观现象极其丰富、详细的信息,但另一方面,数据维数的大幅度提高给随后的数据处理工作带来了前所未有的困难。因此数据降维在许多领域起着越来越重要的作用,通过数据降维可以减轻维数灾难和高维空间中其他不相关属性。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。 主成分分析(Principal Component Analysis ,PCA )是通过对原始变量的相关矩阵或协方差矩阵内部结构的研究,将多个变量转换为少数几个综合变量即主成分,从而达到降维目的的一种常用的线性降维方法。这些主成分能够反映原始变量的绝大部分信息,它们通常表示为原始变量的线性组合。在实际应用中当数据规模超过计算机内存容量(例如16G)时就无法将样本数据全部读入内存来分析原始变量的内部结构,这成为PCA 在实际应用中存在的一个问题。该文从描述PCA 变换的基本步骤出发,提出了一种不需要Hadoop 等云计算平台即可对较大规模数据进行降维的一种方法,实际证明该方法具有很好的应用效果。 1PCA 变换的基本步骤 PCA 是对数据进行分析的一种技术,主要用于数据降维,方法是利用投影矩阵将高维数据投影到较低维空间。PCA 降维的一般步骤是求取样本矩阵的协方差矩阵,计算协方差矩阵的特征值及其对应的特征向量,由选择出的特征向量构成这个投影矩阵。 ?è???????? ÷÷÷÷÷÷cov(x 1,x 1),cov(x 1,x 2),cov(x 1,x 3),?,cov(x 1,x N )cov(x 2,x 1),cov(x 2,x 2),cov(x 2,x 3),?,cov(x 2,x N ) ?cov(x N ,x 1),cov(x N ,x 2),cov(x N ,x 3),?,cov(x N ,x N )(1)假设X M ×N 是一个M ×N (M >N ),用PCA 对X M ×N 进行降维分析,其步骤为:1)将矩阵X M ×N 特征中心化,计算矩阵X M ×N 的样本的协方差矩阵C N ×N ,计算出的协方差矩阵如式(1)所示,式中x i 代表X M ×N 特征中心化后的第i 列; 2)计算协方差矩阵C N ×N 的特征向量e 1,e 2...e N 和对应的特征值λ1,λ2...λN ,将特征值按从大到小排序; 3)根据特征值大小计算协方差矩阵的贡献率及累计贡献率,计算公式为: θi =λi ∑n =1 N λn i =1,2,...,N (2) 收稿日期:2014-01-20基金项目:国家留学基金资助项目(201204190040)作者简介:赵桂儒(1983-),男,山东聊城人,工程师,硕士,迈阿密大学访问学者,主要研究方向为多媒体信息处理。 1835

高维数据的低维表示综述

高维数据的低维表示综述 一、研究背景 在科学研究中,我们经常要对数据进行处理。而这些数据通常都位于维数较高的空间,例如,当我们处理200个256*256的图片序列时,通常我们将图片拉成一个向量,这样,我们得到了65536*200的数据,如果直接对这些数据进行处理,会有以下问题:首先,会出现所谓的“位数灾难”问题,巨大的计算量将使我们无法忍受;其次,这些数据通常没有反映出数据的本质特征,如果直接对他们进行处理,不会得到理想的结果。所以,通常我们需要首先对数据进行降维,然后对降维后的数据进行处理。 降维的基本原理是把数据样本从高维输入空间通过线性或非线性映射投影到一个低维空间,从而找出隐藏在高维观测数据中有意义的低维结构。(8) 之所以能对高维数据进行降维,是因为数据的原始表示常常包含大量冗余: · 有些变量的变化比测量引入的噪声还要小,因此可以看作是无关的 · 有些变量和其他的变量有很强的相关性(例如是其他变量的线性组合或是其他函数依赖关系),可以找到一组新的不相关的变量。(3) 从几何的观点来看,降维可以看成是挖掘嵌入在高维数据中的低维线性或非线性流形。这种嵌入保留了原始数据的几何特性,即在高维空间中靠近的点在嵌入空间中也相互靠近。(12) 数据降维是以牺牲一部分信息为代价的,把高维数据通过投影映射到低维空间中,势必会造成一些原始信息的损失。所以在对高维数据实施降维的过程中如何在最优的保持原始数据的本质的前提下,实现高维数据的低维表示,是研究的重点。(8) 二、降维问题 1.定义 定义1.1降维问题的模型为(,)X F ,其中D 维数据空间集合{}1N l l X x ==(一般为D R 的一个子集),映射F :F X Y →(),x y F x →=

常见的特征选择或特征降维方法

URL:https://www.wendangku.net/doc/0f7169762.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。

2 单变量特征选择Univariate feature selection 单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。对于回归和分类问题可以采用卡方检验等方式对特征进行测试。 这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。 2.1 Pearson相关系数Pearson Correlation 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。 Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。 Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系, Pearson相关性也可能会接近0。 2.2 互信息和最大信息系数Mutual information and maximal information coefficient (MIC)

数据降维方法分析与研究_吴晓婷

收稿日期:2008211226;修回日期:2009201224 基金项目:国家自然科学基金资助项目(60372071);中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金资助项目(20070101);辽宁省教育厅高等学校科学研究基金资助项目(2004C031) 作者简介:吴晓婷(19852),女(蒙古族),内蒙古呼伦贝尔人,硕士研究生,主要研究方向为数据降维、模式识别等(xiaoting wu85@hot m ail . com );闫德勤(19622),男,博士,主要研究方向为模式识别、数字水印和数据挖掘等. 数据降维方法分析与研究 3 吴晓婷,闫德勤 (辽宁师范大学计算机与信息技术学院,辽宁大连116081) 摘 要:全面总结现有的数据降维方法,对具有代表性的降维方法进行了系统分类,详细地阐述了典型的降维方法,并从算法的时间复杂度和优缺点两方面对这些算法进行了深入的分析和比较。最后提出了数据降维中仍待解决的问题。 关键词:数据降维;主成分分析;局部线性嵌入;等度规映射;计算复杂度 中图分类号:TP301 文献标志码:A 文章编号:100123695(2009)0822832204 doi:10.3969/j .jssn .100123695.2009.08.008 Analysis and research on method of data dimensi onality reducti on WU Xiao 2ting,Y AN De 2qin (School of Co m puter &Infor m ation Technology,L iaoning N or m al U niversity,D alian L iaoning 116081,China ) Abstract:This paper gave a comp rehensive su mmarizati on of existing di m ensi onality reducti on methods,as well as made a classificati on t o the rep resentative methods systematically and described s ome typ ical methods in detail.Further more,it deep ly analyzed and compared these methods by their computati onal comp lexity and their advantages and disadvantages .Finally,it p r oposed the crucial p r oble m s which needed t o be res olved in future work in data di m ensi onality reducti on . Key words:data di m ensi onality reducti on;p rinci pal component analysis (PCA );l ocally linear e mbedding (LLE );is ometric mapp ing;computati onal comp lexity 近年来,数据降维在许多领域起着越来越重要的作用。通过数据降维可以减轻维数灾难和高维空间中其他不相关属性,从而促进高维数据的分类、可视化及压缩。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。数据降维的数学描述如下:a )X ={x i }N i =1是D 维空间中的一个样本集, Y ={y i }N i =1是d (d <

多组分分析方法综述

重金属多组分分析的研究现状 近年来,随着科技的进步,单组分重金属的检测技术已经非常成熟,但是在实际污染体系中重金属离子种类繁多,且它们之间往往存在相互干扰,传统的化学分析方法和化学分析仪器难以一次性精确的检测出各个重金属离子的浓度,需要对共存组分进行同时测定。 对共存组分进行同时测定,传统的化学分析方法是首先通过加入各种掩蔽剂进行组分的预分离,然后采用单组分重金属检测技术进行分析检测。这种方法的分离过程往往冗长繁琐,实验条件苛刻,费时费力,而且检测精度低,无法应用于污染现场的检测。 随着计算机科学技术、光谱学和化学信息学的发展,复杂体系的多组分分析已成为当今光谱技术的研究热点,应用范围涉及环境监测、石油化工、高分子化工、食品工业和制药工业等领域,而且需求日益显著。由于多重金属离子共存时会产生重金属离子间的相互作用,因此在用化学分析仪器检测时会产生相干数据干扰,对实验结果产生影响,为了使测试结果更加准确,需要在实验的基础上建立数学模型,用于数据处理,消除各重金属离子共存时产生的相干数据干扰。近年来,引入化学计量学手段,用“数学分离”部分代替复杂的“化学分离”,从而达到重金属离子的快速、简便分析测定[1]。 化学计量学是一门通过统计学或数学方法将对化学体系的测量值与体系的状态之间建立联系的学科,它应用数学、统计学和其他方法和手段(包括计算机)选择最优试验设计和测量方法,并通过对测量数据的处理和解析,最大限度地获取有关物质系统的成分、结构及其他相关信息。目前,已有许多化学计量学方法从不同程度和不同方面解决了分析化学中多组分同时测定的问题,如偏最小二乘法(PLS)、主成分回归法(PCR)、Kalman滤波法、多元线性回归(MLR)等,这些方法减少了分离的麻烦,并使试验更加科学合理。 (1) 光谱预处理技术 这些方法用来降噪、消除无关信息。 ①主成分分析法 在处理多元样本数据时,假设总体为X=(x1,x1,x3…xn),其中每个xi (i=1,2,3,…n)为要考察的数量指标,在实践中常常遇到的情况是这n个指标之间存在着相关关系。如果能从这n个指标中构造出k个互不相关的所谓综合指标(k

高维面板数据降维与变量选择方法研究

高维面板数据降维与变量选择方法研究 张波方国斌 2012-12-14 14:35:56 来源:《统计与信息论坛》(西安)2012年6期第21~28页内容提要:从介绍高维面板数据的一般特征入手,在总结高维面板数据在实际应用中所表现出的各种不同类型及其研究理论与方法的同时,主要介绍高维面板数据因子模型和混合效应模型;对混合效应模型随机效应和边际效应中的高维协方差矩阵以及经济数据中出现的多指标大维数据的研究进展进行述评;针对高维面板数据未来的发展方向、理论与应用中尚待解决的一些关键问题进行分析与展望。 关键词:高维面板数据降维变量选择 作者简介:张波,中国人民大学统计学院(北京100872);方国斌,中国人民大学统计学院,安徽财经大学统计与应用数学学院(安徽蚌埠233030)。 一、引言 在社会现象观测和科学实验过程中经常会产生面板数据。这类数据通过对多个个体在不同时间点上进行重复测度,得到每个个体在不同样本点上的多重观测值,形成时间序列和横截面相结合的数据,也就是所谓的“面板数据”。由于应用背景的不同,面板数据有时也称作纵向数据(longitudinal data)。面板数据广泛产生于经济学、管理学、生物学、心理学、健康科学等诸多领域。

随着信息技术的高速发展,数据采集、存储和处理能力不断提高,所谓的高维数据分析问题不断涌现。对于多元统计分析而言,高维问题一般指如下两种情形:一种是变量个数p较大而样本量n相对较小,例如药物试验中有成千上万个观测指标而可用于实验观测的病人个数较少;另一种是变量个数户不大但是样本个数n较多,例如一项全国调查牵涉到大量的调查对象,而观测指标个数相对较少。面板数据高维问题较多元(时序)高维问题更为复杂,因为面板数据至少包括两个维度:时间和横截面。在实际应用中,不同个体在不同时间进行观测时可以获得多个指标值。为了以下论述的方便,用p表示指标个数,T表示观测期长度,N表示个体(individual)或主题(subject)个数。数理统计中所提到的高维(大维)问题,通常是指个体数N、时期长度T或指标个数p这三个变量中的一个或多个可以趋向于无穷。具体应用中,只要N、T和p中有一个或多个大于某个给定的临界值,都称为高维问题。 本文主要研究两种基本类型的高维面板问题:一类为面板数据分析中解释变量个数p非常多,超过个体数N和时期数T,比如零售商业网点成千上万种商品扫描数据,央行和国家统计部门得到的多个指标在不同个体宏观经济观测数据等;另一类是混合效应模型中随机效应和固定效应设定时方差协方差矩阵所需确定的参数个数较多,某些参数的值趋向于零,要对方差协方差矩阵进行变量选择,此时针对固定效应和随机效应可以采用不同的变量选择策略。 二、高维面板数据因子模型 大型数据集构成的社会经济面板的特点是具有成百上千个观测指标,也就是具有所谓的高维特征。由于这种特征的存在,采用经典统计计量分析方法很难进行处理。因子模型(factor model)不仅可以有效降低数据的维度,而且可以充

大数据降维的经典方法

大数据降维的经典方法 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。 最新的一个例子是采用2009 KDD Challenge 大数据集来预测客户流失量。该数据集维度达到15000 维。大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。该项目的最重要的就是在减少数据列数的同时保证丢失的数据信息尽可能少。 以该项目为例,我们开始来探讨在当前数据分析领域中最为数据分析人员称道和接受的数据降维方法。 缺失值比率(Missing Values Ratio) 该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。该方法示意图如下: 低方差滤波(Low Variance Filter) 与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。算法示意图如下: 高相关滤波(High Correlation Filter) 高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使

用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。算法示意图如下: 随机森林/组合树(Random Forests) 组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。算法示意图如下: 主成分分析(PCA) 主成分分析是一个统计过程,该过程通过正交变换将原始的n 维数据集变换到一个新的被称做主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前m(m < n) 个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。同样也需要注意的是,新的主成分并不是由实际系统产生的,因此在进行PCA 变换后会丧失数据的解释性。如果说,数据的解释能力对你的分析来说很重要,那么PCA 对你来说可能就不适用了。算法示意图如下: 反向特征消除(Backward Feature Elimination)

相关文档