文档库 最新最全的文档下载
当前位置:文档库 › 二氧化铈纳米材料的合成及性能研究

二氧化铈纳米材料的合成及性能研究

二氧化铈纳米材料的合成及性能研究
二氧化铈纳米材料的合成及性能研究

二氧化铈纳米材料的合成及性能研究

内容摘要

国内外早已开始了对纳米氧化铈颗粒制备技术与性能的研究。氧化铈具有立方萤石结构。它有热稳定性高,氧气储存能力强和可以在Ce3+和Ce4+氧化状态之间简单的转换的特性,因此它吸引了研究者广泛的兴趣。它已广泛应用于催化剂、紫外吸收材料,氧敏感材料、固体氧化物电池材料和抛光材料等领域。氧化铈在合成氧化CO的催化剂上展现的性能尤为突出。液相制备方法是纳米氧化铈众多制备方法的一种,它因为制作工艺相对简单的优点在所有制备方法中脱颖而出。液相制备法很适合大规模生产,它在研究方向上的前途也可预测。本文将对上文做详细描述。

Abstract

Preparation technology and research progress of CeO? nanoparticles researched both at home and abroad.Cerium oxide has cubic fluorite structure. It has attracted extensive interest due to its high thermal stability,oxygen storage capacities, and easy conversion between Ce3+ and Ce4+ oxidation states。It has been widely used in catalyst,ultraviolet absorption material,the oxygen sensitive material,solid oxide cell material and polishing material and so on.Especially, CeO? have been successfully synthesized and used for CO catalytic oxidation.Kinds of preparation methods of liquid phase and their differences are especially emphasized according to the advantages of liquid phase method, which can be easily enlarged in industry, and futrue directions of research are also predicted. CeO2 have been successfully synthesized and used for CO catalytic oxidation.We will give more details about what describes below.

Key: CeO?liquid phase method CO catalytic oxidation

一、实验背景

CeO?属于立方晶系萤石(CaF?)结构,晶胞中的Ce3+按面心立方点阵排列,O2-占据所有的四面体位置,每个Ce4+被8个O2-包围,而每个O2-则与4个Ce4+配位,这样的结构中有许多八面体空隙,允许离子快速扩散。Ce有Ce4+和Ce3+两种氧化态,容易发生氧化还原循环,有较强的储氧功能。[1]

由于具有较大的比表面积, CeO?纳米颗粒具有很大的应用潜力, 近年来人们对于这种形貌的纳米CeO?研究得最多, 方法也各具特色。其制备方法主要有水热法、溶剂热法、溶胶-凝胶法、反胶束法、声化学法以及微乳液法等。[2]

化学沉淀法

沉淀法是高纯度纳米金属氧化物材料合成的最普通的化学反应方法。沉淀法就是用各种溶解在水中的沉淀剂与金属盐反应生成不溶性氢氧化物、碳酸盐、乙酸盐和硫酸盐等,后将沉淀物过滤、干燥、煅烧,从而得到目标纳米粒子。沉淀法主要分为: 直接沉淀法、共沉淀法、均匀沉淀法等。化学沉淀法具有反应过程易控制,工艺以及设备简单,成核速度快,产品成本低廉,在工业生产中拥有广阔的应用前景,但沉淀法在制备颗粒过程中容易出现团聚的现象,而且过滤和洗涤的过程也比较困难,同时也容易造成产品流失。[3]

一、实验

(一)试剂与分析仪器

试剂:Ce(NO

3)

3,

(A.R)40%的醇水混合溶液(A.R)

HMT(六亚甲基四胺)(A.R)

合成仪器:分析天平、恒温加热磁力搅拌器、高频超声波分散器、干燥箱、高速台式离心机。

分析设备:为X射线衍射仪(XRD)、场发射电镜(FE-SEM)和透射电镜(TEM)。

(二) 实验方法

1.纳米CeO?的制备:在两个洗净的烧杯中,向一个烧杯中加入一定量的

Ce(NO

3)

3,

溶解于35ml蒸馏水与乙醇1:1的混合体系中,向另外一个烧杯中加入一

定量的HMT和35ml蒸馏水与乙醇1:1的混合溶液,同时加热到一定温度后进行混合,在相应温度下反应一定时间后将所得产物进行回收,经数次超声分散清洗、离心后干燥即得试样。

2. 试样表征

采用XRD、SEM和TEM分析对试样物相结构、表面形貌和颗粒大小及分布情况表征。

二.结果与分析

反应时间及陈化对产物的影响

图一为60℃下不同反应时间为1h,2h,24h以及有无陈化24h的XRD图,其主要组成为CeO2但还含一些尚不明确相,且衍射峰的强度差异不大,由此可知室温下混合时间的长短不会对产物有较大的影响。从图中可以看出有了着陈化作用使结晶性提高,随着反应时间延长结晶性提高。

图一:不同陈化时间下的产物XRD图

A 60℃反应1h,陈化24h

B 60℃反应2h

C 60℃反应2h,陈化24h

D 60℃陈化24h

反应温度及时间对产物的影响

图二为60℃与74℃在反应时间不同的XRD图,从图中可以看出随着反应温度上升(60℃到74℃)结晶性上升;从74℃反应2h的结晶性好于60℃反应24h可以看出反应温度的影响大于反应时间的影响

图二:不同反应温度及时间对产物的影响

A. 74℃反应1h

B.60℃反应2h

C. 74℃反应2h D 60℃反应24h

反应产物颗粒分析

利用Scherrer 公式

计算得到的晶粒尺寸

图三与图四分别60℃ 1h SEM 照片和60℃ 2h SEM 照片,产物颗粒有较明显团聚现象且大小不均匀,结合XRD 结果可知产物是为混合物的缘故。推断带氨基有机物HMT 需要在一定的温度下才能有效的水解,产生氢氧根离子,利于转化成CeO2。但是从图中可观察出随着反应时间的增长,颗粒聚团现象加剧。

图三: 60℃ 1h SEM 照片

hkl D cos k λ

βθ=

图四:60℃ 2h SEM照片

三.结论

使用上述试验方法,不需要经过高温热处理,不需要任何昂贵的前驱体,就可以合成晶粒尺寸在10nm以下的二氧化铈纳米颗粒。

随着反应温度的上升、反应时间的延长以及陈化处理都会使产物结晶性上升,晶粒尺寸变大

在温度反应时间陈化处理这三个因素中,反应温度对产物晶粒尺寸影响最大,反应时间次之,陈化处理最弱。因而可以通过陈化处理来制备结晶性好,晶粒尺寸小的产物。

四.后期研究计划

直接甲醇燃料电池

燃料电池作为一种新型能源,具有以下优点:

(1)能量转化效率高。燃料电池直接将燃料中化学能转换为电能,避免了化学能到热能,再到机械能,然后到电能过程中的能量损失,具有高达 45%一60%的能量转换效率,如果通过热电共生同时利用高温洁净热能,能量转换效率町以达到

80%。

(2)环境友好。当氢为燃料时,燃料电池的副产物是水。这意味着燃料电池是“零排放”。是燃料电池应用于汽车的最大优点,也是减少汽车尾。[4]

Background:The hexagon single-crystal Co(OH)2 nanoplates, which obtained by hydrothermal synthesis method, can be transformed to the porous single-crystal Co3O4 nanoplates after the heat treatment above 300℃in air. Electrochemical tests show that the lithium storage performances of porous Co3O4 nanoplates are influenced more closely to its structural aspects than its morphology and size factors, which can be controlled by changing the heat treatment temperature. When the heat treatment temperature is increased to 500 ℃, the robust single-crystal Co3O4 nanoplates with relatively large mesoporous size and low specific surface area can be obtained via the long-range atom diffusion at high temperature, which exhibit low initial irreversible capacity, superior cycling performance and excellent rate capability. 【】选择复合氧化钴,通过尝试不同比例,找到复合氧化钴的最佳值。

实验方案:在两个洗净的烧杯中,向一个烧杯中加入一定量的Ce(NO

3)

3,

Co(NO

3)

2

·6H

2

O溶解于35ml蒸馏水与乙醇1:1的混合体系中,向另外一个烧杯中加

入一定量的HMT和35ml蒸馏水与乙醇1:1的混合溶液,同时加热到一定温度后进

行混合,在相应温度下反应一定时间后将所得产物进行回收,经数次超声分散清洗、离心后干燥即得试样。

图五:不同Ce:Co比值时产物的XRD

A.Ce:Co=1:1 ;

B.Ce:Co=1:2 ;

C.Ce:Co=2:1

图五采用XRD对试样物扫描中出现两个杂峰且没有看出有其他物质,主峰都是二氧化铈,这说明两者混合产物中钴的产物含量很低。

参考文献

[1]张丽,查五生,刘锦云,杨平平等,纳米CeO?的制备方法研究现状。广州化工,2007。

[2]周艳慧,杨晓峰,董相廷,王进贤,刘桂霞,不同形貌纳米CeO2 的制备最新研究进展,中国稀土学报,2008.

[3]刘军,宋晓岚,二氧化铈浆料抛光机理的研究进展,稀土 Chinese Rare Earths,2012.

[4]孙志佳,刘连利,吕红,纳米CeO?化学制备方法的研究进展,渤海大学学报( 自然科学版),2013。

[5]Zachary Moorhead-Rosenberg, Katharine L. Harrison, Travis Turner, and Arumugam Manthiram,A Rapid Microwave-Assisted Solvothermal Approach to Lower- Valent Transition Metal Oxides.

[6]R. B. Rakhi, Wei Chen, M. N. Hedhili, Dongkyu Cha, and H. N. Alshareef,Enhanced Rate Performance of Mesoporous Co3O4 Nanosheet Supercapacitor Electrodes by Hydrous RuO2 Nanoparticle Decoration .

[7]谢丽英,柳召刚,纳米氧化铈粉体的制备技术研究进展,稀土 Chinese Rare Earths,2007.

[8]龙志奇, 朱兆武, 崔大立, 张顺利, 张国成,碳酸氢铵沉淀法制备超细 CeO2 粉体工艺条件研究,稀土 Chinese Rare Earths,2008

[9]齐恩磊,牛锛,张世磊,氧化铈纳米带的制备及表征,山东陶瓷,2012.

[10]侯侠,任立鹏,燃料电池的发展趋势,云南化工,2011。

[11]蒋淇忠,董新法,林维明,选择性催化氧化除去甲醇燃料电池天然气化工,2011

[12]Congcong Liang, Danfei Cheng, Shujiang Ding, Pengfei Zhao, Mingshu Zhao, Xiaoping Song, Fei Wang* The structure dependent electrochemical performance of porous Co3O4 nanoplates as anode materials for lithium-ion batteries Journal of Power Sources 251 (2014) 351e356

[13] 罗远来, 梁振兴, 廖世军等,直接甲醇燃料电池阳极催化剂研究进展,催化学报,2010.

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

一纳米氧化镁为模板一步法制备多级孔炭材料

第一部分文献综述 1.1 多孔炭的研究背景与意义 伴随着全球经济的快速发展和科技水平的进步,煤、石油和天然气等化石燃料消耗逐年增加,日渐枯竭,并且化石燃料的利用造成严重的环境污染,如温室效应、酸雨、大气颗粒物污染、臭氧层破坏和生态环境破坏等。人类正面临着资源短缺、环境污染、生态破坏等迫切需要解决的问题,全球经济和会的可持续发展也面临着严峻的考验。人们迫切需要开发利用新能源和可再生清洁能源来解决日趋短缺的能源问题和日益严重的环境污染。 化学储能装置具有使用方便,性能可靠,便于携带,容量、电流和电压可在相当大的范围内任意组合和对环境无污染等许多优点,在新能源技术的开发和利用中占有重要地位。储氢、储锂和超级电容器等储能装置的电极材料的研究成为材料研究中的热点。在所有的储能材料中,多孔碳材料由于具有大的比表面积,均一的孔径分布,孔结构可调等优点,是迄今为止最理想的储能材料。除此之外,多孔碳材料由于具有均匀的孔径分布,吸收储存气体和液体性能也非常优秀,常被应用于环境保护,制药和化工等领域,作为有毒气体和液体的净化吸收剂。 在近十几年间,有关多孔碳材料方面的报告和论文大批量在国际会议和国际学术刊物上发表,表明多孔碳材料已经成为当今科学界的研究热点。经过科研人员多年不断的试验研究,大批量孔径尺寸分布均匀且可以调控、结构组成可以变化、排列样式和孔道形态多种多样的多孔碳材料可以通过各种各样的合成方法被制备出来。尽管人们已经取得了许多成果,但是多孔碳材料仍然存在许多不足,需要我们去探索和解决,多孔碳材料的性能与实际应用有一定的差距,也有待进一步提高。未来仍然需要我们不断努力去开发成本低,制备过程

二氧化铈纳米材料的合成及性能研究

二氧化铈纳米材料的合成及性能研究 内容摘要 国内外早已开始了对纳米氧化铈颗粒制备技术与性能的研究。氧化铈具有立方萤石结构。它有热稳定性高,氧气储存能力强和可以在Ce3+和Ce4+氧化状态之间简单的转换的特性,因此它吸引了研究者广泛的兴趣。它已广泛应用于催化剂、紫外吸收材料,氧敏感材料、固体氧化物电池材料和抛光材料等领域。氧化铈在合成氧化CO的催化剂上展现的性能尤为突出。液相制备方法是纳米氧化铈众多制备方法的一种,它因为制作工艺相对简单的优点在所有制备方法中脱颖而出。液相制备法很适合大规模生产,它在研究方向上的前途也可预测。本文将对上文做详细描述。 Abstract Preparation technology and research progress of CeO? nanoparticles researched both at home and abroad.Cerium oxide has cubic fluorite structure. It has attracted extensive interest due to its high thermal stability,oxygen storage capacities, and easy conversion between Ce3+ and Ce4+ oxidation states。It has been widely used in catalyst,ultraviolet absorption material,the oxygen sensitive material,solid oxide cell material and polishing material and so on.Especially, CeO? have been successfully synthesized and used for CO catalytic oxidation.Kinds of preparation methods of liquid phase and their differences are especially emphasized according to the advantages of liquid phase method, which can be easily enlarged in industry, and futrue directions of research are also predicted. CeO2 have been successfully synthesized and used for CO catalytic oxidation.We will give more details about what describes below. Key: CeO?liquid phase method CO catalytic oxidation

模板合成法制备纳米材料的研究进展

收稿日期:2006-11-28 江苏陶瓷 JiangsuCeramics 第40卷第3期2007年6月 Vol.40,No.3June,2007 0 前言 纳米微粒因其特有的表面效应、量子尺寸效应、 小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、 电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值。作为纳米材料研究的一个重要方向,探索条件温和、形态和粒径及其分布可控、产率高的制备方法是这方面研究的首要任务。 目前已经发展了很多制备方法[1],如:蒸发冷凝法、物理粉碎法、机械球磨法等物理方法和气相沉积法、溶胶-凝胶法、沉淀法、水(溶剂)热法和模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣。 模板法的类型大致可分为硬模板和软模板两大类。硬模板包括多孔氧化铝、二氧化硅、碳纳米管、分子筛、以及经过特殊处理的多孔高分子薄膜等。软模板则包括表面活性剂、聚合物、生物分子及其它有机物质等。利用模板合成技术人们已经制得了各种物质包括金属、 氧化物、硫化合物、无机盐以及复合材料的球形粒子、一维纳米棒、纳米线、纳米管以及二维有序阵列等各种形状的纳米结构材料。本文将简要介绍近年来国内外利用模板法制备纳米结构材料的一些进展[2]。 1 硬模板法制备纳米材料 这种方法主要是采用预制的刚性模板,如:多孔 阳极氧化铝膜、二氧化硅模板法、微孔、中孔分子筛(如MCM-41、SBA-15等)、 碳纳米管以及其它模板。1.1多孔阳极氧化铝法 多孔氧化铝膜是近年来人们通过金属铝的阳极 电解氧化得到的一种人造多孔材料,这种膜含有孔径大小一致、 排列有序、分布均匀的柱状孔,孔与孔之间相互独立,而且孔的直径在几纳米至几百纳米之间,并可以通过调节电解条件来控制[3]。利用多孔氧化铝膜作模板可制备多种化合物的纳米结构材料,如通过溶胶-凝胶涂层技术可以合成二氧化硅纳米管,通过电沉积法可以制备Bi2Te3纳米线[4]。这些多孔的氧化铝膜还可以被用作模板来制备各种材料的纳米管或纳米棒的有序阵列,如:TiO2、In2O3、Ga2O3纳米管阵列,BaTiO3、PbTiO3纳米管阵列,ZnO、MnO2、 WO3、Co3O4、V2O5纳米棒阵列以及Bi1-xSbx纳米线有 序阵列等[1]。 1.2二氧化硅模板法 分子筛MCM-41二氧化硅和通过溶胶-凝胶过 程形成的二氧化硅都可用作纳米结构材料形成的模板,其中MCM-41为介孔氧化硅模板,它具有纳米尺寸的均匀孔,孔内可形成有序排布的纳米材料,属于外模板,而溶胶-凝胶法形成的二氧化硅胶粒则属于内模板,在其上形成纳米结构材料,最后二氧化硅用氢氟酸溶解除去。 2002年Froba等报道了在中孔的分子筛MCM-41二氧化硅内部形成有序排布的Ⅱ/Ⅵ磁性半导体 量化线Cd1-xMnxS。2003年Zhao等报道以In(NO3)3为原料,以高度有序中孔结构的表面活性剂SiO2为模板剂和还原剂,采用一步纳米浇铸法合成了高度有序的单晶氧化铟纳米线阵列。2002年Dahne等以三聚氰胺甲醛为第一层模板,利用逐层(LbL)方法制备了PAH/PSS交替多层膜覆盖的三聚氰胺甲醛粒子,在PAH/PSS交替的多层膜上进一步通过溶胶-凝胶方法覆盖上二氧化硅作为第二层模板,再利用LbL方法制备PAH/PSS交替的多层膜,然后用盐酸溶解 模板合成法制备纳米材料的研究进展 黄 艳 (陕西科技大学材料科学与工程学院,咸阳710021) 摘 要 介绍了近年来国内外利用氧化铝、二氧化硅、碳纳米管、表面活性剂、聚合物、生物分子等作模板制备多种物质的纳米结构材料的一些进展。关键词 模板法;纳米材料;合成 1

纳米材料的制备及合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (2) 1.1纳米粉体的湿化学法制备 (2) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (3) 1.2.2溅射法 (3) 1.2.3真空蒸镀法 (4) 1.2.4等离子体方法 (4) 1.2.5激光诱导化学气相沉积法(LICVD) (4) 1.2.6爆炸丝方法 (5) 1.2.7燃烧合成法 (5) 1.3纳米薄膜的化学法制备 (5) 1.4纳米单相及复相材料的制备 (6) 2纳米材料的物理法制备 (7) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (7) 2.2纳米粉体的高能机械球磨法制备 (7)

2.3纳米晶体非晶晶化方法制备 (8) 2.4深度塑性变形法制备纳米晶体 (9) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (9) 2.6纳米薄膜物理气相沉积技术 (9) 3纳米材料的应用展望 (10) 4 总结 (11) 参考文献 (12)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

二氧化铈形貌控制及其电化学性能研究进展

二氧化铈制备、表征及其电化学性能研究进展 1 前言 二氧化铈是一种重要的稀土氧化物功能材料,纳米CeO2保留了稀土元素具有独特的f层电子结构,晶型单一,具有高的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特性,因此就产生了许多与传统材料不同的性质。纳米CeO2有宽带强吸收能力,而对可见光却几乎不吸收,当其被掺杂到玻璃中,可使玻璃防紫外线,同时不影响玻璃本身的透光性[1,2]。另一方面,CeO2还是很好的玻璃脱色剂,可将玻璃中呈黄绿色的二价铁氧化为三价而达到脱黄绿色效果。作为一种催化剂,二氧化铈的催化性能受其尺寸、形貌以及掺杂元素的影响,而其中掺杂元素对其尺寸、形貌也有影响[3]。在汽车尾气净化的三效催化剂(三效催化剂的特性是用一种催化剂能同时净化汽车尾气中的一氧化碳(CO)、碳氢化合物(CnHm)和氮氧化物(NOx))中,它是一种重要的组分。由于纳米CeO2的比表面积大、化学活性高、热稳定性好、良好的储氧和释氧能力,可改变催化剂中活性组分在载体上的分散情况,明显提高其催化性能,并能提高载体的高温热稳定性、机械性能和抗高温氧化性能。CeO2还在贵金属气氛中起稳定作用,提高CO、CH4及NOx的转化率,并使催化剂保持较好的抗毒性及较高的催化活性[4]。CeO2还应用于许多领域,如抛光粉、荧光粉、储氢材料、热电材料、燃料电池原料(SOFCS电极)[5,6]、光催化剂[7]、防腐涂层、气体传感器[8,9]等方面。因此,纳米化的CeO2将在高新技术领域发挥更大的潜力。 2 二氧化铈的研究进展 对于环境和能源相关领域的应用来说,可控合成二氧化铈纳米结构材料是一个势在必行的问题。由于颗粒尺寸的减小,纳米固体通常具有高密度表面。因此,相对于普通材料来说,纳米结构二氧化铈吸引很多关注和研究,以提高其氧化还原性,输运性能和电化学性能。 在过去的十年中,有大量的关于纳米结构二氧化铈及其应用的文章发表。特别地,Traversa 和Esposito[10]研究了二氧化铈微结构在特殊离子器件中的运用,通过粉末尺寸、掺杂物含量和烧结温度/时间因素联合作用进行调节。Bumajdad等[11]综述了在胶体分散体系中合成具有高表面积的二氧化铈作为催化材料的最新研究。Guo和Waser[12]综述了受主掺杂二氧化锆和二氧化铈晶界的电性能。Yan等[13]大量综述了控制合成和自组装二氧化铈基纳米材料。Yan课题组还演示了在合成和自组装纳米晶过程中对配位化学原理的应用,尤其是配位效应对结构/微结构/纹理,表面/界面,颗粒尺寸/形貌的控制[14]。另外,Vivier和Duprez[15]综述了二氧化铈基固体催化剂在各种有机合成反应中的应用。 2.1 纳米二氧化铈的制备 在过去的二十年里,有许多研究关于制备二氧化铈纳米颗粒及其形貌控制。合成方法有:沉淀法、溶胶凝胶法、微乳液法、热分解法、水解法、气相冷凝法、超声化学合成等等。普遍认为从液相中析出固体晶体包括两个步骤:成核与生长。研究发现,成核的晶种、动力学控制、温度、通过使用表面活性剂调节表面的选择性活化能是影响各向异性生长的关键因素。通过精确地平衡和控制这些参数,可实现纳米晶形状的有效控制。通过控制合成进程使二氧化铈具有理想的形貌和微观结构,并有效地控制其氧空位,就能够合理地设计出高活性的二氧化铈应用材料。 (1)一维纳米结构二氧化铈的合成 一维纳米结构二氧化铈(如纳米线、纳米棒和纳米管)因其新颖的物理性能和潜在的应用已被仔细地研究。为研究材料的尺寸和维度对其物理和化学性能的影响提供了机会[16]。对于纳米器件来说,一维纳米结构材料也是具有应用前途的。通过各向异性生长获得一维纳米结构,从热力学和动力学的角度控制其生长的途径,影响其生长的可控制因素主要有溶剂、表

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

液相沉淀法在材料合成中应用进展

液相沉淀法合成纳米粉体的应用进展 材料科学与工程赵小龙2011201307 摘要:液相沉淀法是一种合成纳米粉体最为普遍的方法。本文将介绍液相沉淀法的三种方法:直接沉淀法、共沉淀法和均匀沉淀法。对液相沉淀法合成纳米粉体的沉淀反应过程、洗涤过程、干燥过程以及煅烧过程等环节的控制方法及原理作了详述。由于纳米TiO2粉体具有是优良的光催化活性,且具有极大的商业价值,本文还将介绍一下纳米TiO2粉体制备工艺。 关键词:液相沉淀;控制;洗涤;干燥;煅烧;制备工艺 纳米粉体是指线度处于1 nm~100 nm的粒子聚合体,包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通粉体相比,纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应[1],因而在催化、磁性材料、医学、生物工程、精细陶瓷和化妆品等众多领域显示出广泛的应用前景,成为各国竞相开发的热点。纳米粉体的制备方法很多,可归纳为固相法、气相法和液相法三大类。其中液相化学法是目前实验室和工业上采用最为广泛的合成纳米粉体的方法,包括沉淀法、醇盐水解法、溶胶-凝胶法和水热合成法等[2]。本文主要讨论了液相沉淀法合成纳米粉体的分类、方法、控制过程及原理。 1 液相沉淀法介绍 液相沉淀法是液相化学反应合成金属氧化物纳米材料最普通的方法。它是利用各种溶解在水中的物质反应生成不溶性氢氧化物、碳酸盐、硫酸盐和乙酸盐等,再将沉淀物加热分解,得到最终所需的纳米粉体。液相沉淀法可以广泛用来合成单一或复合氧化物的纳米粉体,其优点是反应过程简单,成本低,便于推广和工业化生产。液相沉淀法主要包括直接沉淀法、共沉淀法和均匀沉淀法。 1.1 直接沉淀法 直接沉淀法是使溶液中的金属阳离子直接与沉淀剂,如OH-、C 2O 2 -4、CO 2 -3, 在一定条件下发生反应而形成沉淀物,并将原有的阴离子洗去,经热分解得到纳 米粉体。直接沉淀法操作简便易行,对设备、技术要求不太苛刻,不易引入其他杂质,有良好的化学计量性,成本较低,因而对其研究也较多,只不过其合成的纳米粉体粒径分布较宽。廖莉玲等[3]以硝酸镁、碳酸钠为原料,用直接沉淀法合成得到纳米氧化镁,其平均粒径为30 nm。文献[4]报道了用一定溶度的ZrOCl 2 和氨水溶液在聚乙二醇水溶液中混合反应,经抽滤、洗涤、干燥、煅烧后得到纳米 ZrO 2 。其中聚乙二醇起到保护胶粒的作用。 1.2 共沉淀法 共沉淀法是在混合的金属盐溶液(含有两种或两种以上的金属离子)中加入合适的沉淀剂,反应生成均匀沉淀,沉淀热分解后得到高纯纳米粉体材料。它是制备含有两种以上金属元素的复合氧化纳米粉体的主要方法。其在制备过程中完成了反应及掺杂过程,因而得到的纳米粉体化学成分均一、粒度小而且均匀。共沉淀法已被广泛用于制备钙钛矿型材料、尖晶石型敏感材料、铁氧体及荧光材料。 文献[5]报道了用Al(NO 3) 3 和ZrO(NO 3 ) 2 混合溶液,加氨水共沉淀制备了一系列Al 2 O 3 含量由低到高的ZrO 2-Al 2 O 3 纳米复合氧化物。焦正等[6]采用喷射共沉淀法制备了 尖晶石型ZnGa 2O 4 纳米晶,晶粒细小均匀,形状完整,粒径小于10nm,无ZnO杂 相峰。

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

化学沉淀法制备纳米二氧化硅

化学沉淀法制备纳米二氧化硅 摘要:采用硅酸钠为硅源,氯化铵为沉淀剂制备纳米二氧化硅。研究了硅酸钠的浓度、乙醇与水的体积比以及pH 值对纳米二氧化硅粉末比表面积的影响,并用红外、X射线衍射和透射电镜对二氧化硅粉末进行了表征。研究结 果表明在硅酸钠浓度为0. 4 mol/L,乙醇与水体积比为1B8, pH值为8. 5时可制备出粒径为5~8 nm分散性好的无 定形态纳米二氧化硅。 关键词:沉淀法;纳米SiO2;制备 1 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的材料,其颗粒尺寸小,比表面积大,是纳米 材料中的重要一员。近年来,随着纳米二氧化硅制备技术的发展及改性研究的深入,纳米二氧化硅在橡胶、 塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用[1, 2]。目前,纳米二氧化硅主要制备方法有以硅烷卤化物为原料的气相法[3];以硅酸钠和无机酸为原料的化 学沉淀法[4];以及以硅酸酯等为原料的溶胶-凝胶法[5-7]和微乳液法[8-10]。在这些方法中,气相法原料昂贵, 设备要求高,生产流程长,能耗大;溶胶-凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除 易对环境造成污染。与上述三种方法相比,化学沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工 业化等优点,但同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变 因素的影响。近年来,许多研究通过各种控制手段来改善沉淀法产品的性状,如郑典模[11]、贾东舒[12]、孙道 682 研究快报硅酸盐通报第29卷 兴[13]等对反应条件加以分别制得了平均粒径为76 nm、30~50 nm和20~40 nm的二氧化硅,何清玉[14]引入 了超重力技术制得了小于20 nm的二氧化硅。 本文以硅酸钠为硅源,氯化铵为沉淀剂,加入表面活性剂十六烷基三甲基溴化铵(CTAB)和乙醇,通过 化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。 在硅酸钠溶液中,简单的偏硅酸离子并不存在,偏硅酸钠的实际结构为Na2(H2SiO4)和Na (H3SiO4),因 此溶液中的负离子H2SiO2-4为和H3SiO-4。二者在溶液中皆可与氢离子结合生成硅酸。氯化铵是一种强酸 弱碱盐,能缓慢地释放出H+,可以有效避免pH变化过大。另外反应在碱性条件下进行,反应所生成的粒子 带负电,可吸引NH+4和溶液中的Na+形成双电层,通过双电层之间库仑排斥作用,平衡离子表面电荷,从而

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

浅谈模板法制备纳米材料

日常生产工作中必须严格按照规程规定、操作流程和使用方法正确使用安全工器具,以确保安全生产。据现场调查得知安全工器具的不正确使用主要有以下几种情况: 1.衔接式绝缘棒使用节数不够,伸缩式绝缘棒拉伸不够充足。 2.雨天不使用防雨罩,或防雨罩松动、歪斜、破损,起不到防雨作用。 3.验电时手握在验电器护环以上,使用前不在有电设备上确认验电器是否良好,不同电压等级的验电器交叉使用。 4.绝缘手套使用前不检查气密性,甚至随意抓拿坚硬及有尖刺的物品。 5.接地线的接地端不按要求装设,任意搭、挂和缠绕。 6.安全带不按规定使用、系的松垮随意,起不到安全防护作用。 7.安全帽内胆大小调节不当、不系帽带或系的不够紧,工作中容易歪斜、掉落。 8.手钳等工具使用前不检查绝缘部位是否完好,使用时手握在裸露的金属部位,容易造成作业人员的触电事故。 总之,安全工器具是每个电力职工的切身保镖、忠实的安全员和生命的守护神,只要大家熟练地掌握了各种安全工器具的作用、性能和结构原理,掌握了正确的使用方法和注意事项,并严格按照规程规定操作、使用和维护,就能够确保人身、设备和电网的安全。 2010年第3期 (总第138期)China Hi-Tech Enterprises NO.3.2010(CumulativetyNO.138) 中国高新技术企业 摘要:纳米模板具有独特的纳米数量级的多孔结构,其孔洞孔径大小一致,排列有序,分布均匀。以纳米模板合成零维纳米材料、一维纳米材料(纳米线,纳米管)具有制备效率高,可靠性好等优点,已成为纳米复制技术的关键之一。文章重点综述了近年来模板制备,模板合成中常用的模板类型及应用进展。 关键词:纳米材料;模板法;制备工艺;化合聚合;溶胶-凝胶沉积;化学气相沉积 中图分类号:0614文献标识码:A文章编号:1009-2374(2010)03-0178-02 自20世纪70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。纳米材料的研究大致可划分为三个阶段:第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评价表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,这一阶段纳米复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。本文所要介绍的模板法制备纳米材料即为纳米组装体系的一种。 一、模板合成中常用的模板 (一)高分子模板 高分子模板通常是通过采用厚度为6~20μm的聚碳酸脂、聚脂和其它高分子材料经过核裂变碎片轰击使其出现损伤的痕迹,再用化学腐蚀方法使这些痕迹变成孔洞。膜中孔径可以达到微米级,甚至达到纳米级(最小达到10nm),孔率可达到109/cm2,孔分布是随机的、不均匀且无规律,并且很多孔洞与膜面倾斜和相互交叉。 由于高分子模板自身这些特征,使得用这些模板组装的纳米结构不能形成有序的阵列体系。同时由于存在很多的孔之间斜交现象,当人们理论模拟模板合成的纳米微粒的光学特性时,就会出现理论预计和现实情况不相符合的情形,例如,理论预示独立的金属微粒在某个特殊的波段吸收最强,然而,模板合成的这种金属纳米微粒间的物理接触可使这个最大吸收带移动200nm或更多。 (二)阳极氧化铝模板 阳极氧化铝模板(Anodic Aluminum Oxide,AAO)的制备,一般选用高纯铝片(99.9%以上),在硫酸、草酸、磷酸水溶液中经过阳极氧化后得到的。其纳米孔道内径统一,而且呈六方排列,管道密度可达1011/cm2,孔径可在几纳米到几百纳米之间可调。像六方液晶一样,AAO也能提供呈六方排布的孔道,因此用它可合成呈六方对称排列的纳米结构体系。 二、常用的模板合成方法 模板合成方法适用的范围很广,根据模板种类的不同,在合成时必须注意以下方面:(1)化学前驱溶液对孔壁是否浸润,亲水或疏水性质是合成组装能否成功的关键;(2)应控制在孔洞内沉积速度的快慢,沉积速度过快会造成孔洞通道口堵塞,致使组装失败;(3)控制反应条件,避免被组装介质与模板发生化学反应,在组装过程中保持模板的稳定性是十分重要的。下 浅谈模板法制备纳米材料 李宁1,刘晓峰1,孔庆平1,张文彦2 (1.中国兵器工业集团第521研究所,陕西西安710065;2.西北有色金属研究院纳米材料研究中心,陕西西安710016) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 178 --

水热法制备纳米氧化铈粉体

水热法制备纳米氧化铈粉体 摘要:CeO2是一种价廉且用途极广的工业材料,具有广阔的市场应用前景。近年来,氧化铈纳米材料的形貌、尺寸控制以及性能应用方面已成为研究的热点之一。本论文对氧化铈进行结构、形貌以及光学性能的表征,分析了固相法,液相法,气象法制备纳米材料的优缺点并采用水热法制备出氧化铈纳米材料。 关键词:纳米CeO2;水热法;制备方法 Hydrothermal synthesis ,Preparation of nano-sized CeO2 particles Abstract:Ceria is a cheap and widely used industry material, which has a broad market applied prospect. In this paper, the preparation, characterization and optical properties of as ceria nanomaterials have been studied,the advantage and disadvantage of solid method ,liquid method and gas method have been contrasted and ceria nanomaterials were prepared by hydrothermal method. Keyword:nanometer CeO2;Hydrothermal synthesis;preparation method 随着纳米技术的不断进步,纳米CeO2由于粒径比较小,具有高的表面效应、量子尺寸效应、小尺寸效应以及宏观量子隧道效应等特性,因此产生了与传统材料不同的许多特殊性质,成为近年来材料科学中研究的热点。CeO2作为稀土家族中一种重要的化合物,可用于汽车尾气净化催化材料[1]、高温氧敏材料[2]、固体氧化物燃料电池(SOFC)电极材料[3][4]、化学机械抛光(CMP)研磨材料[5]等行业,对人类改善工作条件、提高生活质量、保障身体健康,节约能源、加强环境保护具有重要的现实意义,并具有显著的经济效益和社会效益。 1 氧化铈纳米材料概述 1.1 氧化铈的结构和性质 由于Ce具有独特的4f 层电子结构,氧化铈属于立方晶系,是面心立方结构,具有萤石结构。所属点群为Fm3m点群。从热动力学方面讲,其(111)面是最稳定的。CeO2晶胞中的Ce4+ 按面心立方阵排列,O2-占据所有的四面体位置,每个Ce4+被8个O2-包围,而每个O2-则与4个Ce4+配位,如下图所示。氧化铈经高温(T>950°C)还原后,CeO2转化为具有氧空位、非化学计量比的CeO2-x 氧化物(0

相关文档