文档库 最新最全的文档下载
当前位置:文档库 › 试论寒武纪生物大爆发的内涵作业

试论寒武纪生物大爆发的内涵作业

试论寒武纪生物大爆发的内涵作业
试论寒武纪生物大爆发的内涵作业

论述寒武纪生物大爆发的内涵作业

寒武纪生命大爆发被称为古生物学和地质学上的一大悬案,自达尔文以来就一直困扰着进化论等学术界。地球距今约有46亿年历史,自距今30多亿年前生物的诞生以来,早期生物的发展极其的简单,且发展缓慢。大约6亿年前的寒武纪出现了生命发展史上的空前大飞跃,其结结构较前高级,门类数量较前大为丰富,在这短短的1亿年时间里,生物发展比之前的30多亿年有了爆炸式的发展。绝大多数无脊椎动物门在几百万年的很短时间内出现了。这种几乎是“同时”地、“突然”地出现在寒武纪地层中门类众多的无脊椎动物化石(节肢动物、软体动物、腕足动物和环节动物等),而在寒武纪之前更为古老的地层中长期以来却找不到动物化石的现象,被古生物学家称作“寒武纪生命大爆发”,简称“寒武爆发”。达尔文在其《物种起源》的著作中提到了这一事实,并大感迷惑。他认为这一事实会被用做反对其进化论的有力证据。但他同时解释到,寒武纪的动物一定是来自前寒武纪动物的祖先,是经过很长时间的进化过程产生的;寒武纪动物化石出现的“突然性”和前寒武纪动物化石的缺乏,是由于地质记录的不完全或是由于老地层淹没在海洋中的缘故。

寒武纪之前的生物发展较缓慢,直至元古宙早期发育大量具有真核细胞的菌藻类植物,到元古宙末期才出现了软躯体后生动物群,其中有类腔肠动物、环节动物、节肢动物。保存下来的印痕化石和遗迹化石称为依迪卡拉裸露动物群。寒武纪之时,现生生活在地球上的各

个动物门类几乎都已同时存在,而不时经过长时间的演化慢慢变来的。其中,是以发展具有硬体的生物为特征,几乎所有的无脊椎动物门,绝大部分纲都以出现,其中以节肢动物门中的三叶虫最为发育。寒武纪生物的形态奇特,和地球上的现生生物极不相同。最古老的鱼也是出现在这个时代。

寒武纪生物大爆发的原因,归结如下:Ⅰ、在寒武纪之前震旦纪时期所有的古大陆已形成,所以寒武纪时地壳运动相对比较平静的时期,它为生物的大发展提供了良好的生存发展条件。Ⅱ、在寒武纪之前,大气中的氧气不断的增加‘稳定,形成了富氧的大气圈,为寒武纪生物的大发展提供了重要的条件。Ⅲ、寒武纪处于南华纪大冰期与石炭-二叠纪大冰期之间的间冰期。气候相对较适宜生物的生存与发展。另外,南华纪大冰期之后由于温度的影响,许多生物大量死亡,甚至灭绝,从而在冰期过后为生物的发展减小了大量的生存斗争。Ⅳ、寒武纪时期磷的含量较多,为许多生物的生存发展提供了极好的养分,有利于生物的发展。

寒武爆发吸引了无数的古生物学家和进化论者去寻找证据探讨其起因。100多年以来的证据产生出解释寒武爆发的两种基本观点。一种观点认为,寒武爆发是一种假象,这是某些达尔文或新达尔主义者所持的观点。由于进化是渐进的,所谓的“爆发”只是表明首次在生物化石记录中发现了早在前寒武纪就已经广泛存在并发展的生物,其它的生物化石群则可能由于地质记录的不完全而“缺档”,造成这种“缺档”的原因是前寒武纪地层经历着热与压力,其中的化石被销毁了。

由于发现前寒武纪化石沉积层中存在大量象细菌和蓝藻这样简单的原核生物,因而这一解释不再有说服力。另一种观点认为,寒武爆发代表了生物进化过程中的真实事件,科学家从物理环境和生态环境的变化两个方面来解释这一现象。

侯先光1984年在云南澄江县帽天山首先发现的。这是一个内容十分丰富、保存非常完美,距今约5.7亿年的化石群,其成员包括水母状生物、三叶虫、具附肢的非三叶的节肢动物、金臂虫、蠕形动物、海绵动物、内肛动物、环节动物、无绞纲腕足动物、软舌螺类、开腔骨类,以及藻类等,甚至还有属于低等脊索动物或半索动物(如著名的云南虫)等。由于许多动物的软组织保存完好,为研究早期无脊椎动物的形态结构、生活方式、生态环境等提供了极好的材料,同时也成为了探索地球上大壳后生动物爆发事件的重要窗口。

澳大利亚南部发现的距今6.8亿~6亿年之间的“埃迪卡拉动物群”。云南澄江动物群成了联系布尔吉斯动物群和埃迪卡拉动物群之间的重要环节,随着对澄江动物群研究的深入,埃迪卡拉-澄江-布尔吉斯3个动物群之间的演化关系会更加清楚。

其次,澄江动物群的发现为“间断平衡”理论提供了新的事实依据,对达尔文的进化论再次造成冲击。“间断平衡”理论认为,生物的进化不像达尔文及新达尔文主义者所强调的那样是一个缓慢的连续渐变积累过程,而是长期的稳定(甚至不变)与短暂的剧变交替的过程,从而在地质记录中留下许多空缺。澄江动物群的发现说明了生物的进化并非总是渐进的,而是渐进与跃进并存的过程。

地层经历着热与压力,其中的化石被销毁了。由于发现前寒武纪化石沉积层中存在大量象细菌和蓝藻这样简单的原核生物,因而这一解释不再有说服力。另一种观点认为,寒武爆发代表了生物进化过程中的真实事件,科学家从物理环境和生态环境的变化两个方面来解释这一现象。

1965年,两位美国物理学家提出了寒武爆发是由于地球大气的氧水平这个物理因素造成的。他们认为,在早期地球的大气中含有很少或根本就没有自由氧,氧是前寒武纪藻类植物光合作用的产物并逐渐积累形成的。后生动物需要大量的氧,一方面用于呼吸作用,另一方面氧还以臭氧的形式在大气中吸收大量有害的紫外线,使后生动物免于有害辐射的损伤。

生物学家则从生物本身的生态关系来探讨这一问题,因为地质学的证据否定了这种氧理论的观点。大约在距今10亿年至20亿年之间广泛沉积层中含有大量严重氧化的岩石,这说明在这一时期内已经存在足够生命爆发的氧条件。因而生物学家从两个重要事件的出现来探索造成寒武爆发的原因,即有性生殖的产生和生物收割者的出现。

从化石资料来看,真核藻类大约在9亿年前出现了有性生殖,实际上,有性生殖出现得更早。有性生殖的发生在整个生物界的进化过程中有着极其重大的作用,由于有性生殖提供了遗传变异性,从而有可能进一步增加了生物的多样性,这是造成寒武爆发的原因之一。

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

寒武纪生命大爆发的意义

寒武纪生命大爆发的意义 地球自38亿年前诞生了生命之后,一直保持着一个极其缓慢的进化速度,这也是自达尔文提出进化论之后众多生物学家坚持“渐变论”的原因。但是在距今约5.3亿年前一个被称为寒武纪的地质历史时期,地球上突然涌现出各种各样的动物,它们不约而同的迅速起源、立即出现。节肢、腕足、蠕形、海绵、脊索动物等等一系列与现代动物形态基本相同的动物在地球上来了个“集体亮相”,形成了多种门类动物同时存在的繁荣景象。这就是至今仍被国际学术界列为“十大科学难题”之一的“寒武纪生命大爆发”,简称为“寒武爆发”。达尔文在其《物种起源》的著作中也提到了这一事实,并大感迷惑。他认为这一事实会被用做反对其进化论的有力证据。但他同时解释到,寒武纪的动物的祖先一定是来自前寒武纪动物,是经过很长时间的进化过程产生的;寒武纪动物化石出现的“突然性”和前寒武纪动物化石的缺乏,是由于地质记录的不完全或是由于老地层淹没在海洋中的缘故。 1984年7月1日,在人们苦苦追寻“寒武爆发”的原因时,我国青年古生物学家在云南省澄江县发现了众多古生物化石——“澄江动物群”。这些远古的化石群奇迹般地完好保存了生物的矿化骨骼,还保存了大量软体组织印痕,如:表皮、感觉器、纤毛、眼睛、肠、胃、消化腺、口腔和神经等,甚至有的动物好像在临死前还饱餐一顿,消化道里充满着的食物仍可辨认,这个惊人的发现被国际被誉为“20世纪最惊人的发现之一”,为探索“寒武纪生命大爆发”的奥秘开启了一扇宝贵的科学之窗。 “澄江动物群”包括多门类动物化石群动物类型,且十分珍稀地保存了动物软体构造,首次栩栩如生地再现了远古海洋生命的壮丽景观和现生动物的原始特征,以丰富的生物学信息为“寒武纪大爆发”研究提供了直接证据。随着中国科学家们对“澄江动物群”的不断挖掘发现和深入系统研究,探索了脊椎动物、真节肢、螯肢和甲壳等动物的起源,证实了现生动物门和亚门以及复杂生态体系起源于寒武纪早期,挑战了自下而上倒锥形进化理论模型,为自上而下的爆发式理论模型提供了化石证据。现已描述的澄江动物群化石共120余种,分属海绵动物、腔肠动物、鳃曳动物、叶足动物、腕足动物、软体动物、节肢动物、棘皮动物、脊索动物等十多个动物门以及一些分类位置不明的奇异类群,此外,还有多种共生的海藻。云南澄江动物群的发现,使得我们对在前寒武纪晚期到寒武纪早期生命的进化发展有了较为清晰的认识。它在生物进化上的意义至少可以概括为两点: 首先,该动物群的发现,再次证实了“生命大爆发”的存在,成为“寒武爆发”理论的重要支柱。同时,它还是联系前寒武纪晚期到寒武纪早期生命进化过程的重要环节。在该动物群被发现之前的20世纪内就有过两次激动人心的古生物学发现。一次是1910年在北美发现的距今约5.3亿年中寒武纪的“布尔吉斯动物群”,另一次是1947年在澳大利亚南部发现的距今6.8亿~6亿年之间的“埃迪卡拉动物群”。云南澄江动物群成了联系布尔吉斯动物群和埃迪卡拉动物群之间的重要环节,随着对澄江动物群研究的深入,埃迪卡拉-澄江-布尔吉斯3个动物群之间的演化关系会更加清楚。 其次,澄江动物群的发现为“间断平衡”理论提供了新的事实依据,对

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

论寒武纪初期生命出现生命大爆炸的原因

论寒武纪初期生命出现生命大爆炸的原因 大约6亿年前,在地质学上称做寒武纪的开始,绝大多数无脊椎动物门在几百万年的很短时间内出现了。这种几乎是“同时”地、“突然”地出现在寒武纪地层中门类众多的无脊椎动物化石(节肢动物、软体动物、腕足动物和环节动物等),而在寒武纪之前更为古老的地层中长期以来却找不到动物化石的现象,被古生物学家称作“寒武纪生命大爆炸”。 寒武记物种大爆炸的发现使得达尔文的进化论受到广泛的挑战。因为按达尔文的理论,物种是通过渐进变化进化而来。但是,寒武记物种大爆炸却是突然的,仿佛数万的物种在一夜之间就产生了。当然,很多进化生物学家认为寒武记物种大爆炸之前的化石因为某种原因缺失了。因此,很多科学家致力于寻找缺失的化石,但到目前为止,仍无所获。 不过,近来的一个重要的实验发现可能为寒武纪物种大爆炸提供分子生物学解释。芝加哥大学的Lindquist教授和Rutherford博士,用果蝇为材料,发现如果热休克蛋白90(Hsp90)的功能正常,则就算果蝇的DNA发生了许多突变,也不会影响果蝇的外观形态。换言之,正常功能的Hsp90能使得在不影响其生存能力的情况下,果蝇群体能积累很多的突变,并且这些突变在稳定的环境条件下不显现。但是,一旦Hsp90的功能或表达水平受到影响时,比如出现极端的环境条件,用药物抑制Hsp90的正常功能时,已经存在于果蝇群体中的一些与形态有关的DNA突变就会表现出来,并造成其体形与上一带不同。而且经过几代后,就是恢复Hsp90的正常功能,这些不同也能遗传下去。也就是说,Hsp90类蛋白的重要功能之一是使一个种群能积累很多DNA突变,而且不会一下就表现在形态上。这些突变要等到环境条件发生很大的变化时,才爆炸性地表现出来,在很短的时间内演化出形态各异的许多物种,正象寒武纪物种大爆炸那样的过程。因此,这一重要的结果为物种的突然进化提供了可能的分子机制,说明寒武纪物种大爆炸这一现象也能在分子生物学的水平得到解释。 为探究大爆炸的原因,古生物学家为此做出大量的努力,认为多种多样的寒武纪动物的出现,或许是因为当时大气中积累了足够的有利于呼吸作用的氧,而且由于“超级大陆”的解体,大陆被海洋分割成大大小小的碎块,陆地的分散造就了很多靠近大陆的浅海区域产生,从而有利于后生动物生存。海洋化学物质的变化积累了大量的磷酸盐,使得软体动物有可能演化出保护性的骨骼;生态学理论及其相互捕食关系的理论对此也作出了解释。这种全球环境的变化,使寒武纪生命大爆炸成为可能。 从化石资料来看,真核藻类大约在9亿年前出现了有性生殖,实际上,有性生殖出现得更早。有性生殖的发生在整个生物界的进化过程中有着极其重大的作用,由于有性生殖提供了遗传变异性,从而有可能进一步增加了生物的多样性,这是造成寒武爆发的原因之一 生物收割者假说是美国生态学家斯坦利提出的,是一种解释寒武爆发的生态学理论,即收割原则。斯坦利认为,在前寒武纪的25亿年的多数时间里,海洋是一个以原核蓝藻这样简单的初级生产者所组成的生态系统。这一系统内的群落在生态学上属于单一不变的群落,营养级也是简单唯一的。由于物理空间被这种种类少但数量大的生物群落顽强地占据着,所以这种群落的进化非常缓慢,从未有过丰富的多样性。寒武爆发的关键是草食收割者的出现和进化,即食用原核细胞(蓝藻)的原生动物的出现和进化。收割者为生产者有更大的多样性制

试论寒武纪生物大爆发的内涵作业

论述寒武纪生物大爆发的内涵作业 寒武纪生命大爆发被称为古生物学和地质学上的一大悬案,自达尔文以来就一直困扰着进化论等学术界。地球距今约有46亿年历史,自距今30多亿年前生物的诞生以来,早期生物的发展极其的简单,且发展缓慢。大约6亿年前的寒武纪出现了生命发展史上的空前大飞跃,其结结构较前高级,门类数量较前大为丰富,在这短短的1亿年时间里,生物发展比之前的30多亿年有了爆炸式的发展。绝大多数无脊椎动物门在几百万年的很短时间内出现了。这种几乎是“同时”地、“突然”地出现在寒武纪地层中门类众多的无脊椎动物化石(节肢动物、软体动物、腕足动物和环节动物等),而在寒武纪之前更为古老的地层中长期以来却找不到动物化石的现象,被古生物学家称作“寒武纪生命大爆发”,简称“寒武爆发”。达尔文在其《物种起源》的著作中提到了这一事实,并大感迷惑。他认为这一事实会被用做反对其进化论的有力证据。但他同时解释到,寒武纪的动物一定是来自前寒武纪动物的祖先,是经过很长时间的进化过程产生的;寒武纪动物化石出现的“突然性”和前寒武纪动物化石的缺乏,是由于地质记录的不完全或是由于老地层淹没在海洋中的缘故。 寒武纪之前的生物发展较缓慢,直至元古宙早期发育大量具有真核细胞的菌藻类植物,到元古宙末期才出现了软躯体后生动物群,其中有类腔肠动物、环节动物、节肢动物。保存下来的印痕化石和遗迹化石称为依迪卡拉裸露动物群。寒武纪之时,现生生活在地球上的各

个动物门类几乎都已同时存在,而不时经过长时间的演化慢慢变来的。其中,是以发展具有硬体的生物为特征,几乎所有的无脊椎动物门,绝大部分纲都以出现,其中以节肢动物门中的三叶虫最为发育。寒武纪生物的形态奇特,和地球上的现生生物极不相同。最古老的鱼也是出现在这个时代。 寒武纪生物大爆发的原因,归结如下:Ⅰ、在寒武纪之前震旦纪时期所有的古大陆已形成,所以寒武纪时地壳运动相对比较平静的时期,它为生物的大发展提供了良好的生存发展条件。Ⅱ、在寒武纪之前,大气中的氧气不断的增加‘稳定,形成了富氧的大气圈,为寒武纪生物的大发展提供了重要的条件。Ⅲ、寒武纪处于南华纪大冰期与石炭-二叠纪大冰期之间的间冰期。气候相对较适宜生物的生存与发展。另外,南华纪大冰期之后由于温度的影响,许多生物大量死亡,甚至灭绝,从而在冰期过后为生物的发展减小了大量的生存斗争。Ⅳ、寒武纪时期磷的含量较多,为许多生物的生存发展提供了极好的养分,有利于生物的发展。 寒武爆发吸引了无数的古生物学家和进化论者去寻找证据探讨其起因。100多年以来的证据产生出解释寒武爆发的两种基本观点。一种观点认为,寒武爆发是一种假象,这是某些达尔文或新达尔主义者所持的观点。由于进化是渐进的,所谓的“爆发”只是表明首次在生物化石记录中发现了早在前寒武纪就已经广泛存在并发展的生物,其它的生物化石群则可能由于地质记录的不完全而“缺档”,造成这种“缺档”的原因是前寒武纪地层经历着热与压力,其中的化石被销毁了。

分子生物学习题集及答案

第一章绪论 1. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或 DNA 的复制、转录、表达和 调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利 用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 2. 分子生物学研究内容有哪些方面? 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组 成部分。由于 50 年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存 储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。 B.蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3. 分子生物学发展前景如何? 21 世纪是生命科学世纪,生物经济时代,分子生物学将取得突飞猛进的发展,结构基因组学、功能基因 组学、蛋白质组学、生物信息学、信号跨膜转导成为新的热门领域,将在农业、工业、医药卫生领域带来新的变革。 4. 人类基因组计划完成的社会意义和科学意义是什么? 社会意义:人类基因组计划与曼哈顿原子计划、阿波罗登月计划并称为人类科学史上的三大工程,具有 重大科学意义、经济效益和社会效益。 1).极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,为人类自身疾病的诊断和治疗提供依据,为医药产业带来翻天覆地的变化; 2).促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业; 3).基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业(转基因动、植物)、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。 科学意义: 1)确定人类基因组中约 5 万个编码基因的序列基因在基因组中的物理位置,研究基因的产物及其功能 2)了解转录和剪接调控元件的结构和位置,从整个基因组结构的宏观水平上了解基因转录与转录后调节 3)从总体上了解染色体结构,了解各种不同序列在形成染色体结构、DNA 复制、基因转录及表达调控中 的影响与作用 4)研究空间结构对基因调节的作用

“寒武纪大爆发”与生物进化假说

“寒武纪大爆发”与生物进化假说 王韵佳,混合班1306,897663606@https://www.wendangku.net/doc/103983548.html, 摘要:几乎所有现生动物门类和已经灭绝了的生物化石,突发式地出现于5 .45 亿年前的寒武纪底界附近,这一事件被称为“寒武纪大爆发”(Cambrian explosion)。大量的化石证据表明,“寒武纪大爆发”是确有其事的,但其原因和内容有很多可能。本文着重介绍了含氧量变异说、收成原理说和分子钟说三种广为流传的假说,并探讨了从“寒武纪大爆发”中得到的一些生物进化假说。 关键词:“寒武纪大爆发”,化石,起源与进化,澄江动物群 1引言 距今约46亿年前,孕育了无数生命的地球诞生了。而生物圏的进化史则可以追溯到约35亿年前。从最早出现的没有生命的生物大分子,到最原始的生命蓝藻,再到当今种类繁多、姿态万千的生物五大界(原核生物界、原生生物界、真菌界、植物界和动物界),我们的生物世界经历了数十亿年的演化与发展。从已发现的化石证据来看,生物的进化过程既有渐变也有突变。一系列寒武纪时期化石群的发现更是对达尔文进化论中的渐变演变观发起了冲击。 2“寒武纪大爆发”与化石证据2.1“寒武纪大爆发”事件总览 在生物演化史中,从38 亿年前地球上产生生命开始, 到此后经历30多亿年的漫长岁月,只发现简单的细菌和蓝绿藻,很少出现多细胞动物化石。但是在 短短(相对于生物进化史而言)200~300 万年的时间,包括海绵动物、腔肠 动物、环节动物、节肢动物、软体动物、腕足动物、棘皮动物乃至脊索动物等在 内的几乎所有现生动物门类和已经灭绝 了的生物化石,突发式地出现于5 .45 亿年前的寒武纪底界附近,而在更老的地 层却没有其祖先化石的出现。这一后生 动物在较短的地质时期内突然出现和高 度分异的事件,古生物学家Cloud形象 地称之为“寒武纪大爆发”(Cambrian explosion)。[5]这些门类的出现是相当整齐的,可以说得上是史无前例、绝无 仅有。它们于早寒武世快速生态扩张, 形成以后生动物为主导的海洋生态系统。同时,还伴随着动物体型增大、形态复杂化和躯体骨骼化过程。[6]这让我们产生了不少疑问。长期以来,达尔文关于物 种起源的思想, 一直是古生物学界理论

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学课后习题答案

第一章绪论 □ DNA重组技术和基因工程技术。 DNA重组技术又称基因工程技术,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特左的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及苴他工具酶的发现与应用则是这一技术得以建立的关键。DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提髙产量,降低成本。苴次, DNA重组技术可以用于左向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。 □请简述现代分子生物学的研究内容。 1、DNA重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传的物质基础及基因与基因组结构 □核小体、DNA的半保留复制、转座子。 核小体是染色质的基本结构单位。是由H2A、H2B、H3、H4各两分子生成八聚体和由大约200bp 的DNA构成的。核小体的形成是染色体中DNA压缩的第一步。 DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA 分子与原来DNA分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。 转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。 □DNA的一、二、三级结构特征。 DNA的一级结构是指4种脱氧核昔酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA 的二级结构是指两条多核昔酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。DNA的髙级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 □DNA复制通常采取哪些方式? 仁线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5,端向3, 端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。 2、环状DNA双链的复制 (1)0型:是一种双向复制方式。复制的起始点涉及DNA的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。 (2)滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA和细菌质粒上,首先对正链原点进行专一性的切割,形成的5,端被单链结合蛋白所覆盖,3,端在DNA聚合酶的作用下不断延伸。

赵冬冬:寒武纪生命大爆发的阶段性及其对于探讨生物进化

赵冬冬:寒武纪生命大爆发的阶段性及其对于探讨生物进 化 院系:物理学系 专业:物理学类 学号:2011112102 姓名:赵冬冬 寒武纪生命大爆发的阶段性及其对于探 讨生物进化的意义 寒武纪生命大爆发被认为是古生物学和地质学史上的一大悬案,自达尔文以来就困绕着进化论等许多学术界,大约6亿年前,在地质学上称作前寒武纪,在短短的几百万年时间里绝大多数无脊椎动物门出现,而在寒武纪前的更为古老的地层中却难以找到动物化石的迹象,这种现象被古生物学家乘坐“寒武纪生命大爆发”。 在距今约5.3亿年前一个被称为寒武纪的地质历史时期,地球上突然涌现出各种各样的动物,它们不约而同的迅速起源、立即出现。节肢、腕足、蠕形、海绵、脊索动物等等一系列与现代动物形态基本相同的动物在地球上来了个“集体亮相”,形成了多种门类动物同时存在的繁荣景象。其中具有代表性的生物群有:中国云南的“澄江生物群”,加拿大的“布尔吉斯页岩”和“凯里生物群”,这些为寒武纪生命大爆发提供了有力的证据。大量的化石证据为达尔文的《物种起源》提供了充足的证据:寒武纪生命大爆发并不是所谓的在一夜之间就出现各种动物,它是有一定的阶段性的,其中舒德干教授提出了“三幕式寒武生命大爆发”。他人为寒武纪生命大爆发的内因是:动物界基因组成基本成熟;外因是:海洋中增氧提速,海洋化学条件变化,如磷的增加。其中我对高肌虫做一些分析。 一.高肌虫在甲壳纲内的地位

高肌虫在甲壳纲内的地位一直没有很好的得到解决。最早描述寒武纪高肌虫化石的是琼斯,由于其形态与豆类介形虫极相似,所以当时直接作为豆石类描述。而后的四分之三个世纪里,尽管添加了不少新属种,但一直被置于介形虫目内。实际上,现有的高肌虫是一个复合类别,其中绝大多数属种很可能是后来真正介形虫的远祖,另一部分则可能与古甲类或虾类有关。这两大部分构成高肌虫的主体;此外,少数具有拟生长线的高肌虫是否为泥盆纪以后叶肢介不成功之远祖,也是值得进一步探讨的。基于高肌虫主要包括两大类很不相同的甲壳动物的事实,霍世诚?舒德干在高肌虫内建立了两个亚目——具腹亚目和缺腹亚目分别代表介形虫和虾类的两只祖先类型。在这之前,西德的Muller,还根据壳质成分及软驱体构造建立了磷足亚目,不久又升格为目。 关于高肌虫在甲壳纲内的地位,当前最流行的看法,也就是多数古生物学家所持有的观点是:介形虫的祖先形态必在高肌虫内,而且将高肌虫作为一个目直接归入介形虫亚纲之下。但是,现存的不一定是合理的,流行的不等于是正确的。上述当前盛行的高肌虫分类位置观点的前半部分是较合理的,并为本文前面进行的详细形态构造研究所证实;但其后半部分却大可商榷。依笔者看来,它很可能本末倒置,完全把高肌虫与介形虫的主从,隶属关系搞颠倒了。 我们都知道,在生物学和古生物学系统分类或自然分类中,确定或比较生物类别所处分类阶元的高低,一般都遵循两条主要准则。一条是形态学标准,另一条便是系统发生学标准。在形态学上,一个较高分类阶元的生物类别在最基本的形态构造特征范围上总是要比下属较低分类阶元的生物类别更为宽广,多样。 在系统发生学上,一般总是较低分类阶元的生物类别导源于较高分类阶元中的某一支或几支,而决不是相反。 接下来分析比较一下高肌虫与介形虫的基本形态学特征的范围。 1.介壳的整体构造特征方面

从寒武纪演化以来各个时期生物高级程度及生物演化的阶段性

从寒武纪演化以来各个时期生物高级程度及生物演化 的阶段性 寒武纪 寒武纪——第一次生物大爆发。当时出现了丰富多样且比较高级的海生无脊椎动物,保存了大量的化石,从而有可能研究当时生物界的状况,并能够利用生物地层学方法来划分和对比地层,进而研究有机界和无机界比较完整的发展历史。 寒武纪是显生宙(Phanerozoic Eon)的开始,标志着地球生物演化史新的一幕。在寒武纪开始后的短短数百万年时间里,包括现生动物几乎所有类群祖先在内的大量多细胞生物突然出现,这一爆发式的生物演化事件被称为“寒武纪生命大爆炸”(Cam brian explosion)。带壳、具骨骼的海洋无脊椎动物趋向繁荣,它们营底栖生活,以微小的海藻和有机质颗粒为食物,其中,最繁盛的是节肢动物三叶虫,故寒武纪又称为“三叶虫时代”,其次是腕足动物、古杯动物、棘皮动物和腹足动物,寒武纪的生物形态奇特,和我们现在地球上所能看见的生物极不相同。寒武纪的生物界以海生无脊椎动物和海生藻类为主。无脊椎动物的许多高级门类如节肢动物、棘皮动物、软体动物、腕足动物、笔石动物等都有了代表。其中以节肢动物门中的三叶虫纲最为重要,其次为腕足动物。此外,古杯类、古介形类、软舌螺类、牙形刺、鹦鹉螺类等也相当重要 在潮湿的低地,可能分布有苔藓和地衣类的低等植物,但它们还缺乏真正的根茎组织,难以在干燥地区生活;无脊椎动物也还没有演化出适应在空气中生活的机能。寒武纪没有真正的陆生生物,大陆上缺乏生气、荒凉一片。 此外,寒武纪还产生了进化史上的一个重要事件“寒武纪生命大爆发”,在很短(地质意义上的很短,其实也有数百万年之久)时间内,生物种类突然丰富起来,呈爆炸式的增加。它意味着,生物进化除了缓慢渐变,还可能以跳跃的方式进行。 奥陶纪 奥陶纪:当时气候温和,浅海广布,世界许多地方(包括我国大部分地方)都被浅海海水掩盖。海生生物空前发展。奥陶纪末期发生第一次生物大灭绝。 在奥陶纪广阔的海洋中,海生无脊椎动物空前繁荣,生活着大量的各门类无脊椎动物。除寒武纪开始繁盛的类群以外,其他一些类群还得到进一步的发展,其中包括笔石、珊瑚、腕足、海百合、苔藓虫和软体动物等。 在奥陶纪晚期,约4.8亿年前,首次出现了可靠的陆生脊椎动物--淡水无颚鱼;淡水植物据推测可能在奥陶纪也已经出现。 志留纪

吉林大学大作业答案:生物制药学

《生物制药学》 一、名词解释。 1.生物技术制药:利用基因工程技术、细胞工程技术、微生物工程技术、酶工程技术、蛋白质工程技术、分子生物学技术等来研究和开发药物,用来诊断、治疗和预防疾病的发生。 2.基因工程:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 3.生物反应器:利用生物体所具有的生物功能,在体外或体内通过生化反应或生物自身的代谢获得目标产物的装置系统、细胞、组织器官等等。 4.接触抑制:将多细胞生物的细胞进行体外培养时,分散贴壁生长的细胞一旦相互汇合接触,即停止移动和生长的现象。 5.单克隆抗体:因单一克隆B细胞杂交瘤产生的,只识别抗原分子某一特定决定簇的特异性抗体。 二、问答题。 1.特点:细胞生长时胞体呈棱形或不规则的三角形,中央有圆形核,胞质向外伸出2~3个突起。细胞群常借该突起连接成网,生长时呈放射状、漩涡状或火焰状走行。 来源:中胚层组织来源的细胞,如成纤维细胞、心肌细胞、平滑肌细胞和成骨细胞等。

2.特点:①原代培养细胞呈活跃的移动,细胞分裂不旺盛,并多呈二倍体核型; ②原代培养细胞与体内细胞在形态结构和功能活动上相似性大; ③细胞群是异质的,即各细胞的遗传性状互不相同,细胞相互依存性强。 例如:鸡胚细胞、原代免或鼠肾细胞、以及血液的淋巴细胞。 3.免疫毒素可用于治疗肿瘤、自身免疫病,并能克服组织移植排斥反应,可单独给药也可以包裹在脂质体及其他微粒中给药。由于重组免疫毒素是在胞浆物质代谢中发挥作用,相对分子质量又小,渗透力强,故效果好。 4.在发酵过程中,在已有设备和正常发酵条件下,每种产物发酵的溶氧浓度变化有自己的规律。发酵时生产菌大量繁殖,需氧量不断增加,此时的需氧量超过供氧量,使溶氧浓度明显下降。从发酵液中的溶解氧浓度的变化,就可以了解微生物生长代谢是否正常,工艺控制是否合理,设备供氧能力是否充足等问题,帮助查找发酵不正常的原因和控制好发酵生产。 5.(1)酶的稳定性提高。 (2)反应后,酶与底物和产物易于分开,产物中无残留酶,易于纯化,产品质量高。 (3)反应条件易于控制,可实现转化反应的连续和自动控制。(4)酶的利用效率高,单位酶催化的底物量增加,用酶量减少。(5)比水溶性酶更适合于多酶反应。

分子生物学课后习题答案

第一章绪论 ?DNA重组技术与基因工程技术。 DNA重组技术又称基因工程技术,目得就是将不同DNA片段(基因或基因得一部分)按照人们得设计定向连接起来,在特定得受体细胞中与载体同时复制并得到表达,产生影响受体细胞得新得遗传性状。 DNA重组技术就是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究得结晶,而限制性内切酶DNA连接酶及其她工具酶得发现与应用则就是这一技术得以建立得关键。 DNA重组技术有着广泛得应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低得多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。其次,DNA重组技术可以用于定向改造某些生物得基因结构,使她们所具有得特殊经济价值或功能成百上千倍得提高。 ?请简述现代分子生物学得研究内容。 1、DNA重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传得物质基础及基因与基因组结构 ?核小体、DNA得半保留复制、转座子。 核小体就是染色质得基本结构单位。就是由H2A、H2B、H3、H4各两分子生成八聚体与由大约200bp得DNA构成得。核小体得形成就是染色体中DNA压缩得第一步。 DNA在复制过程中,每条链分别作为模板合成新链,产生互补得两条链。这样新形成得两个DNA分子与原来DNA分子得碱基顺序完全一样。因此,每个子代分子得一条链来自亲代DNA,另一条链则就是新合成得,这种复制方式被称为DNA得半保留复制。 转座子就是存在染色体DNA上得可自主复制与移位得基本单位。转座子分为两大类:插入序列与复合型转座子。 ?DNA得一、二、三级结构特征。 DNA得一级结构就是指4种脱氧核苷酸得连接及其排列顺序,表示了该DNA分子得化学构成。 DNA得二级结构就是指两条多核苷酸链反向平行盘绕所生成得双螺旋结构。分为左手螺旋与右手螺旋。 DNA得高级结构就是指DNA双螺旋进一步扭曲盘绕所形成得特定空间结构。超螺旋结构就是DNA高级结构得主要形式,可分为正超螺旋与负超螺旋两大类。 ?DNA复制通常采取哪些方式? 1、线性DNA双链得复制:复制经过起始、延伸、终止与分离三个阶段。复制就是从5’端向3’端移动,前导链得合成就是连续得,后随链通过冈崎片段连接成完整链。 2、环状DNA双链得复制 (1)θ型:就是一种双向复制方式。复制得起始点涉及DNA得结旋与松开,形成两个方向相反得复制叉,复制从定点开始双向等速进行。 (2) 滚环型:就是单向复制得一种特殊方式,发生在噬菌体DNA与细菌质粒上,首先对正链原点进行专一性得切割,形成得5’端被单链结合蛋白所覆盖,3’端在DNA聚合酶得作用下不断延伸。 (3) D-环复制:也就是单向复制得一种方式。就是在线粒体DNA中发现得。两条链得合成就是高度不对称得,最初只以一条母链为模版合成,迅速合成互补得新链,另一条则成为游离得

寒武纪生命大爆发概述

寒武纪生命大爆发概述 被称为古生物学和地质学上的一大悬案──寒武纪生命大爆发,自达尔文以来就一直困扰着进化论等学术界。大约6亿年前,在地质学上称做寒武纪的开始,绝大多数无脊椎动物门在几百万年的很短时间内出现了。这种几乎是“同时”地、“突然”地出现在寒武纪地层中门类众多的无脊椎动物化石(节肢动物、软体动物、腕足动物和环节动物等),而在寒武纪之前更为古老的地层中长期以来却找不到动物化石的现象,被古生物学家称作“寒武纪生命大爆发”,简称“寒武爆发”。达尔文在其《物种起源》的著作中提到了这一事实,并大感迷惑。他认为这一事实会被用做反对其进化论的有力证据。但他同时解释到,寒武纪的动物一定是来自前寒武纪动物的祖先,是经过很长时间的进化过程产生的;寒武纪动物化石出现的“突然性”和前寒武纪动物化石的缺乏,是由于地质记录的不完全或是由于老地层淹没在海洋中的缘故。 寒武纪生命大爆发的起源—埃迪卡拉动物群 埃迪卡拉(Ediacaran)动物群是Sprigg于1947年在澳大利亚中南部Ediacara地区的庞德砂岩层中首先发现的。最初人们未能确定这一动物群的时代,后来终于确定为前寒武纪,年龄为6.7亿年。埃迪卡拉动物群包含三个门,19个属,24种低等无脊椎动物。三个门是:腔肠动物门,环节动物门和节肢动物门。水母有7属9种;水螅纲有3属3种;海鳃目(珊瑚纲)有3属3种;钵水母2属2种;多毛类环虫2属5种;节肢动物2属2种。多保存为印痕化石,尽管它们的形态、结构都很原始,但它们被认为是20世纪古生物学最重大的发现之一。这一发现使科学界摈弃了长期以来认为在寒武纪之前不可能出现后生动物化石的传统观念。所谓后生动物即是指相对于原生动物的各种多细胞动物 艾迪卡拉动物群包含了多种形态奇特的动物化石:身体巨大而扁平、多呈椭圆形或条带形,具有平滑的有机质膜,是人们迄今为止发现的最古老、最原始的化石,也是在太古代地层中发现的最有说服力的生物证据。按Seilacher的观点,艾迪卡拉动物群可分为辐射状生长、两极生长和单极生长3种类型。除辐射状生长的类型中可能有与腔肠动物有关系的类群外,其他两类与寒武纪以后出现的生物门类无亲源关系。 尽管有关艾迪卡拉(型)动物群的性质还有许多争议,但其奇怪的形态令许多学者相信,艾迪卡拉(型)动物群是后生动物出现后的第一次适应辐射,它们采取的不同于现代大多数动物采取的形体结构变化方式。不增加内部结构的复杂性,只改变躯体的基本形态,变得非常薄,成条带状或薄饼状,使体内各部分充分接近外表面,在没有内部器官的情况下进行呼吸和摄取营养。如现代大型寄生动物涤虫现代大多数动物采取的是保持浑圆或球形的外部形态的同时,进化出复杂的内部器官来扩大相应的表面积(如肺、消化道),从化石上可以看出,这些生物已具有了高度分化的组织和器官,说明它们已不是最原始的类型。它们代表了后生动物出现以后的第一次辐射演化因此,可以认为艾迪卡拉(型)动物群是在元古宙末期大气氧含量较低的条件下后生动物大规模占领浅海的一次尝试,结果失败了,而导致绝灭。在后来的演化过程中,后生动物采取了第二种方式,使内部的器官复杂化和物种多样化的发展,即生物系统演化。 寒武纪生命大爆发的代表─云南澄江动物群 寒武爆发的典型代表是被称为20世纪最惊人的科学发现之一的中国云南澄江动物群,它是世界上目前所发现的最古老、保存最为完整的带壳后生动物群。该动物群是中国青年古生物学家侯先光1984年在云南澄江县帽天山首先发现的。这是一个内容十分丰富、保存非常完美,距今约5.7亿年的化石群,其成员包括水母状生物、三叶虫、具附肢的非三叶的节

(完整版)分子生物学》试题及答案

《分子生物学》考试试题B 课程号:66000360 考试方式:闭卷 考试时间: 一、名词解释(共10题,每题2分,共20分) 1. SD 序列 2. 重叠基因 3.ρ因子 4.hnRNA 5. 冈崎片段、 6. 复制叉(replication fork) 7. 反密码子(anticodon): 8. 同功tRNA 9. 模板链(template strand) 10. 抑癌基因 二、填空题(共20空,每空1分,共20分) 1.原核基因启动子上游有三个短的保守序列,它们分别为____和__区. 2.复合转座子有三个主要的结构域分别为______、______、________。 3.原核生物的核糖体由_____小亚基和_____大亚基组成,真核生物核糖糖体由_____小亚基和_______大亚基组成。 4.生物界共有___个密码子,其中__ 个为氨基酸编码,起始密码子为__ _______;终止密码子为_______、__________、____________。 5. DNA生物合成的方向是_______,冈奇片段合成方向是_______。 6.在细菌细胞中,独立于染色体之外的遗传因子叫_______。它是一

种_______状双链DNA,在基因工程中,它做为_______。 三.判断题(共5题,每题2分,共10分) 1.原核生物DNA的合成是单点起始,真核生物为多点起始。( ) 2.在DNA生物合成中,半保留复制与半不连续复制指相同概念。( ) 3.大肠杆菌核糖体大亚基必须在小亚基存在时才能与mRNA结合。( ) 4.密码子在mRNA上的阅读方向为5’→ 3’。( ) 5.DNA复制时,前导链的合成方向为5’→ 3’,后随链的合成方向也是5’→ 3’。() 四、简答题(共6题,每题5分,共30分) 1.简述三种RNA在蛋白质生物合成中的作用。 2.蛋白质合成后的加工修饰有哪些内容? 3.简述人类基因组计划的主要任务。 4.简述现代分子生物学的四大研究热点。 5.何谓转座子?简述简单转座子发生转座作用的机理。 6.简述大肠杆菌乳糖操纵子与色氨酸操纵子在阻遏调控机制上有那些区别? 四、问答题(共2题,共20分) 1.叙述蛋白质生物合成的主要过程。(10分) 2.请叙述真核基因的表达调控主要发生在那些环节?分别是怎样进行 的?(10分)

相关文档
相关文档 最新文档