文档库 最新最全的文档下载
当前位置:文档库 › 浅谈对智能电网控制技术的认识

浅谈对智能电网控制技术的认识

浅谈对智能电网控制技术的认识
浅谈对智能电网控制技术的认识

浅谈对智能电网控制技术的认识

本文分析了电力系统中电力流、信息流、资金流的变化规律和相互之间的制约关系。通过对信息流的调控, 改善电力流和资金流, 实现智能电网。以信息流为基础, 从信息分层、上下层信息互动、不同时间尺度信息之间的协调几个方面研究了智能电网调度控制系统构架。从空间、时间、控制目标等3维协调发展, 以及基于相量测量单元的

动态管理系统、系统级的闭环控制等方面探讨智能电网控制中心应用软件可能发生的变革。

目前国内通常将“Smart Grid”称为智能电网。智能电网是指利用现代测量、通信、计算机、自动化等技术, 使得电网运行更加可靠、灵活与经济, 能为用户提供更优质的服务。这与电网运行的安全、经济、电能质量等三大目标一致, 还强调了电网的可扩展性、电源与用户的双向互动、适应接入可再生能源等。西方国家的能源结构、电网状况、管理体制等与我国有很大不同, 他们的“Smart Grid”概念主要侧重于配电网的智能化和自动化[ 1] , 新近也提到智能输电网

[ 2]。我国智能电网的提法更侧重智能输电网。

1 进一步理解“Smart Grid”

电力系统是目前所知最大最复杂的人造物理系统。实现电力流的合理分布是智能电网的最终目标。要实现这一目标, 需要一个对物理电网运行进行调控的神经中枢系统和大脑。神经中枢系统传递的是信息, 涉及的是信息的流动, 包括了信息的采集、传输、处理、挖掘、分配和展示等各个环节。智能电网传输的电力流是为人类的生产和生活服

务的。发电侧的电力市场、输电侧的输电权交易、用电侧的需求侧管理, 这些都体现了人类参与电力服务的各个环节中的利益平衡。因此, 资金流也是智能电网需要面对的重要问题。电力流从发电侧流向配用电侧, 资金流从配用电侧流向发电侧, 而信息流是双向的, 包括了

信息的感知和控制[ 3] 。在电力流方面, 智能电网对传统电力流基

础设施的要求增加了许多新的内容:①中国正在发展的特高压输电,

大大改善了电力流基础设施, 使电网更坚强;②高压直流输电和灵

活交流输电系统(FACTS)设备提供了灵活改变电力流的手段, 增加了

电力流的可控性和电网运行的弹性;③发电侧的大规模风电等可再生

能源的接入, 配用电侧的分布式电源接入, 使电力流向更加多变,

电力流的方向可能改变, 这对电力流基础设施提出了更高的要求;等等。这些都是实现智能电网在电力流方面需要面对的新问题。这一双向的互动, 需要通过信息流传递信息, 通过信息分配环节传递控制

信息, 强制发电方或用电方改变行为;也传递电价信息, 由发电方或

用电方自己主动地改变自己的行为,这种双向互动成为国际上智能电

网的核心特征[ 4] 。

2 智能电网未来调度控制系统构架

电网运行的调度控制, 需要满足2项制约因素:①调度管理体制约束;②电网运行的物理规律约束。

2.1 以信息流主导的系统总体构架

智能电网需要通过调控信息流实现对物理电网的更全面、更细致的调度和控制。物理电网主要涉及由输配电线路连接的电网和以变电设

备为特征的厂站。控制中心统揽影响全局的信息, 厂站负责局域信息, 在信息层面对控制中心和厂站进行封装, 构筑智能电网的分层分布

式调度控制系统框架。

2.2 智能电网调度控制系统的信息分层

2.2.1 控制中心之间的信息分层

在中国电网的5 级调度机构中, 电网运行涉及的大部分重要功能

是在省、地两级调度机构实现的,大区级控制中心主要负责省间协调, 国家级控制中心负责大区电网之间的协调。近些年, 这两级协调机构的作用不断加强, 协调力度不断加大, 体现了对电网进行全局调控

的作用。智能电网要实现全局优化运行, 各级控制中心之间需要协调互动, 粗细有别地进行调控, 这需要靠控制中心之间的信息分层实

现[ 5] 。各级控制中心(上下级)之间, 需要信息的纵向分层:1)下级控制中心向上级控制中心汇报自己电网模型和自己电网的实时信息, 上级控制中心汇总这些模型和实时信息, 形成完整匹配的全局电网

潮流模型;2)上级控制中心跟踪电网变化, 自动为下级生成外网等值

模型, 并下发到下级控制中心。智能电网的上下两级控制中心之间双向传送信息, 实现双向互动。

2.2.2 控制中心与厂站之间的信息分层

传统能量管理系统(EMS)中, 厂站拓扑分析和系统拓扑分析全部在

控制中心完成。其缺点是:1)厂站没有拓扑分析功能,,拓扑错误辨识

能力受限;2)很多厂站的刀闸信息并不实时传送, 导致由刀闸错位引

发的拓扑错误;3)大量开关信息送达控制中心由控制中心处理, 导致

通信压力增大, 控制中心数据处理工作量很大。实际上, 厂站和控制中心两者功能的特点很不相同, 采用统一的方法处理并不合理。需要进行信息分层, 各自进行数据的封装、抽取和对外交换。

智能电网应增加厂站的高级应用功能, 独立完成厂站拓扑分析

[ 6] 。采用智能代理的思想, 由厂站和控制中心共同建立网络模

型:1)在厂站内部完成站级拓扑分析, 将Node 模型转换成Bus 模型, 并传送到控制中心;2)在控制中心完成系统的拓扑分析, 将厂站Bus

模型转换成系统拓扑岛;3)厂站内开关变位引发站级拓扑变化, 厂站

内立即生成新的Bus模型, 传送到控制中心, 启动控制中心的系统拓

扑修正程序。

2.3 智能电网控制中心与厂站之间的互动

按照控制中心与厂站之间的信息分层, 分别将两者看成相互独立

的智能体, 智能体内部完成复杂的功能, 智能体之间只交换必要的、相对较少的协调信息, 大量的数据处理和分析计算任务被封装在智

能体内部, 像一个黑匣子, 外部感知不到。通过智能体之间的双向互动, 实现调控全局电网的复杂功能。在厂站级, 实现全数字化和网络化。过去不同源的数据被同源化, 过去分别独立的功能被集成、被融合, 全部由当地的智能处理器和计算机完成;接收外部少量协调信息, 厂站独立完成自身功能。

控制中心下达的控制命令包括:机组有功、无功调控指令;保护定值在线修改指令;不同变电站继电保护之间配合的协调指令, 实现广域

保护方案;经系统级在线计算分析形成的决策表, 指导安全自动装置

的协调动作, 实现系统级的动态紧急控制;等等。控制中心与厂站之

间是双向互动的, 各自独立完成自己复杂的数据处理和分析计算功能, 两者之间交换的是各自处理后的信息。

2.4 时间尺度不同信息之间的协调

除了空间分布广域, 信息在时间尺度上也有很大差异, 需要协调。根据信息响应快慢的时间尺度有如下分类:1)毫秒级信息:例如元件

保护信息, 局部就地,设备级;相量测量单元(PMU)信息, 全局广域,

系统级;2)秒级信息:远方终端单元(RTU)信息, 自动发电控制(AGC)

信息, 广域, 系统级;自动电压调节(AVR)控制信息, 局域, 发电厂级;3)分钟级信息:有功实时调度控制信息、二次电压控制信息, 广域, 系统级;4)小时级信息:运行计划信息, 广域, 系统级;5)日级及更长

时间尺度信息:运行规划信息。

3 智能电网控制中心的变革

3.1 智能电网控制中心三维协调系统设计

由于电网在空间、时间、控制目标等3 方面表现出复杂性, 因此, 作为大脑的高级应用软件就应该按照3 维协调来设计[ 7-8] 。空间

维上, 管辖范围不同的上下级电网控制中心通过信息双向交互和分

解协调计算, 实现EMS网络分析在全局电网基础上的协调。时间维上, 进行不同时间尺度运行计划、运行调度与实时控制之间的协调;智能

电网EMS 采用的是一种实时、跟踪、递归、滚动的运行模式;纵观历史、预测未来, 瞻前顾后, 弹性松弛地制定调度控制决策;考虑来龙

去脉, 考虑因、果, 抑止相继开断, 完成时间过程的协调。时间维的

协调解决了电网应对随机扰动的适应性问题, 保证电网运行更具弹

性和韧性。目标维上, 综合考虑电网运行的多个目标, 经过全面分析后才做出决策。目标维的协调解决电网运行调度控制的全面可靠性问题, 保证万无一失。3 维协调思想在系统级的无功电压控制中得到很好的应用[ 9] 。

3.2 基于PMU 的高级应用软件

引入带时标的同步相量信息, 改变了人们感知物理电网的手段,

以便快速掌握全局电网动态变化过程, 这是一项重要变革。过去几十年, 人类利用RTU测量正弦交流基波分量的有效值,然后利用SCADA系统对实时采集的RTU 数据进行管理, 利用EMS 高级应用软件在线进

行电网稳态分析, 实现了Dy-Liacco 于40 多年前构建的电网自适应安全控制构架[ 10] , 并一直沿用至今。20 世纪80 年代中期提出、近些年迅速发展的PMU , 可以数毫秒的时间间隔快速感知电力系统

动态过程, 然后利用广域测量系统(WAMS)实时对PMU 数据进行管理, 发展了电网动态监视系统, 并得到广泛应用[ 11] 。

设想如果可以获取时间尺度小于10 ms 的任何地点的PMU 数据,

可以实现即时完成的线性状态估计, 可以实现小于秒级的快速安全

稳定分析和决策, 那个时代的EMS 会是什么样子?PMU 是基于电网的物理响应。它快速感知的物理电网的变化是真实的、及时的, 这对动态监控有利, 但这只达到人类触觉快速反射的水平, 反应速度足够快, 但是缺少大脑的思维, 无法做到按照人类意识来动作。因此, 需要给PMU 配瞬态管理系统(t ransient management sy stem , TMS)

“大脑”。基于PMU 的TMS , 是给基于PMU 的局域控制配置的“大脑” , 以便实现系统级控制, 就要利用TMS 的快速分析决策能力,

为基于PMU 的局域控制器在线发送设定值。这相当于在局域控制之外设置一个外部控制环[ 7] 。决策表的在线刷新, 是一种成功的应用[ 12] 。为PMU 配置的“大脑”是基于数学模型的。

3.3 智能电网的实时闭环控制

智能电网的重要特点之一就是更多地实现闭环控制, 计算机更多

地将人类调度员从繁琐的下达调度命令的工作中解脱出来。

1)电网正常安全运行状态下的优化控制电网大多数情况处于这一运

行状态。此时进行多空间区域、多时间尺度、多目标种类协调的全局优化闭环控制, 通过运行计划、实时调度和实时控制之间的无缝衔接, 连贯过渡、滚动消差, 实现智能电网的优化控制目标。这些过程全部通过闭环控制自动完成[ 9 , 13] 。

2)电网紧急运行状态下的校正控制

电网静态紧急控制可在控制中心决策并通过校正控制来实现, 例

如线路过负荷控制。这是时间尺度较大(数秒到分钟级)的系统级闭环控制。电网动态紧急控制还是需要依靠局域闭环控制。基于PMU 进行系统级协调, 实现全局电网阻尼控制[ 14] 和系统级协调的广域保

护[ 15] 。

3.4 智能电网的新型人机交互和可视化

智能技术更多地体现在人机交互中。系统是否脆弱以及脆弱程度, 由不同的颜色划分等级预警;系统已经发生的事件, 根据重要性和严

重性由智能告警功能自动推出并展示出来。智能电网控制中心自动化系统更像一个具有超级功能的机器调度员[ 16] , 它承担起大量繁琐的分析和数据处理任务, 辅助调度员应对电网可能出现的任何扰动,

维持电网平稳运行。

3.5 在空间、时间、目标维度上的协调

智能电网技术是支持含特高压输电的智能电网运行的有力技术手段。特高压输电使得区域电网之间的电气联系更加紧密, 电网在“空间、时间、目标”3 个维度的耦合更强、更明显, 更需要“ Smart”技术来协调。国家级电网模型可以作为详细的外网模型直接被网(省)控中心套用(主要用于离线计算), 也可以经等值后利用(用于在线计算)。过去用内网在线、外网离线的建模方法和计算模式进行在线稳

定评估, 将被全局电网实时在线模型取代[ 17] 。

有多项安全目标需要协调。有功安全与无功安全之间、稳态安全与暂态安全之间、电压稳定与功角稳定之间都需要协调, 不能顾此失彼。实时计算的输电断面传输功率极限是考虑了各种网络安全约束的

[ 18] 。由于特高压的引入, 进行安全分析的电网规模扩大, 为满足实时应用的要求, 计算时间还不能增加, 这就需要更高性能的计算机、更多计算机组成集群、更智能的多代理技术来实现[ 19] 。还需要实时进行一次电网与二次保护之间的协调配合。智能电网控制中心新一代EMS 需要实时计算保护定值[ 20] , 将来可能发展为实时对现场的保护定值进行校准和更新。

参考文献

[ 1] EPRI . IntelliGrid : smart power for the 21st century .

Palo Alto , CA , USA:EPRI , 2006 .

[ 2] JIANG Zhen hua , LI Fangxing , QIAO Wei , et al.A vision of smart transmission grids// Proceedings of IEEE Power Engineering Society General Meeting , July 26-30 , 2009 , Calgary , Albert a, Canada .

[ 3] 于尔铿, 谢开, 周京阳, 等.电力市场与能量管理系统(EMS).

电力系统自动化, 1996 , 20(9):30-32 .

YU E rkeng , XIE Kai , ZHOU Jingyang , et al.Discussion on energy management system under electricity market conditi on . Automation of Electric Power Systems , 1996, 20(9):30-32 . [ 4] BELHOMME R, DEASUA R C R, VALTORTA G .

ADDRESS :active demand for the smart grid s of the future// Proceedings of CIRED Seminar 2008 : Smart Grids for Distribution , June 23-24 , 2008 , Frankfurt , Germany . [ 5] ZH ANG B M , ZH ANG H B , SUN H B, et al , Interaction and coordination between multiple control centers :development and practice// Proceedings of CIGRE 2006 , SC C 2 , August 27-29 , 2006, Paris , France .

[ 6] 孙宏斌, 张伯明, 吴文传, 等.面向中国智能输电网的智能控

制中心(SCC)// 2009 年特高压国际会议论文集, 2009 年5 月20-22 日, 北京.

[ 7] 张伯明, 孙宏斌, 吴文传.3 维协调的新一代电网能量管理系

ZHANG Boming , SUN Hongbin , WU Wenchuan . New

generation of EMS with 3-dimensi on al coordination .Automation of Electric Power Systems , 2007 , 31(13):1-6 .

[ 8] 张伯明, 孙宏斌, 吴文传, 等.三维协调的新一代电网能量管

理系统关键技术研究// 周孝信, 等.大型互联电网运行可靠性基础

研究(Ⅰ).北京:清华大学出版社, 2008 :184-203 .

[ 9] 孙宏斌, 郭庆来, 张伯明.大电网自动电压控制技术的研究和

展.电力科学与技术学报, 2007, 22(1):7-12 .

SUN H ongbin , GUO Qinglai , ZHANG Boming .Research and prospects for automatic voltage control techniques in large-s calen power grids .Journal of Electric Power Science and Technology ,2007 , 22(1), 7-12 .

[ 10] DY-LIACCO T E .T he adapt ivereliability control system . IEEE Trans on Power Apparatus and Systems , 1967 , 86(5): 517-531 .

[ 11] PH ADKE A G , DE MORAES R M .The wide world of widemeasurement systems .IEEE Power an d Energy Magazine, 2008 , 6(5):52-65 .

[ 12] 方勇杰, 戴永荣, 李雷, 等.OPS-1 在线预决策的暂态稳定控制

FANG Yongjie, DAI Yong rong , LI Lei , et al.The OPS-1

on-line pre-decision based transient control system . Automati on of Electric Power Systems , 2001 , 24(3):56-59 . [ 13] 李予州, 张伯明, 吴文传, 等.在线有功调度协调控制系统的研究与开发.电力自动化设备, 2008 , 28(5):12-16 .

LI Yuzh ou , ZH ANG Boming , WU Wen chuan , et al. Development of on-line coordination control system for active power dispatch .Electric Power Automation Equipment , 2008 , 28(5):12-16 .

[ 14] 韩英铎, 吴小辰, 吴京涛.电力系统广域稳定控制技术及工程实验.南方电网技术, 2007 , 1(1):1-8 .

H AN Yingduo , WU Xiaochen , WU Jing tao .Research and experiment of wide-area stability control techniques in electric power systems .Southern Power System Technology , 2007 , 1(1):1-8 .

[ 15] BEGOVIC M , NOVOSE L D , KARLSSON D , et al.Widearea protection and emergency control.Proceedings of the

IE EE , 2005 , 93(5):876-891 .

[ 16] DY-LIACCO T E .Enhancing power system security control . IE EE Computer Applications in Power , 1997 , 10(3):38-41 . [ 17] 严剑锋, 于之虹, 田芳, 等.电力系统在线动态安全评估和预

警系统.中国电机工程学报, 2008 , 28(34):87-93 .

YAN Jianf eng , YU Zhihong , TIAN Fang , et al.Dynamic security assessment & early warning system of power system . Proceedings of the CSE E , 2008 , 28(34):87-93 .

[ 18] ZH ANG B M , WU S N , CAI B , et al.An early warning and security count ermeasure (EWSC ) system f or electric power control centers// Proceedings of International Electrical Engineering Conference (IPEC' 05):Vol 2 , November 29- December 2 , 2005 , Singapore :728-733 .

[ 19] ZH ANG Boming , ZHAO C huanlin , WU Wenchuan .A multiagent based dist ributed computing plat form for new generation

of EMS// Proceedings of Power Systems Conference & Exposition , March 15-18 , 2009 , Seattle, WA , USA :7p . [ 20] SUN Hongbin , ZHANG Boming , L Ying , et al.Modeling , simulating and online set ting-checking for protective relay// Proceedings of Power Systems Conference & Exposition

(PSC E' 09), March 15-18 , 2009 , Seattle , WA , USA :5p .

浅谈在智能电网中智能电表的应用及发展

浅谈在智能电网中智能电表的应用及发展 发表时间:2018-06-11T16:25:11.753Z 来源:《河南电力》2018年2期作者:蔡皓晴 [导读] 随着我国的智能电网的全面建设,智能电表在市场中的需求迅速增加,在建设过程中扮演着重要角色。 (国网天津城南公司天津市 300201) 摘要:随着我国的智能电网的全面建设,智能电表在市场中的需求迅速增加,在建设过程中扮演着重要角色。传统电表在用户缴费后,将完成充值的电卡装入电表,电表根据卡中的额度进行供电,额度用尽之后就会停止供电,直到用户再次进行充值。这一过程不仅程序繁琐,也对客户的用电带来非常不好的影响。智能电表的出现,可以很地解决这一问题。智能电表在具备传统电表计费供电功能的同时,还具备更多先进的功能,不仅适应建设智能电网的需要,也符合我国可持续发展战略,智能电表在智能电网建设中的应用意义重大。 关键词:智能电网;智能电表;传统电表;应用;发展 1智能电表的功能 1.1双向通信功能 现代化的智能电表,里面设置了具有通信功能的模块,使其具有了双向通信的功能。供电企业可以通过智能电表与用户进行互动,一方面将停电通知、实时电费使用情况等用户感兴趣的信息告知用户;另一方面,用户也可以将平时遇到的用电方面的疑惑传达给供电企业。特别是在用电高峰的时候,供电企业可以通过智能电表向用户发布实时信息,引导用户合理安排用电计划,为用户节省电费的同时,降低了电网高峰负荷的压力。 1.2实现智能的用电控制 智能电表最为用户青睐的功能是它具有帮助用户实现用电控制的功能,对用户来说可以减少用电的消耗。智能电表可以与现代智能家电密切配合,根据实时电价,合理地控制智能家电的启动停止,通过调整大功率用电设备的开关时间,为用户节约用电。目前全国都已实行了分时电价,智能电表能够自动调配电气设备在峰谷用电时的负荷,在用电高峰时削减负荷,在用电低谷时的提高负荷,很好地降低了用户的用电成本,提高了经济效益,最重要的是为电网的“避高峰”做出了贡献,大大改善了大伏天、大冷天等气候造成的用电紧张的情况。 1.3双向计量 智能电表对于有储能设备,发电设备等分布式的用电大户,可以依据实时的电价引导这类用户合理经济的购买电量和使用电量,减少他们的电费支出。尽量鼓励每个家庭都安装风能,太阳能等低碳高效的储电设备。鼓励人们投资那些低碳节约的,如储冷,储热和储电的经济类设备,减轻电网电量的压力。实践证明,通过智能电表的双向计量功能,向用户即时的反馈用电情况,可以有效减少一个家庭每年13%~15%的用电量,减少3%~15%能源消耗,大大提升了环境效益和社会效益。 2在智能电网中智能电表的应用 2.1结算和配网状态估计 通过使用智能电表可以实时,准确的提供结算费用的信息,改变了过去用电账户上的复杂处理过程。在结账信息化的电力市场下,调度的人员可以方便,及时的更换能源的零售商,在未来还可以实现全自动的切换功能,而且用户也可以及时准确的得到用电账务信息。当前,配网的分布信息不是很准确,这主要因为这个用电信息是根据负载估计值,网络模型和变电站的高压测量得到的,有一定的不确定性。若在用户附近增加智能电表,就可以获得更加及时准确的负载量信息,避免由于电能质量下滑和电力设备负载过大导致的不良后果。通过大量数据的整合,将逐步实现未知状态的测量和估计数据的准确校核。 2.2电能管理与节能 智能电表可以将及时、有效的信息提供给客户,建立相适应的管理系统,为客户带来更优质、更便捷的供电服务。除了满足客户的各种用电需求,还有助于减少客户对电力的浪费,有利于企业的经济效益和社会效益一同实现。通过把客户的实际用电状况反馈给客户,有利于客户改进不良的用电习惯。除此之外,还能帮助客户及时发现设备的故障以及其他异常的耗能情况,促使客户养成节约用电的习惯。电力企业也可以通过引进、开发新技术和新产品,提升用电的管理水平,最终实现用电过程中供求双方的互利共赢。 2.3远程监控及非法用电检测 通过智能电表的功能不仅可以实现远程服务和随时断开过载,而且还对部分电力用户进行强制监督,电力公司通过使用控制开关按钮,远程控制一个特定的过载,智能电表能随时检测打开电表箱,使电表的软件更新升级,如果出现私自改线等现象,可以及时发现该情况,通过获取大量的仪表数据进行比较分析,是能够准确地检测私自篡改线路的情况,此功能为各个用电用户和电力公司挽回了大量的经济损失。 3智能电网中智能电表的应用发展 3.1接口一体化 在未来的一段时间内,电能表的测试工作是一个非常复杂和耗时的工作,需要很大的人力和物力资源来协调工作,广泛地推广应用智能电表势在必行,必要对目前的安装检测模式进行变革,最终实现智能化和自动化的监管。由于智能电表各种接口连接薄弱,在实际的检测过程中是频繁快速地切换工作,大大增加了测试的时间,而且占用太多的资源和管理成本,从而影响运营效率,导致过多的接口设置复杂,不能确保电气设备的安全性和稳定性。因此,要加强智能电表接口一体是非常重要和有发展空间的,这也将成为后期发展研究和开发的一个重要课题。 3.2网络化、系统化和模块化 智能电表未来的发展必然是向着网络化,模块化,系统化的方向发展。其中智能电表的网络化可以帮助电网在各种不同的场合采集,储存电能的信息,通过无线网络将信息传输到信息管理库里,方便整理和分析。智能电表的模块化可以避免对整个电能表进行更换的操作,只要改变部分的模块就可以了。而且由于模块化与结构的标准化,用电管理部门不用过于依赖某一家电能表的厂商,为规范电能表的开发与研究提供支持。模块化还可以通过远程或现场升级来更换故障的模块,节约维护费用。智能电表的系统化则利用了电力系统自动化

浅谈对智能电网控制技术的认识

浅谈对智能电网控制技术的认识 本文分析了电力系统中电力流、信息流、资金流的变化规律和相互之间的制约关系。通过对信息流的调控, 改善电力流和资金流, 实现智能电网。以信息流为基础, 从信息分层、上下层信息互动、不同时间尺度信息之间的协调几个方面研究了智能电网调度控制系统构架。从空间、时间、控制目标等3维协调发展, 以及基于相量测量单元的 动态管理系统、系统级的闭环控制等方面探讨智能电网控制中心应用软件可能发生的变革。 目前国内通常将“Smart Grid”称为智能电网。智能电网是指利用现代测量、通信、计算机、自动化等技术, 使得电网运行更加可靠、灵活与经济, 能为用户提供更优质的服务。这与电网运行的安全、经济、电能质量等三大目标一致, 还强调了电网的可扩展性、电源与用户的双向互动、适应接入可再生能源等。西方国家的能源结构、电网状况、管理体制等与我国有很大不同, 他们的“Smart Grid”概念主要侧重于配电网的智能化和自动化[ 1] , 新近也提到智能输电网 [ 2]。我国智能电网的提法更侧重智能输电网。 1 进一步理解“Smart Grid” 电力系统是目前所知最大最复杂的人造物理系统。实现电力流的合理分布是智能电网的最终目标。要实现这一目标, 需要一个对物理电网运行进行调控的神经中枢系统和大脑。神经中枢系统传递的是信息, 涉及的是信息的流动, 包括了信息的采集、传输、处理、挖掘、分配和展示等各个环节。智能电网传输的电力流是为人类的生产和生活服

务的。发电侧的电力市场、输电侧的输电权交易、用电侧的需求侧管理, 这些都体现了人类参与电力服务的各个环节中的利益平衡。因此, 资金流也是智能电网需要面对的重要问题。电力流从发电侧流向配用电侧, 资金流从配用电侧流向发电侧, 而信息流是双向的, 包括了 信息的感知和控制[ 3] 。在电力流方面, 智能电网对传统电力流基 础设施的要求增加了许多新的内容:①中国正在发展的特高压输电, 大大改善了电力流基础设施, 使电网更坚强;②高压直流输电和灵 活交流输电系统(FACTS)设备提供了灵活改变电力流的手段, 增加了 电力流的可控性和电网运行的弹性;③发电侧的大规模风电等可再生 能源的接入, 配用电侧的分布式电源接入, 使电力流向更加多变, 电力流的方向可能改变, 这对电力流基础设施提出了更高的要求;等等。这些都是实现智能电网在电力流方面需要面对的新问题。这一双向的互动, 需要通过信息流传递信息, 通过信息分配环节传递控制 信息, 强制发电方或用电方改变行为;也传递电价信息, 由发电方或 用电方自己主动地改变自己的行为,这种双向互动成为国际上智能电 网的核心特征[ 4] 。 2 智能电网未来调度控制系统构架 电网运行的调度控制, 需要满足2项制约因素:①调度管理体制约束;②电网运行的物理规律约束。 2.1 以信息流主导的系统总体构架 智能电网需要通过调控信息流实现对物理电网的更全面、更细致的调度和控制。物理电网主要涉及由输配电线路连接的电网和以变电设

智能电网关键技术

通信技术 建立高速、双向、实时、集成的通信系统是实现智能电网的基础,没有这样的通信系统,任何智能电网的特征都无法实现,因为智能电网的数据获取、保护和控制都需要这样的通信系统的支持,因此建立这样的通信系统是迈向智能电网的第一步。同时通信系统要和电网一样深入到千家万户,这样就形成了两张紧密联系的网络—电网和通信网络,只有这样才能实现智能电网的目标和主要特征。下图显示了电网和通信网络的关系。高速、双向、实时、集成的通信系统使智能电网成为一个动态的、实时信息和电力交换互动的大型的基础设施。当这样的通信系统建成后,它可以提高电网的供电可靠性和资产的利用率,繁荣电力市场,抵御电网受到的攻击,从而提高电网价值。 高速双向通信系统的建成,智能电网通过连续不断地自我监测和校正,应用先进的信息技术,实现其最重要的特征—自愈特征。它还可以监测各种扰动,进行补偿,重新分配潮流,避免事故的扩大。高速双向通信系统使得各种不同的智能电子设备(IEDs)、智能表计、控制中心、电力电子控制器、保护系统以及用户进行网络化的通信,提高对电网的驾驭能力和优质服务的水平。传感器在这一技术领域主要有两个方面的技术需要重点关注,其一就是开放的通信架构,它形成一个“即插即用”的环境,使电网元件之间能够进行网络化的通信;其二是统一的技术标准,它能使所有的传感器、智能电子设备(IEDs)以及应用系统之间实现无缝的通信,也就是信息在所有这些设备和系统之间能够得到完全的理解,实现设备和设备之间、设备和系统之间、系统和系统之间的互操作功能。这就需要电力公司、设备制造企业以及标准制定机构进行通力的合作,才能实现通信系统的互联互通。 量测技术 参数量测技术是智能电网基本的组成部件,先进的参数量测技术获得数据并将其转换成数据信息,以供智能电网的各个方面使用。它们评估电网设备的健康状况和电网的完整性,进行表计的读取、消除电费估计以及防止窃电、缓减电网阻塞以及与用户的沟通。 未来的智能电网将取消所有的电磁表计及其读取系统,取而代之的是可以使电力公司与用户进行双向通信的智能固态表计。基于微处理器的智能表计将有更多的功能,除了可以计量每天不同时段电力的使用和电费外,还有储存电力公司下达的高峰电力价格信号及电费费率,并通知用户实施什么样的费率政策。更高级的功能有用户自行根据费率政策,编制时间表,自动控制用户内部电力使用的策略。 对于电力公司来说,参数量测技术给电力系统运行人员和规划人员提供更多的数据支持,包括功率因数、电能质量、相位关系(WAMS)、设备健康状况和能力、表计的损坏、故障定位、变压器和线路负荷、关键元件的温度、停电确认、电能消费和预测等数据。新的软件系统将收集、储存、分析和处理这些数据,为电力公司的其他业务所用。 未来的数字保护将嵌入计算机代理程序,极大地提高可靠性。计算机代理程序是一个自治和交互的自适应的软件模块。广域监测系统、保护和控制方案将集成数字保护、先进的通信技术以及计算机代理程序。在这样一个集成的分布式的保护系统中,保护元件能够自适应地相互通信,这样的灵活性和自适应能力将极大地提高可靠性,因为即使部分系统出现了故障,其他的带有计算机代理程序的保护元件仍然能够保护系统。 设备技术 智能电网要广泛应用先进的设备技术,极大地提高输配电系统的性能。未来的智能电网中的设备将充分应用在材料、超导、储能、电力电子和微电子技术方面的最新研究成果,从而提高功率密度、供电可靠性和电能质量以及电力生产的效率。 未来智能电网将主要应用三个方面的先进技术:电力电子技术、超导技术以及大容量储能技术。通过采用新技术和在电网和负荷特性之间寻求最佳的平衡点来提高电能质量。通过应用和改造各种各样的先进设

谈谈对智能电网的认识

谈谈对智能电网的认识 引言 智能电网(smart power grids),就是电网的智能化,也被称为“电网2.0”,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。 1 智能电网的概念及其发展 智能电网的核心内涵是, 在电力系统各业务环节, 实现新型信息与通信技术的集成, 促进智能水平的提高, 其覆盖范围包括从需求侧设施到广泛分散的分布式发电再到电力市场的整个电力系统和所有相关环节。 2006年,美国IBM公司提出了“智能电网”解决方案。IBM的智能电网主要是解决电网安全运行、提高可靠性,从其在中国发布的《建设智能电网创新运营管理-中国电力发展的新思路》白皮书可以看出,解决方案主要包括以下几个方面:一是通过传感器连接资产和设备提高数字化程度;二是数据的整合体系和数据的收集体系;三是进行分析的能力,即依据已经掌握的数据进行相关分析,以优化运行和管理。该方案提供了一个大的框架,通过对电力生产、输送、零售的各个环节的优化管理,为相关企业提高运行效率及可靠性、降低成本描绘了一个蓝图。是IBM一个市场推广策略。 而后,中国能源专家武建东提出了“互动电网。互动电网,英文为Interactive Smart Grid,它将智能电网的含义涵盖其中。互动电网定义为:在开放和互联的信息模式基础上,通过加载系统数字设备和升级电网网络管理系统,实现发电、输电、供电、用电、客户售电、电网分级调度、综合服务等电力产业全流程的智能化、信息化、分级化互动管理,是集合了产业革命、技术革命和管理革命的综合性的效率变革。它将再造电网的信息回路,构建用户新型的反馈方式,推动电网整体转型为节能基础设施,提高能源效率,降低客户成本,减少温室气体排放,创造电网价值的最大化。 2发展智能电网的必要性及智能电网的性能要求 1.1概述 电网的安全、稳定和高效运行对于任何一个国家的可持续发展都具有重要意义。一个现代化的电网必须从根本上保证国家能源安全、优化资源配置、带动上下游产业链发展、体现电网企业社会责任、提高电网企业资产利用率和投资效益、适应能源结构变化和体制改革要求。因此,在电网发展和建设过程中,有必要提高科技投入,早日实现电网的智能化。 智能电网的性能特征体现了它与传统电网的区别,可以总结为以下6个方面:自治和自愈能力、防御能力、电网兼容性、高效运营和管理、优质和友好性、电力交易的方便性。 1.2自治和自愈能力 自治和自愈能力是指电网维持自身稳定运行、评估薄弱环节和应对紧急状态的能力[25-27]。目前电网的安全稳定计算和紧急预案制定仍以离线分析为主,其分析结果往往偏于保守,且无法在任何时刻都符合电网的实际运行情况。在智能电网中,电网将具备更强的自我管理和自我恢复能力,主要体现在以下几点:1)电网能够自动合理安排运行方式,协调国家、大区、省级、地县各级电网,根据潮流、负荷、气象条件等情况确定运行参数;2)电网具有在线安全稳定分析能力,能快速对自身状态进行评估,明确电网安全稳定的薄弱环节并自动提出解决方案;3)有快速的反应能力,力保电力系统三道防线;4)能针对实际情况修改或制定黑启动方案。

关于智能电网互动化特征的认识

电 力 系 统 自 动 化 — 1 — 关于智能电网互动化特征的认识 (四川大学,四川 成都 610065) 摘要: 智能电网已成为2l 世纪世界电网的发展趋势。美国、欧洲等针对智能电网开展了先行研究,国家电网公司结合中国电力工业的具体国情提出了“坚强智能电网”概念,主要包含信息化、数字化、自动化与互动化四大基本特征。本文在整体把握智能电网概念、理解四大特征内涵的基础上,针对智能电网的互动化特征进行分析,了解智能电网互动化起源,学习智能电网互动化技术机制,掌握实现互动化基本需求,并对智能电网互动化进展情况中存在的问题提出建议。 关键词: 智能电网;互动化;起源;机制;需求;建议 0 引言 智能电网在技术上包含4个基本特征:信息化、数字化、自动化、互动化。其中,互动化是指电源、电网和用户资源的友好互动和协调运行。本文对智能电网互动化进展情况进行了回顾,并结合智能电网的特点指出其发展过程中存在的问题,进而提出相应的建议。 1 智能电网概述 1.1 概念与发展 目前智能电网仍处于初期阶段, 国际社会上对于智能电网的概念没有统一而明确的定义。由于国情、利益驱动以及关注点的差异, 世界各国都以自己的理解针对智能电网开展研究与实践[1],各有侧重。然而纵观美、欧等国提出的智能电网设想与框架, 可以看到世界范围内的研究机构与学者对于智能电网所具备的特点有类似认识,即自愈、安全、兼容、交互、协调、高效、优质、集成等。 美国较早开展对智能电网的研究。2003 年,美国电科院将未来电网定义为IntelliGrid 。欧洲委员会于2005 年正式成立智能电网欧洲技术论坛,并提出了“Smart Grid ”的说法。欧洲指出未来的欧洲智能电网应具有四个典型特征:柔性、易接入、可靠、经济。美国能源部在2008 年也出版了报告“The smartgrid: An introduction ”,目前Smart Grid 这个称谓已被全世界普遍采用。 中国的智能电网建设逐步得到重视, 其发展结合了中国电力工业的特点[3]。华东电网公司于2008 年提出建设愿景, 准备从2008 年到2030 年, 分三个阶段逐步建成智能电网;并于2008 年和2009 年先后启动了“华东高级调度中心项目群建设”和“华东多适应性智能电网规划体系”。 1.2 智能电网的特征 传统的电网是一个刚性系统,电源的联接、电能的传输无动态柔性。由于信息的不完善和共享能力的薄弱,使得系统中多个自动化系统是割裂的、局部的、孤立的,无法构成一个实时的有机统一整体,整个电网的智能化程度低。 国家电网公司提出的坚强智能电网包含四个基本特征,即信息化、数字化、自动化、互动化。信息化是指实时和非实时信息的高度集成、共享和利用;数字化是指电网对象、结构及状态的定量描述和各类信息的精确高效采集与传输;自动化是指电网控制策略的自动优选、运行状态的自动监控和故障状态的自动恢复等;互动化则是指电源、电网和用户资源的友 好互动和协调运行。 2 智能电网的的互动化特征 2.1 智能电网互动化起源 互动化能够促成电价调控与信息引导客户需求与能源配比相吻合。 2.1.1 低碳经济理念对智能电网的影响 随着石油、天然气等不可再生能源的紧缺问题日益严重,人们越来越重视低碳生活理念。其中火电厂等高碳产业在电力系统中占有很大的比重,这必然涉及到智能电网与低碳的联系:调整电网能源发展结构,优化电网新能源投入比重;电价调控调整用户侧需求,刺激低碳消费经济。

浅析智能电网调度运行的关键技术及现实意义

浅析智能电网调度运行的关键技术及现实意义 摘要在对智能输电电网建设过程中,必须做好智能调度工作,其是整个工作的核心环节。智能电网调度就是对输电线路进行调度管理,其中高压电网是其服务的主干电网,将各级电网都做好协调,确保电网整体运行的安全性和稳定性。下面主要分析了电网动态监测预警技术、电网故障测距技术、电流短路控制技术、在线预测技术,希望给有关人士一些借鉴。 关键词智能电网;调度运行;关键技术 电网在投入使用之后,无论是火灾、台风,恶劣天气等,都会直接影响电力系统的安全与稳定。当管理不到位,安全控制不到位之后,整个电网就会发生短路、跳闸、电网线受损等问题,这些都是有待解决和控制的问题。由此可见,对电网进行调度控制非常关键,随着技术的发展,智能电网调度技术已经得到应用,下面就分析这些关键技术和实现的意义。通过分析希望引起相关人员的重视,在工作中不断创新,提高这方面的技术应用水平。 1 对智能电网调度情况进行分析 在电网管理中为了保证其安全高效运行,必须对电网进行调度和管理,随着相关技术的发展,为了提高工作效率和质量,在电网调度中引入了智能技术,可以有效对变电站、配电网、发电厂中的所有电力系统、设备等进行调度管理[1],管理工作主要包括对系统的实时监测,利用调度等手段让电网中的限额、电压等参数在一个合理的范围,这样智能电网运行会更加安全,通过这种方式,电网规划更加科学,整个電力调度工作也更加合理。电网调度工作非常重要,其不仅要收集电网运行过程中的各项数据,同时还要对数据进行整理和分析,这样就可以清楚知道电网中的问题,有针对性的进行处理,避免电网运行中发生安全事故。如果在对电网进行操作过程中,系统遇到了一些紧急情况,电网可以自动对调度功能进行转变,有效对系统进行控制,这样就可以降低故障对电网的影响,智能电网在以后运行中也就更稳定[2]。 2 分析智能电网的运行方式 分析智能电网的运行方式时,要结合其使用的调度设备进行分析,当相关设备正常工作时,通过智能调度,对电网中的电力进行正常的调动和传导,进行电网的校对工作时,也应该做好电网的规划工作,对电网进行归并和整合,有利于统一的调度工作。另一方面,还必须保证电网的预警机制,这样电网调度工作才会更加方便。一般当智能电网工作正常时,没有出现故障时,可以根据不同子公司的实际要求,对这些公司的电网规划、调度等进行数据分析,结合数据对运行系统进行调整,保证对每个用电部门都能实现电力支持和信息保障,除此之外,由于电网中都安装了继电保护装置,这样就可以对智能电网做整体性的维护,保证其运行的安全,再加上系统中的预警机制,就可以对运行状态进行监控和管理[3]。

浅谈智能电网发展

浅谈智能电网发展 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

浅谈智能电网发展智能电网对推动社会经济发展具有战略意义。我国发展的是坚强智能电网,具有坚强可靠、经济高效、清洁环保、透明开放、友好互动的特点。建设智能电网具有良好的社会效益和经济效益,可以调整我国区域能源不平衡的问题,为我国能源结构调整提供支持,促进各种电网相关技术全面升级,加速产业结构调整,实现对化石能源的替代。同时可以降低电网企业的运营及建设成本,减少发电装机投资和发电环节运营成本。坚强智能电网所使用的特高压输电具有远距离、大容量和低损耗的优势。预计到2020年,建设运行智能电网实现的节能量相当于减少社会能源投入约1392亿元,并可实现减排二氧化碳约×108t。我国已在与智能电网发展相关的清洁能源技术、电网储能技术、输配电技术、用电技术、信息通信技术及标准与规范等方面取得了一定的技术成果,但仍面临许多问题。需要政府在重大科技项目立项、电网项目核准、电价、资金政策和标准制定方面给予支持;并应尽快启动智能电网框架设计,建立完善标准规范体系;政府应根据电力市场的垄断状况,制定出适合我国智能电网发展的投资及控股制度。 进入21世纪以来,随着信息技术的广泛应用,尤其是国外大面积停电所带来的强大冲击,美国、欧盟等国家(地区)对电力供应的安全性、电能质量等问题更加关注,围绕如何更好地为用户提供优质服务、可再生能源替代、分布式电源发展与管理、电力供应商业模式和技术手段创新等,陆续启动了相关的研究和实践,有关智能电网的应用理念逐步形成。近年来智能电网在欧美国家已经逐步上升到国家战略层面,成为国家经济发展和能源政策的重要组成部分。 我国《国民经济和社会发展第十二个五年规划纲要》明确提出,要积极推动能源生产和利用方式变革,发展特高压等大容量、高效率、远距离先进输电技

对坚强智能电网的认识

对坚强智能电网的认识 王兵 (南京信息工程大学信息与控制学院,07电气(2)20071340058)<摘要>20世纪人类取得的最伟大的技术成就是电气化。从19世纪末至今, 电力在人类发展的进程中无处不在, 电能成为人类不可或缺的二次能源。然而, 虽然电力系统从诞生之日起一直在不断的发展, 传统的电力系统却面临越来越多的挑战, 尤其在全球环境状况急需改善, 新能源的开发不断发展的今天, 为实现可持续发展, 全球各国都将/ 智能电网0的研究与建设作为21世纪的发展方向, 但总体来说, 我国目前仍处于被动的跟踪阶段, 并没有形成明确的建设思路。本文通过对智能电网概念、特点、结构等的浅析结合我国电网的建设和管理现状, 提出中国智能电网未来的研究框架。 <关键词>坚强智能电网,框架分析,电力市场。 1、什么是坚强智能电网 总的来说,智能电网指的是电力输配系统综合传统的和前沿的电力工程技术、复杂的感应术、信息技术和通讯技术以提高电网运行效率并支持客户端广泛的附加服务的新型电网。智能电网在广义上包括可以优先使用清洁能源的智能调度系统、可以动态定价的智能计量系统以及通过调整发电、用电设备功率优化负荷平衡的智能技术系统。针对我国电力需求持续高速增长,电力资源和用电负荷分布极不均衡,输电过程损耗大,能源利用率低等多方面因素,我国将电网建设为以特高压为骨干网架,各级电网为分区的具有中国特色的电网。特别是特高压输电,它具有输电容量大、送电距离长、线路损耗低、工程投资省、走廊利用率高 和联网能力强等特点,是输电技术的重要发展方向,对推动世界电力工业的创新发展具有重要意义。因此特高压的发展是建设智能电网的重要前提,本文提出的智能电网正是以特高压为网络实体基础的坚强智能电网。 2、智能电网的特点 本文根据智能电网具有的灵活性、易接入性、可靠性、经济性等多方面优点,将智能电网的主要特征归纳为: (1)自愈:对电网的运行状态进行连接的在线自我评估,并采取预防性的控制

浅谈智能电网下的继电保护技术

浅谈智能电网下的继电保护技术 发表时间:2015-01-22T16:30:29.950Z 来源:《工程管理前沿》2015年第2期供稿作者:李振龙郭成志 [导读] 现代化的智能电网系统成为我国电力产业前进发展的新型风向标。 李振龙郭成志 (国网山东夏津县供电公司山东 253200) 摘要:伴随着智能电网建设的迅猛发展,继电保护在智能电网中的作用愈加显著,智能电网成为我国电力产业发展的新方向。智能电网下的继电保护作为保障电力运行安全的首道防线,也面临着更高的要求与全新的挑战。在智能电网的快速普及与发展下,继电保护系统需积极适应电网变革。本文立足于智能电网下继电保护的重要作用,阐述智能电网中继电保护的关键技术,针对智能电网下继电保护技术的提升与变革进行分析探讨。 关键词:智能电网;继电保护;广域保护技术 引言:现代化的智能电网系统成为我国电力产业前进发展的新型风向标。与此同时现代智能电网规划建设给电力运行环境也带来了愈加深化的影响,因而对保护电力系统安全及稳定运行的继电保护提出了更高的要求。电网系统改革发展与完善优化过程中,继电保护技术都发挥着举足轻重的作用。另外,智能电网现今的信息系统也为继电保护的发展提供了广阔的发展空间与良好的机遇,应积极利用完善的继电保护技术,并构建出更加合理可靠有效的保护系统,顺利适应电网变革。 一.智能电网中继电保护的重要作用 目前,我国国民经济正处在高速发展中,对电力的需求也越来越大,电力供应企业正承受着前所未有的压力,很多人口密集的城市和地区都出现了供电危机现象,使其只能采取停电、限电等措施,以使电力供应紧张得以缓解。同时加强了对智能电网电力系统安全的维护力度。作为电力系统的第一道防御手段,继电保护技术可以有效地保障电网的安全运行,一旦电网中存在故障,继电保护装置就能在第一时间内将出现故障的设备自动切除,同时发出预警信号,使工作人员能够在第一时间内发现故障,在最小区域,以最短时间,自动切除电力系统中的故障设备,还能向电力监控系统发出警报信息,提醒电力维修员及时采取有效措施进行解决,从而最大程度地降低了由电网故障造成的企业损失。同时最大程度上减少对电力元件的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全运行水平。因此,继电保护在智能电网中有着重要的作用和意义,企业应当大力发展和研究这项技术。 1.智能电网下的继电保护技术 1.1 智能电网下的继电保护构成 智能电网的分布式发电、交互式供电对继电保护提出了更高要求。另外,通信和信息技术的快速发展,数字化技术及其应用在各行各业的日益普及也为探索新的保护原理奠定了有力基础。智能电网中可利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控,然后把获得的数据通过网络系统进行收集、整合,最后对数据进行分析。再用这些信息对运行状况进行监测,实现对保护功能和保护定值的远程动态监控。对保护装置而言,保护功能除了需要本保护对象的运行信息外,还需要相关联的其他设备的运行信息,从而保证故障的准确实时识别,同时保证在没有或少量人干预下,能够快速隔离故障、自我恢复,防止发生大面积停电。因此,智能电网继电保护装置保护动作时不一定只跳本保护对象,有可能在跳本保护对象时还需发布连跳命令并跳开其他关联节点,也有可能只发连跳命令跳开其他关联节点,不跳开本保护对象。 1.2 智能电网下继电保护的关键技术 1.1.1 广域保护技术 广域保护技术主要是针对电力网络子集,将子集作为分析和处理电网运行障碍的单位,在“域”的范围采集该子集的继电保护信息,并对采集的信息进行详细分析,最后准确判断电网出现故障的原因,便于对问题进行处理。广域继电保护涵盖两大方面的内容,即安全自动控制和继电保护,安全自动控制主要针对电网本身的故障处理,为其自身故障的“自愈”提供更多更好的解决方案。广域继电保护技术最关键的作用就是使现有继电保护诊定配合复杂的故障问题,并能使之得到根治,最终目的是提高继电保护的自适应能力。 1.1.2 保护系统重构技术 现代智能电网的发展要求继电保护具有极强的自适能力,并适应于智能电网运行方式和电网结构改变所带来的一系列变化。在自适能力方面,新的继电保护必须要有重构功能、自我诊断和自我修复的功能,比如,在继电保护元件失灵的情况下,智能电网能够自动寻求替代元件并自动恢复继电保护。原有的继电保护系统已经无法满足智能电网的这种自适能力,因此,必须重新构建继电保护系统,从而最终满足预期效果。 1.1.3 智能设备、新型电子传感器的使用 在智能电网中心存在一个智能控制设备,该设备能够有效控制智能设备。同时,具有极广阔的覆盖面,覆盖了智能电网发电、输电、变电配电及用电等各个环节。传感器就是智能感应技术的代表。智能电网建设中借助智能运行设备安装智能传感器,能够实现数据信息的实时收集,有利于智能电网运行状态的分析、评估工作快速展开,为维修工作提供大量精确的数据,从而大规模提升继电保护系统的各个方面性能。 二.智能电网下继电保护技术的升级与变革 2.1 数字化方向 智能电网最重要且最突出的就是数字化特征,由于互感器故障的减少,我们不用再考虑由互感器故障所引起的回路接地和回路断线等故障,利用数字化的传感器的网络接口,通过网络保护装置和智能断路器有机连接,在很大程度上简化了二次回路接线,维护修理更加便捷,同时能够提高继电保护的整体性能,使所有的辅助功能得到简化,来提高继电保护水平,为我国智能电网建设提供先进的继电保护技术。 2.2 网络化方向 作为智能电网实现数字化转变的关键,网络化的继电保护装置可以有效提高智能电网的运行效率,电力管理者能够通过数字接口向继

浅析智能电网及核心技术

龙源期刊网 https://www.wendangku.net/doc/107489605.html, 浅析智能电网及核心技术 作者:刘伟 来源:《中国新技术新产品》2011年第19期 摘要:本文分析了智能电网的内涵和特点,论述了智能电网的主要技术。 关键词:智能电网;特点;通信系统;计量体系;需求侧管理;智能调度 中图分类号:TN91 文献标识码:A 由于世界各国经济社会的发展对能源的依赖性,造成当今世界能源危机、资源紧张、环境日趋恶化,使人类的生存与发展面临着前所未有的压力与挑战。如何在有限的资源中寻求一个新的支点,寻求一条环境、资源、经济、社会能够协调发展的道路,让人类在发展自我的过程中保持与自然的和谐,这是全人类共同的责任。面对这一课题,科学家们提出了智能电网的研究及建设,由此,积极发展智能电网已成为当今世界电力发展的新趋势。 一、智能电网的内涵 智能电网(smart power grids),是利用传感器连接更多的资产和设备,实现对发电、配电、输电、供电等关键设备运行状况的实时监控,并把获得的数据通过网络系统进行收集、整合,最后通过对数据的分析挖掘,达到优化管理整个电力系统运行、降低成本、提高效率、节能降损、实现环境清洁和友好的目的。智能电网是以特高压电网为骨干网架,以各级电网协调发展为基础,利用先进的通信、信息和控制技术,构建以信息化、自动化、互动化为特征的统一坚强智能化电网。 中国式的智能电网,首先要满足电力负荷的需求,在前期要保证输电、变电的智能化建设,要保证供电安全可靠性,要满足经济意义和节能,最后要保证电能质量和可再生能源的接入。 二、智能电网的特点 1、自愈。自愈性是指电网维持自身稳定运行、评估薄弱环节和应对紧急状态的能力,是实现电网安全可靠运行的主要功能。SG能够实时检测、分析电网运行状态,并及时发现、快速诊断和消除故障隐患;在尽量少的人工干预下,快速隔离故障、自我恢复,最小化或避免用户的供电中断,避免大面积停电事故的发生。 2、安全。安全性是指电网抵御外部破坏的能力,SG能更好地对人为或自然发生的扰动做出辨识与反应,有效抵御自然灾害、外力破坏和计算机攻击等不同情况对电力系统的攻击伤害,保证人身、设备和电网的安全。

智能电网建设的认识

1概述 2011年1月,我国首座220千伏智能变电站――西泾变电站在江苏无锡投运,该站通过物联网技术建立传感测控网络,实现了真正意义上的“无人值守和巡检”。西泾变电站作为国家电网公司首座220千伏站,完全达到了智能变电站建设的前期预想,设计和建设水平全国领先,对国家电网公司系统智能变电站建设起到了引领和示范作用。 智能变电站是坚强智能电网建设中实现能源转换和控制的核心平台之一,是智能电网的重要组成部分,也是实现风能、太阳能等新能源接入电网的重要支撑。 未来5年,福建省将构筑坚强的主干电网,实现以1000千伏与华东主网互联;福建省还将推进电网智能化建设,构建具有福建特色的智能电网,适应电动汽车、三网融合、分布式电源等发展需要。 2智能电网的概念 在现代电网的发展过程中,各国结合其电力工业发展的具体情况,通过不同领域的研究和实践,形成了各自的发展方向和技术路线,也反映出各国对未来电网发展模式的不同理解。近年来,随着各种先进技术在电网中的广泛应用,智能化已经成为电网发展的必然趋势,发展智能电网已在世界范围内形成共识。 从技术发展和应用的角度看,世界各国、各领域的专家、学者普遍认同以下观点:智能电网是将先进的传感量测技术、信息通信技术、分析决策技术、自动控制技术和能源电力技术相结合,并与电网基础设施高度集成而形成的新型现代化电网。 智能电网是实现全社会低碳发展的关键。在发电端应用智能电网技术可以提升接纳清洁能源的能力,还可提高传统发电技术的效率;在电网环节可以降低线路损耗,提高输电效率,提升电网基础设施资源利用率和供电可靠性,从而达到节能减排的目的;在深入千家万户的配电端,通过智能电表,可将用电信息反馈给用户,提高用电效率,用户还可通过智能电网将自家太阳能发电卖给电网,实现智能互动和绿色节能。 3我国智能电网建设现状 华东电网公司提出更加注重全力支持特高压骨干网架规划建设,认真配合做好特高压规划前期和配套工程建设,特别是华东特高压受端环网和四个特高压区外来电通道,积极争取参加特高压交直流工程投资,统筹协调区外来电的分配和消纳工作。 更加注重持续提升电网智能化水平,以清洁能源接入、智能输电网、智能调度技术为重点,积极推进关键技术研发,促进华东大受端电网智能化水平的提高,特别是要建设世界一流调度中心,在大电网安全掌控能力方面初步达到国际领先水平。 更加注重全面提升资源优化配置能力,稳步提升电网输送容量和利用效率,全面实施状态检修和资产全寿命周期管理,提高电网发展质量;优化电源布局和电网结构,促进新能源与常规能源的协调发展;加大电力市场建设力度,推广应用节能发电调度,促进全网节能减

浅谈我对智能电网的理解

浅谈我对智能电网的理解 1、智能电网是什么 智能电网是近几年来快速发展的网络、信息、自动化等先进技术应用与电网的产物,其概念至今国际上都没有一个统一的定义。美国能源部Grid2030的定义: 一个完全自动化的电力传输网络, 能监视和控制每个用户和电网节点, 保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。美国EPRI IntelliGrid的定义: 一个由众多自动化的书店和配电系统构成的电力系统, 以协调、有效和可靠的方式实现所有的电网运作; 具有自愈功能; 快速响应电力市场和企业业务需求; 具有智能化的通信架构, 实现实时、安全和灵活的信息流, 为用户提供可靠、经济的电力服务。维基百科SmartG rid的定义: 利用数字技术将电力由发电侧送至消费侧的电力网络, 可节省能源、低成本和提高供电可靠性。 我认为,智能电网就是电网的智能化,它应当是建立在集成、高速双向通信网络的基础上,通过县级的传感和测量技术、先进的技术设备、先进的技控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标、具有信息化、数字化、自动化和互动化等主要特征。与传统电网相比,智能电网将进一步拓展对电网全景信息的(指完整的、正确的、具有精确时间断面的、标准化的电力流信息和业物流信息)的获取能力,以坚强、可靠、通畅的实体电网构架和信息交互平台为基础,以服务生产全过程为需求,整合系统各种实时生产和运营信息,通过加强对电网业务流实时动态的分析、诊断和优化,为电网运营和管理人员提供更全面的。完整和精细的电网运营状态图,并给出相应的辅助决策支持以及控制实施方案和应对方案,最大程度的实现更为精细、准确。及时。绩优的电网运行和管理。智能电网将进一步的优化各级电网控制,构建结构扁平化、功能模块化、系统组态化的柔性体系架构,通过集中分散相结合,灵活变换网络结构、智能充足系统构架、最佳配置系统效能。优化电网服务质量,实现与传统电网不同的电网理念和体系。 1.智能用电:包括智能表计、电池技术、家庭自动化、微型电网、优质供电园区等。 2. 智能网络:包括调度自动化、即插即用式智能电力设备、智能保护装置、测量监视设备、电力电子设备、海量数据处理技术和可视化技术等。 3. 新能源发电:包括可再生能源发电、微透平技术、超导储能技术等。 4. 智能企业:包括信息集成技术、通信技术等。目前,智能电网大部分技术已经通过试验,有的已经比较成熟,甚至开始商业应用,只有少数技术尚待进一步研究。然而,我们不能忽视这些尚处于研发阶段的技术,它们恰恰是智能电网实现重大突破所需的关键技术。国外智能电网建设应用介绍 各国电力行业及其他相关行业已经开始积极探索和实践智能电网。由于每个电力企业面临的挑战和问题不尽相同,不同国家和地区的不同电力企业选择了不同的实践方式。总体来说,智能电网建设应用分为三个方面:智能表计、智能电网和智能城市。 1. 智能表计智能表计的优点在于:在客户和电力企业之间建立起双向信息流,提供互动性服务,更迅速地响应客户需求,提升客户满意度;丰富电力企业需求侧管理手段,提高能源利用效率;通过远程自动化表计管理,节约人力成本,提高工作效率;通过自动数据收集,及时掌握设备运行工况,节约检修和维护成本;有效防范窃电、盗窃破坏电力设施等违法行为。可以想象下,“就快下班了。你不用再心急火燎的往家赶,在办公室电脑上敲

什么是智能电网

关于智能电网的基本认识 1.智能电网研究的原动力及目标 电气化技术被认为是人类在20世纪取得的最伟大的科技成就之-,它推进了人类社会的文明发展史。随着以数字化和网络化为特征的信息时代的来临,电力工业的发展正面临着新的挑战。智能电网是现代电网的发展方向和目标。它将成为可充分利用广泛分布的可再生能源的基础设施,可实现节能减排、减缓(或维持)气候变暖的有希望的一种途径。智能电网将能满足信息时代高电能质量、高供电安全和可靠性的迫切要求;与用户互动,提高电力部门与用户双方的电能和资产利用率。因此,智能电网以超越传统模拟式电网的发展概念,愈来愈成为政府、政治家、企业家、金融家以及电力行业关注的热点和焦点。 (1)能耗和CO2排放导致全球变暖,已是一个不争的事实,而且在一段时期内还将变得更加严峻。中国已进入以重化工为主要特征的工业化时代,经济发展迅速。但是高能耗、高污染排放所带来的负面影响也越来越严重。中国已成为世界CO2排放第二大国,不久即将成为第一排放大国。CO2的排放是使地球气候变暖的主要原因之-,因而正在引起各国政府的严重关注。我国传统的以75%煤电为主要特征的电力工业发展模式已不被全社会所认可,因此如何在我国满足持续快速增长的能源需求和清洁高效利用能源,对能源科技发展提出了重大挑战。基于环境保护、节能减排和可持续发展的要求,越来越多的分布式电源将渗透进配电网基础设施。传统的只适合于单向潮流的配电网,由于有数以万计的分布式电源并网运行而面临双向潮流、难于预测和控制等问题。 (2)进入21世纪以来,以美加"8.14大停电"为代表的大规模停电事故频频发生,中、小电网事故引起用户停电更是屡见不鲜,造成的社会影响和巨大的经济损失已难以计算。由于目前电网用于紧急控制的保护和自动装置不具备对事态发展的实时监视、评估和控制能力,并且还可能发生因保护动作过慢或误动而导致电网震荡或不必要的解列等问题,发生电网的停电事故已难以避免。因此必须提高正常状态下的可观察性、动态安全评估和预防性控制能力,以实现电网的安全稳定运行,降低大规模停电的风险。 (3)作为城市电力基础设施的配电网建设耗资巨大,其资产需占整个电网总资产的40%"50%,甚至更大。然而城市电力设施的利用率却很低。据美国统计,其配电基础设施的平均载荷系数约为55%。这意味着电网的资源近一半未被利用。与之相比,我国城市电力设施和用户电力设施的利用率就更低。因此,需要开发高级的配电市场,通过电力公司与终端用户的互动,使负荷需求特性更具弹性,削峰填谷,优化资产管理,提高利用率。 (4)近20年来,通信和信息技术得到了长足发展,数字化技术及其应用在各行各业日益普及,对配电网的供电可靠性和电能质量提出了很高的要求。然而,目前的电网是按照模拟技术时代的要求设计的,适应不了数字化社会的需要;同时,数字化技术在电网中的应用也相对较落后,特别是配电网。 综上所述,能源压力和生态文明意识提升所带来的压力,以及未来数字化社会对电能质量和高安全可靠性的供电要求,已成为智能电网发展的原动力。就经济而言,驱使人们研究发展智能电网的原动力,不是电的成本,而是由于缺乏合格电力所造成损失的成本。 由上可见,智能电网研究的目标应该是: (1)实现大电网(以抵御事故扰动为目的)的安全稳定运行,降低大规模停电的风险,提高电网自愈能力,为高新技术、敏感用户提供高级电能质量和供电可靠性; (2)扩展兼容功能,使分布式电源得到有效的利用。该电源包括分布式可再生能源发电装置、分布式储能装置,以及电力用户(包括电动车)用电需求的响应等; (3)提高经营管理能力和电网资产的利用率; (4)提高用户电能利用效率,降低峰荷需求、总能量消耗和网损。

相关文档